Cellular Product-forming Process Wherein The Removable Material Is Present Or Is Produced In Situ During The Solid Polymer Formation Step Patents (Class 521/63)
  • Patent number: 7319114
    Abstract: Hollow polymer particles are provided to have an average particle diameter of 15 ?m or more and 500 ?m or less and a 10%-compressive strength of 1.5 MPa or more, and the hollow polymer particle includes a hollow portion in the interior. In addition, a porous ceramic filter is provided by firing a shaped material composed of a mixture in which the above-described hollow polymer particles are mixed to disperse in a ceramic composition.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: January 15, 2008
    Assignees: Sekisui Chemical Co., Ltd., Tokuyama Sekisui Co., Ltd.
    Inventors: Takahiro Ohmura, