The Catalyst Contains A Metal In Addition To The Iron, Or Another Material Utilized Contains A Metal Other Than Iron (e.g., As A Promoter, Retarder, Etc.) Patents (Class 518/721)
  • Patent number: 10179326
    Abstract: Embodiments of the present disclosure also provide for a supported fused Fe catalyst, a method of making the supported fused Fe catalyst, methods of hydrocarbon decomposition, and the like.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 15, 2019
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jean-Marie Basset, Lu Zhou, Youssef Saih, Linga Enakonda Reddy
  • Publication number: 20150060326
    Abstract: The invention relates to a process for the conversion of hydrogen and one or more oxides of carbon to hydrocarbons, which process comprises: contacting hydrogen and one or more oxides of carbon with a catalyst in a reaction zone; removing from the reaction zone an outlet stream comprising unreacted hydrogen, unreacted one or more oxides of carbon and one or more hydrocarbons and feeding the outlet stream to a separation zone in which the outlet stream is divided into at least three fractions, in which; a first fraction predominantly comprises unreacted hydrogen, unreacted one or more oxides of carbon and hydrocarbons having from 1 to 4 carbon atoms; a second fraction predominantly comprises hydrocarbons having 5 to 9 carbon atoms, at least a portion of which hydrocarbons having from 5 to 9 carbon atoms are olefinic; and a third fraction predominantly comprises hydrocarbons having 10 or more carbon atoms; characterised in that at least a portion of the second fraction is recycled to the reaction zone.
    Type: Application
    Filed: April 5, 2013
    Publication date: March 5, 2015
    Applicant: IGTL TECHNOLOGY LTD
    Inventor: Richard John Hyman
  • Publication number: 20150025160
    Abstract: A new process for light-olefins production is disclosed. The process comprises the step of contacting syngas with a iron-based catalyst at a temperature in the range from 250° C. to 350° C. and at a pressure in the range from 10 bar to 40 bar. By so doing a production of light olefins with a selectivity of at least 80% is obtained.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Applicant: Casale SA
    Inventor: Cristina Ferrini
  • Patent number: 8809225
    Abstract: An iron-based Fischer-Tropsch catalyst comprising magnetite and characterized by integrable X-ray diffraction reflections corresponding to (311), (511), (440), and (400), such that the relative intensity of the (400) reflection to the (300) reflection is less than about 39%. A method of preparing an activated iron-based Fischer-Tropsch catalyst by providing a precipitated catalyst comprising oxides including at least iron oxide; and activating the precipitated catalyst to provide the activated iron-based Fischer-Tropsch catalyst, wherein activating the precipitated catalyst comprises exposing the precipitated catalyst to an activation gas and increasing the temperature from a first temperature to a second temperature at a ramp rate, whereby the ratio of the intensity of the (400) reflection of the activated iron-based Fischer-Tropsch catalyst to the intensity of the (311) reflection thereof is less than 38%.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: August 19, 2014
    Assignee: Rentech, Inc
    Inventor: Karl C. Kharas
  • Publication number: 20140213670
    Abstract: Disclosed are hybrid Fischer-Tropsch catalysts containing cobalt and ZSM-48 zeolite. The hybrid Fischer-Tropsch catalysts can contain cobalt deposited on ZSM-48 extrudate supports. Alternatively, the Fischer-Tropsch catalysts can contain cobalt deposited on supports mixed with ZSM-48 particles. It has surprisingly been found that the use of hybrid Fischer-Tropsch catalysts containing ZSM-48 zeolite in synthesis gas conversion reactions results in improved C5+ productivity and catalyst activity, as well as a desirable product distribution including low formation of methane and C21+.
    Type: Application
    Filed: January 25, 2013
    Publication date: July 31, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Kandaswamy Jothimurugesan, Robert James Saxton
  • Publication number: 20140113981
    Abstract: Described is a process for the production of a pillared silicate. The process comprises (i) providing a layered silicate; (ii) interlayer expanding the layered silicate provided in step (i) comprising a step of treating the layered silicate with one or more swelling agents; (iii) treating the interlayer expanded silicate obtained in step (ii) with one or more hydrolyzable silicon containing compounds; (iv) treating the interlayer expanded compound obtained in step (iii) with an aqueous solution to obtain a pillared silicate; (v) removing at least a portion of the one or more swelling agents from the pillared silicate obtained in step (iv); and (vi) impregnating the pillared silicate obtained in step (v) with one or more elements selected from the group consisting of Fe, Ru, Ir, and combinations of two or more thereof. Also described is a pillared silicate optionally obtainable from said process and its use, in particular, in a process for the production of one or more olefins according to the invention.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 24, 2014
    Applicant: BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Xinhe Bao, Weiping Zhang, Dirk de Vos, Takashi Tatsumi, Feng-Shou Xiao, Hermann Gies, Hiroyuki Imai
  • Patent number: 8658554
    Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
  • Publication number: 20140045955
    Abstract: Provided are a method of manufacturing an olefin having 2 to 4 carbon atoms including: reacting a catalyst with synthesis gas through a Fischer-Tropsch reaction, thereby obtaining the olefin having 2 to 4 carbon atoms, in which the catalyst is a catalyst obtained by reducing the iron ion and the cobalt ion in a dispersion liquid or a solution containing the iron ion, the cobalt ion and a dispersant that interacts with the iron ion and the cobalt ion, and a method of manufacturing propylene, which uses the above manufacturing method.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicants: SUMITOMO CHEMICAL COMPANY , LIMITED, National University Corporation University of Toya ma, NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY, KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Miho YAMAUCHI, Katsutoshi NAGAOKA, Katsutoshi SATO, Noritatsu TSUBAKI, Akihiro YUASA, Hideyuki HIGASHIMURA, Takeshi ISHIYAMA
  • Patent number: 8618016
    Abstract: Iron- and manganese-containing heterogeneous catalyst, and a process for producing it, including the following steps: thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles; treatment of carbonyl iron powder with hydrogen, resulting in the metallic spherical primary particles at least partly agglomerating; surface oxidation of the iron particles to form iron oxide; contacting the particles with an aqueous solution of a manganese compound; drying in the presence of oxygen and subsequent calcination in the absence of oxygen, resulting in oxygen-comprising manganese compounds on the particles; and finally reaction of these with the iron oxide to form a mixed oxide of the formula MnxFe3-xO4, where 0<x?2. Process for preparing olefins by reacting carbon monoxide with hydrogen in the presence of a catalyst, wherein the abovementioned iron- and manganese-comprising heterogeneous catalyst is used as catalyst.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: December 31, 2013
    Assignee: BASF SE
    Inventors: Jochen Steiner, Kerem Bay, Vera Werner, Jürgen Amann, Stefan Bunzel, Claudia Moβbacher, Joachim Müller, Ekkehard Schwab, Markus Weber
  • Patent number: 8614164
    Abstract: Iron- and copper-containing heterogeneous catalyst, and a process for producing it, including the following steps: thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles; treatment of carbonyl iron powder with hydrogen, resulting in the metallic spherical primary particles at least partly agglomerating; surface oxidation of the iron particles to form iron oxide; contacting the particles with an aqueous solution of a copper compound; drying in the presence of oxygen and subsequent calcination in the absence of oxygen, resulting in oxygen-comprising copper compounds on the particles; and finally reaction of these with the iron oxide to form a mixed oxide of the formula CuxFe3-xO4, where 0<x?1. Process for preparing olefins by reacting carbon monoxide with hydrogen in the presence of a catalyst, wherein the abovementioned iron- and copper-comprising heterogeneous catalyst is used as catalyst.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: December 24, 2013
    Assignee: BASF SE
    Inventors: Jochen Steiner, Kerem Bay, Vera Werner, Jürgen Amann, Stefan Bunzel, Claudia Moβbacher, Joachim Müller, Ekkehard Schwab, Markus Weber
  • Publication number: 20130317127
    Abstract: A nickel-M-alumina hybrid xerogel catalyst for preparing methane, wherein the metal M is at least one element selected from the group consisting of Fe, Co, Ni, Ce, La, Mo, Cs, Y, and Mg, a method for preparing the catalyst and a method for preparing methane using the catalyst are provided. The catalyst has strong resistance against a high-temperature sintering reaction and deposition of carbon species, and can effectively improve a conversion ratio of carbon monoxide and selectivity to methane.
    Type: Application
    Filed: December 28, 2011
    Publication date: November 28, 2013
    Applicant: POSCO
    Inventors: Hyo Jun Lim, Chang Dae Byun, In Kyu Song, Dong Jun Koh, Sun Hwan Hwang, Jeong Gil Seo
  • Patent number: 8558047
    Abstract: A process is provided for the production of hydrocarbons from synthesis gas wherein the synthesis gas is fed to a reactor in which a catalyst acts on the feed at a temperature of between 160° C. and 400° C. and a pressure of between 1 bar and 5 bar. The feed includes a compound containing one or both nitrogen and phosphorus added to the reactor with the synthesis gas. The compound containing nitrogen typically constitutes at least 1 vol % and preferably of the order of 4 to 20 vol % or more of the feed. The carbonaceous gas may be carbon monoxide with a ratio of hydrogen to carbon monoxide in the synthesis gas of from 0.5:1 to 5:1. The catalyst is preferably a supported cobalt catalyst and may be modified with a promoter. The process produces an enhanced proportion of olefins, in the hydrocarbons produced.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 15, 2013
    Assignee: University of Cape Town
    Inventors: Michael Christian Maximillian Claeys, Eric Wilhelmus Josephus Van Steen, Frank Roessner, Andreas Karl Rausch
  • Patent number: 8506910
    Abstract: A process and system for producing high octane fuel from carbon dioxide and water is disclosed. The feedstock for the production line is industrial carbon dioxide and water, which may be of lower quality. The end product can be high octane gasoline, high cetane diesel or other liquid hydrocarbon mixtures suitable for driving conventional combustion engines or hydrocarbons suitable for further industrial processing or commercial use. Products, such as dimethyl ether or methanol may also be withdrawn from the production line. The process is nearly emission free and reprocesses all hydrocarbons not suitable for liquid fuel to form high octane products. The heat generated by exothermic reactions in the process is fully utilized as is the heat produced in the reprocessing of hydrocarbons not suitable for liquid fuel.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 13, 2013
    Assignee: CRI EHF
    Inventors: Shwetank Singh, Omar Freyr Sigurbjornsson, Kim-Chinh Tran
  • Patent number: 8481602
    Abstract: My process does not convert natural gas into compressed natural gas, does not convert natural gas into liquified natural gas but uses 2 new chemical formulas to convert natural gas into synthetic gasolines or into synthetic diesels. After producing CO through a technology of partial combustion , my process improves Fischer-Tropsch process using CH4 instead of H2, following 2 new chemical equations and adding salt, NaCl, to an iron, FeO, catalyst or to any other catalyst capable of generating hydrocarbons. Instead of producing a large variety of synthetic hydrocarbons like other processes do, my process delivers only synthetic gasolines following 5 CH4+2 CO=C7H16+2 H2O or only synthetic diesels following 11 CH4+5 CO=C16H34+5 H2O thanks to the addition of salt to an iron catalyst or to any other catalyst. No oil refining needed. Because natural gas is the cleanest hydrocarbon, my process produces clean synthetic gasolines or clean synthetic diesels.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: July 9, 2013
    Inventor: Robert Gagnon
  • Patent number: 8461220
    Abstract: A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component and an acidic component in an upstream catalyst bed thereby producing a wax-free liquid containing a paraffin component and an olefin component. The olefin component is saturated by contacting the liquid with an olefin saturation catalyst in a downstream catalyst bed.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 11, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das
  • Patent number: 8455556
    Abstract: A process for the preparation of a packed bed comprising an iron enriched cobalt catalyst for use in a Fischer-Tropsch reaction, the process comprising the steps of: (a) providing a packed bed with one or more catalyst particles comprising metallic cobalt; (b) contacting a part of the catalyst particle(s) in the packed bed with an iron containing compound. The process is preferably conducted in situ which conveniently results in an iron containing cobalt catalyst with a higher C5+ selectivity. In certain preferred embodiments the concentration of iron increases towards the surface of the resulting catalyst particles whereas the cobalt concentration is constant which further increases the selectivity of the catalyst to producing C5+ hydrocarbons.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: June 4, 2013
    Assignee: Shell Oil Company
    Inventors: Ralph Haswell, Carolus Matthias Anna Maria Mesters, Heiko Oosterbeek, Thomas Joris Remans, Marinus Johannes Reynhout
  • Publication number: 20130046033
    Abstract: A new process for light-olefins production is disclosed. The process comprises the step of contacting syngas with a iron-based catalyst at a temperature in the range from 250° C. to 350° C. and at a pressure in the range from 10 bar to 40 bar. By so doing a production of light olefins with a selectivity of at least 80% is obtained.
    Type: Application
    Filed: May 6, 2011
    Publication date: February 21, 2013
    Applicant: Casale Chemicals SA
    Inventor: Cristina Ferrini
  • Publication number: 20120259026
    Abstract: Disclosed is a process for the production of lower olefins by the conversion of a feed stream comprising carbon monoxide and hydrogen, and catalysts as used therein, such as a Fischer-Tropsch process. By virtue of the invention, lower olefins can be formed from synthesis gas, with high selectivity, and low production of methane. The catalysts used herein comprise an ?-alumina support, and a catalytically active component that comprises iron-containing particles dispersed onto the support in at least 1 wt. %. The majority of the iron-containing particles is in direct contact with the ?-alumina and is well-distributed thereon. Preferably, the iron-containing particles have an average particle size below 30 nm, and most preferably below 10 nm. The supported catalysts not only show a high selectivity, but also a high catalyst activity and chemical and mechanical stability.
    Type: Application
    Filed: October 25, 2010
    Publication date: October 11, 2012
    Inventors: Hirsa Maria Torres Galvis, Johannes Hendrik Bitter, Krijn Pieter de Jong
  • Publication number: 20120123001
    Abstract: The present invention relates to a process for producing aliphatic and aromatic C2-C6 hydrocarbons by submitting a reformed gas to Fischer-Tropsch synthesis.
    Type: Application
    Filed: March 15, 2010
    Publication date: May 17, 2012
    Applicant: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Agaddin Kh. Mamedov, Saleh A. Al-Sayari
  • Publication number: 20120122674
    Abstract: The present invention relates to petrochemistry and gas chemistry, and discloses a support for catalysis of exothermic processes, particularly the Fischer-Tropsch process, methanol synthesis, hydrogenation and purification of exhaust gases. The support comprises metallic aluminium in the form of a mixture of dispersed powders of flaky and spherical aluminium and the support is in the form of pellets, preferably cylinders, tablets, balls, obtained by extrusion, pelletization, tabletting, rounding or liquid molding. The catalyst prepared on the support comprises an active metal selected from the group consisting of Co, Fe, Ni, Ru, Rh, Pt, Pd, Cu and mixtures thereof.
    Type: Application
    Filed: August 3, 2010
    Publication date: May 17, 2012
    Applicant: INFRA TECHNOLOGIES LTD.
    Inventors: Vladimir Zalmanovich Mordkovich, Lilia Vadimovna Sineva, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev, Eduard Borisovich Mitberg
  • Publication number: 20120115966
    Abstract: The present invention provides a process for preparing methanol, dimethyl ether, and low carbon olefins from syngas, wherein the process comprises the step of contacting syngas with a catalyst under the conditions for converting the syngas into methanol, dimethyl ether, and low carbon olefins, characterized in that, the catalyst contains an amorphous alloy consisting of a first component Al and a second component, said second component being one or more elements or oxides thereof selected from Group IA, IIIA, IVA, VA, IB, IIB, IVB, VB, VIIB, VIIB, VIII, and Lanthanide series of the Periodic Table of Elements, and said second component being different from the first component Al. According to the present process, the syngas can be converted into methanol, dimethyl ether, and low carbon olefins in a high CO conversion, a high selectivity of the target product, and high carbon availability.
    Type: Application
    Filed: November 26, 2009
    Publication date: May 10, 2012
    Applicants: Research Institute of Petroleum Processing, SINOPEC, China Petroleum & Chemical Corporation
    Inventors: Qiang Fu, Xiaoxin Zhang, Yibin Luo, Xuhong Mu, Baoning Zong
  • Publication number: 20120083539
    Abstract: The present invention provides a process for preparing methanol, dimethyl ether, and low carbon olefins from syngas, wherein the process comprises the step of contacting syngas with a catalyst under the conditions for converting the syngas into methanol, dimethyl ether, and low carbon olefins, characterized in that, the catalyst contains an amorphous alloy consisting of components M and X wherein the component X represents an element B and/or P, the component M represents two or more elements selected from Group IIIA, IVA, VA, IB, IIB, IVB, VB, VIB, VIIB, VIII and Lanthanide series of the Periodic Table of Elements. According to the present process, the syngas can be converted into methanol, dimethyl ether, and low carbon olefins in a high CO conversion, a high selectivity of the target product, and high carbon availability.
    Type: Application
    Filed: December 15, 2009
    Publication date: April 5, 2012
    Applicants: Research Instutute of Petroleum Procesing, Sinopec, China Petroleum & Chemical Corporation
    Inventors: Qiang Fu, Xiaoxin Zhang, Yibin Luo, Xuhong Mu, Baoning Zong
  • Publication number: 20120022174
    Abstract: A micro-spherical Fe-based catalyst for a slurry bed Fischer-Tropsch synthesis (FTS) comprises Fe as its active component, a transitional metal promoter M, a structure promoter S and a K promoter. The transitional metal promoter M is one or more selected from the group consisting of Mn, Cr and Zn, and the structure promoter S is SiO2 and/or Al2O3. The weight ratio of the catalyst components is Fe: transitional metal promoter: structure promoter: K=100:1-50:1-50:0.5-10. Preparation method of the catalyst comprises: adding the structure promoter S into a mixed solution of Fe/M nitrates, then co-precipitating with ammonia water to produce a slurry, filtering and washing the slurry to produce a filter cake, adding the required amount of the K promoter and water to the filter cake, pulping and spray drying, and roasting to produce the micro-spherical Fe-based catalyst for the slurry bed Fischer-Tropsch synthesis.
    Type: Application
    Filed: April 8, 2010
    Publication date: January 26, 2012
    Inventors: Yong Yang, Baoshan Wu, Yongwang Li, Hongwel Xiang
  • Publication number: 20120016042
    Abstract: The present invention concerns a catalyst for carrying out hydrocarbon synthesis starting from a mixture comprising carbon monoxide and hydrogen, the active phase of which comprises at least one metal from group VIII deposited on a support formed by at least one oxide, in which said metal from group VIII is selected from the group constituted by cobalt, nickel, ruthenium or iron, and in which said catalyst has an atomic ratio (Co/Al)not ground/(CO/Al)ground, measured by X-ray photo-emission spectroscopy, in the range 1 to 12. The invention also concerns the catalyst preparation process and its use.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 19, 2012
    Applicants: IFP Energies nouvelles, ENI S.p.A.
    Inventors: Sylvie Maury, Christele Legens, Loic Sorbier, Fabrice Diehl, Joseph Lopez, Lars Fischer
  • Publication number: 20110306685
    Abstract: A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil containing no greater than about 25 wt % olefins and containing no greater than about 5 wt % C21+ normal paraffins. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component and an acidic component in an upstream catalyst bed thereby producing a wax-free liquid containing a paraffin component and an olefin component. The olefin component is saturated by contacting the liquid with an olefin saturation catalyst in a downstream catalyst bed.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Inventors: Charles L. Kibby, Robert J. Saxton, Kandaswamy Jothimurugesan, Tapan K. Das
  • Publication number: 20110112205
    Abstract: Iron- and manganese-comprising heterogeneous catalyst and process for producing it, which comprises the following steps: I. thermal decomposition of gaseous iron pentacarbonyl to give carbonyl iron powder having spherical primary particles, II. treatment of carbonyl iron powder obtained in step I with hydrogen, resulting in the metallic spherical primary particles at least partly agglomerating, III. surface oxidation of the iron particles from step II (i.e. agglomerates=secondary particles, and also any primary particles still present) to form iron oxide, IV. contacting of the particles from step III with an aqueous solution of a manganese compound, V. drying in the presence of oxygen and subsequent calcination in the absence of oxygen, resulting firstly in oxygen-comprising manganese compounds on the particles and finally reaction of these with the iron oxide to form a mixed oxide of the formula MnxFe3-xO4, where 0<x?2.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 12, 2011
    Applicant: BASF SE
    Inventors: JOCHEN STEINER, Kerem Bay, Vera Werner, Jürgen Amann, Stefan Bunzel, Claudia Moßbacher, Joachim Müller, Ekkehard Schwab, Markus Weber
  • Patent number: 7879749
    Abstract: Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: February 1, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Harry W. Rollins, Lucia M. Petkovic, Daniel M. Ginosar
  • Publication number: 20100249252
    Abstract: Disclosed are solid titanium-free Fischer-Tropsch catalysts including iron homogeneously modified with a zirconium promoter/stabilizer. The homogeneously mixed solid catalysts can be formed through co-precipitation of iron and zirconium precursors followed by calcination and reduction to form the active catalyst materials. The catalysts can optionally include additional materials such as copper, potassium, and silicon promoters.
    Type: Application
    Filed: June 12, 2008
    Publication date: September 30, 2010
    Inventors: James G. Goodwin, JR., Edgar Lotero, Nattaporn Lohitharn
  • Patent number: 7666917
    Abstract: Process for conversion of syngas to liquid hydrocarbons using a catalyst composition containing a support and a Fischer-Tropsch metal for the conversion of syngas to liquid hydrocarbons, in which a silylating compound modifier is added to the catalyst composition during catalyst preparation or during a post-treatment stage.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: February 23, 2010
    Assignees: BP Exploration Operating Company Limited, Davy Process Technology Limited
    Inventors: Josephus Johannes Helena Maria Font Freide, Lawrence Trevor Hardy
  • Patent number: 7655704
    Abstract: This invention relates to a high temperature Fischer-Tropsch (HTFT) hydrocarbon synthesis process comprising the conversion of a feed of H2 and at least one carbon oxide to hydrocarbons containing at least 30% on a mass basis hydrocarbons with five or more carbon atoms (hereinafter referred to as C5+ compounds). The conversion is carried out in the presence of an alkali-promoted iron hydrocarbon synthesis catalyst, and the process is characterised therein that the reaction mixture formed during the conversion contains less than 0.02 mol alkali per 100 g iron, and that the H2:carbon oxide molar ratio in the feed of H2 and carbon oxide is at least 2.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: February 2, 2010
    Assignee: Sasol Technology (Proprietary) Ltd.
    Inventors: Frederick Gideon Botes, Tracy Carolyn Bromfield
  • Publication number: 20100004346
    Abstract: A process for the preparation of a packed bed comprising an iron enriched cobalt catalyst for use in a Fischer-Tropsch reaction, the process comprising the steps of: (a) providing a packed bed with one or more catalyst particles comprising metallic cobalt; (b) contacting a part of the catalyst particle(s) in the packed bed with an iron containing compound. The process is preferably conducted in situ which conveniently results in an iron containing cobalt catalyst with a higher C5+ selectivity. In certain preferred embodiments the concentration of iron increases towards the surface of the resulting catalyst particles whereas the cobalt concentration is constant which further increases the selectivity of the catalyst to producing C5+ hydrocarbons.
    Type: Application
    Filed: July 12, 2007
    Publication date: January 7, 2010
    Inventors: Ralph Haswell, Carolus Matthias Anna Maria Mesters, Heiko Oosterbeek, Thomas Joris Remans, Marinus Johannes Reynhout
  • Patent number: 7598295
    Abstract: According to the present invention there is provided the use of a source of chromium in combination with a precipitated iron catalyst in a high temperature Fischer-Tropsch process to convert CO and H2 to hydrocarbons and possibly oxygenates thereof. In the process CO and H2 are contacted with the source of chromium in combination with the precipitated iron catalyst in a high temperature Fischer-Tropsch reaction. The invention also relates to the use of a source of chromium in the preparation of a precipitated iron catalyst for use in high temperature Fischer-Tropsch process and to a precipitated iron catalyst suitable for use in a high temperature Fischer-Tropsch process which contains a source of chromium.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: October 6, 2009
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Tracy Carolyn Bromfield, Rentia Visagie
  • Publication number: 20090124712
    Abstract: Process for the production of hybrid catalysts formed by mixing two catalysts; one active in Fischer-Tropsch synthesis, the other being bifunctional. Such hybrid catalyst thus formed is active both in hydrocracking and in hydroisomerisation reactions. The present invention in addition provides obtainment of a hybrid catalyst and application thereof conjointly with FT catalysts in Fischer-Tropsch synthesis reactions. The hybrid catalyst of the present invention is capable of producing in conditions typically such as those utilised in Fischer-Tropsch synthesis branched hydrocarbons in diverse bands relating to the products thereof (for example naphtha and diesel), reducing or even eliminating necessity for a subsequent hydrotreatment stage in such synthesis reactions.
    Type: Application
    Filed: October 29, 2008
    Publication date: May 14, 2009
    Applicant: PETROLEO BRASILEIRO S.A.- PETROBRAS
    Inventors: Alexandre DE FIGUEIREDO COSTA, Agustin Martines Feliu, Joan Rollan Martinez, Henrique Soares Cerqueira, Joberto Ferreira Dias Junior, Eduardo Falabella Sousa Aguiar
  • Patent number: 7459485
    Abstract: This invention relates to a hydrocarbon synthesis process comprising the conversion of a feed of H2 and at least one carbon oxide to hydrocarbons containing at least 30% on a mass basis hydrocarbons with five or more carbon atoms. The conversion is carried out in the presence of an alkali-promoted iron hydrocarbon synthesis catalyst and an acidic catalyst suitable for converting hydrocarbons. The reaction mixture formed during the conversion contains less than 0.02 mol alkali per 100 g iron and the H2:carbon oxide molar ration in the feed of H2 and carbon oxide is at least 2.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: December 2, 2008
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Frederick Gideon Botes, Tracy Carolyn Bromfield, Philip Gibson, Rafael Luis Espinoza
  • Patent number: 7393876
    Abstract: Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: July 1, 2008
    Assignee: Eltron Research, Inc.
    Inventors: James H. White, Jesse W. Taylor
  • Patent number: 7393877
    Abstract: In a process for the conversion of carbon monoxide to C2+ hydrocarbons in the presence of hydrogen and of a catalyst comprising a metal and a support comprising silicon carbide, the support comprises more than 50% by weight of silicon carbide in the beta form. A process for the conversion of carbon monoxide to C2+ hydrocarbons in the presence of hydrogen and of a catalyst the effluent thus obtained are also disclosed.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: July 1, 2008
    Assignees: Total France, Total S.A.
    Inventors: Sabine Savin-Poncet, Marc-Jacques Ledoux, Cuong Pham-Huu, Jacques Bousquet, Behrang Madani
  • Publication number: 20080139676
    Abstract: The invention relates to a catalytically active composition for the selective methanation of carbon monoxide which comprises at least one element selected from the group consisting of ruthenium, rhodium, nickel and cobalt as active component and a support material based on carbon. The invention further provides for the use of this catalytically active composition for the selective methanation of carbon monoxide and in the production of hydrogen for fuel cell applications.
    Type: Application
    Filed: January 19, 2006
    Publication date: June 12, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Christian Kuhrs, Markus Holzle, Till Gerlach, Michael Hesse
  • Patent number: 7259286
    Abstract: An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: August 21, 2007
    Assignees: Research Triangle Institute, The University of Pittsburgh-of the Commonwealth System of Higher Education
    Inventors: Kandaswamy Jothimurugesan, James G. Goodwin, Jr., Santosh K. Gangwal
  • Patent number: 7115668
    Abstract: Hydrocarbons are prepared, which are liquid at the reaction temperature, by feeding synthesis gas into three-phase turbulent reactors in which the solid phase, consisting of the catalyst in the form of particles, is kept in suspension in the liquid phase by the rising synthesis gas. The reaction product is extracted in continuous, together with the catalyst dispersed therein, and sent to a separation section which comprises a primary filtration unit and a micro/ultra-filtration unit.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: October 3, 2006
    Assignees: ENI S.p.A., Institut Francais du Petrole, Enitecnologie S.p.A.
    Inventors: Giuseppe Belmonte, Vincenzo Calemma
  • Patent number: 7067562
    Abstract: The present invention presents an iron-based Fischer-Tropsch catalyst having a low water-gas shift activity and high selectivity and productivity toward a hydrocarbon wax wherein said catalyst comprises iron; silver; sodium, lithium, potassium, rubidium and/or cesium; optionally, calcium, magnesium, boron, and/or aluminum; and a silica structural promoter. The present invention further presents a method of making a precipitated iron-based Fischer-Tropsch catalyst. The present invention still further presents a process for producing hydrocarbons using the iron-based, precipitated Fischer-Tropsch catalyst of the present invention.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: June 27, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Ajoy P. Raje
  • Patent number: 7056955
    Abstract: According to a preferred embodiment, the present invention features a bulk catalyst that includes precipitated cobalt metal. The precipitated cobalt catalyst further includes a textural promoter, a binder and optionally a Group I metal. The method of making the catalyst is optimized so as to enhance attrition resistance and improve activity. According to some embodiments, the present catalyst is made by a method that includes one or a combination of: calcination under optimized temperature conditions; exposure to an acidic solution; and addition of a binder to a suspension of a precipitate. According to some embodiments, a Fischer-Tropsch process includes contacting the present catalyst with a feed stream containing carbon monoxide and hydrogen so as to produce hydrocarbons.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: June 6, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Kandaswamy Jothimurugesan, Ajoy P. Raje, Kevin L. Coy, Nithya Srinivasan
  • Patent number: 7012104
    Abstract: A hydrothermally-stable catalyst, method for making the same, and process for producing hydrocarbon, wherein the catalyst is used in synthesis gas conversion to hydrocarbons. In one embodiment, the method comprises depositing a compound of a catalytic metal selected from Groups 8, 9, and 10 of the Periodic Table on a support material comprising boehmite to form a composite material; and calcining the composite material to form the catalyst. In other embodiments, the support material comprises synthetic boehmite, natural boehmite, pseudo-boehmite, or combinations thereof.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: March 14, 2006
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Yaming Jin, Kandaswamy Jothimurugesan, Nithya Srinivasan
  • Patent number: 6977273
    Abstract: A process is described for synthesizing hydrocarbons from a mixture comprising carbon monoxide and hydrogen in the presence of a catalyst comprising at least one group VIII metal supported on a silica-alumina prepared by co-precipitating and calcining at a temperature in the range from about 500° C. to about 1200° C. for at least 6 hours so that said silica-alumina has a specific surface area of less than 260 m2/g. Said catalyst is used in a fixed bed or in suspension in a liquid phase of a three-phase reactor.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: December 20, 2005
    Assignees: Institut Francais du Petrole, ENI S.p.A., AGIP Petroli S.p.A.
    Inventors: Magalie Roy-Auberger, Philippe Courty, Renaud Revel, Roberto Zennaro
  • Patent number: 6962947
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: November 8, 2005
    Assignee: ConocoPhillips Company
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza
  • Patent number: 6900151
    Abstract: An in situ process for conducting regeneration of spent hydrocarbon synthesis catalyst. Regenerated, but not yet re-activated, catalyst (15) may be introduced into an operating HCS reactor (1) that has catalyst rejuvenation means (14). Any combination of a fresh, activated catalyst, a fresh, passivated catalyst or short-term or long-term deactivated catalysts may already be present in the HCS reactor (1). The regenerated, but not yet re-activated catalyst is activated in the HCS reactor (1) with rejuvenation means (14) at normal process conditions. The HCS reactor (1) receives syngas through the inlet line (3) and releases liquid hydrocarbons through outlet line (4) and gaseous hydrocarbon and unreacted syngas through the offgas line (2). Catalyst is removed from the HCS reactor (1) through the slipstream line (5) and into a filtration unit (6) which is fed with a stripping fluid (7). The filtered catalyst proceeds to the regeneration unit (9) which is fed a regenerative fluid (10).
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: May 31, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart Leon Soled, Joseph Ernest Baumgartner, Gabor Kiss
  • Patent number: 6869978
    Abstract: A process is disclosed for regenerating a catalyst used in a process for synthesizing hydrocarbons. The synthesis process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. The regeneration process involves contacting a deactivated Fischer-Tropsch catalyst with a regeneration gas under regeneration-promoting conditions that include a pressure lower than the mean Fischer-Tropsch reaction pressure, for a period of time sufficient to reactivate the Fischer-Tropsch catalyst.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: March 22, 2005
    Assignee: ConocoPhillips Company
    Inventors: Harold A. Wright, Ajoy P. Raje, Rafael L. Espinoza
  • Patent number: 6844370
    Abstract: According to the present invention there is provided a hydrocarbon synthesis catalyst comprising a precipitated iron product and a catalyst promotor. The catalyst has a surface area of below 60 m2 per gram of catalyst in the reduced form or below 100 m2 per gram of catalyst in the non-reduced form. According to the invention there is also provided a process for preparing the catalyst and the use thereof in the synthesis of hydrocarbons.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: January 18, 2005
    Assignee: Sasol Technology (Pty) Ltd.
    Inventors: Rafael Luis Espinoza, Tracy Carolyn Bromfield, Frederick Gideon Botes, Rentia Visagie, Keith Henry Lawson, Philip Gibson
  • Patent number: 6809123
    Abstract: A carbon-bearing feedstock is reacted with oxygen and water in a partial oxidation reactor to produce a mixture of hydrogen and carbon monoxide. The hydrogen is removed as a first product and the remaining carbon monoxide is reacted with steam over a bifunctional catalyst to produce higher hydrocarbons and carbon dioxide. The bifunctional catalyst provides water gas shift and Fischer-Tropsch functions.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: October 26, 2004
    Assignee: Rentech, Inc.
    Inventor: Dennis L. Yakobson
  • Patent number: 6787577
    Abstract: Process for increasing the branching in products from a slurry-type Fischer-Tropsch unit by use of potassium promoted iron-based catalyst, an integrated process for increasing the yield of lubricating base oils, and an iron-based Fischer-Tropsch catalyst composition having a high atomic ratio of potassium promoter.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: September 7, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Burtron H. Davis, Stephen J. Miller
  • Patent number: 6777452
    Abstract: Promoted skeletal iron catalysts are provided which contain 70-90 wt % iron together with promoters 0-5.0 wt. % copper, 0.1-10.0 wt. % manganese, and 0.1-3.0 wt. % potassium, with the balance being aluminum. The catalysts are prepared by mixing the metal chips or powders uniformly together, then melting and rapidly quenching the molten metals to form a solid metal alloy precursor including the promotor metals except potassium, removing most of the aluminum by caustic extraction/leaching to provide a base skeletal iron form, then loading the potassium promoter from a suitable potassium alcohol solution promoter. After evaporation of the solvent, the promoted skeletal iron catalyst is activated by contact with hydrogen. The promoted skeletal iron catalysts are utilized for F-T synthesis processes at 10-30 wt % catalyst concentration, 200-350° C. temperature, 1.0-3.0 Mpa pressure and gas hourly space velocity of 0.5-5.0 L/gcat-h to produce desired hydrocarbon liquid products.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: August 17, 2004
    Assignees: Hydrocarbon Technologies, Institue of Coal Chemistry
    Inventors: Peizheng Zhou, Yijun Lu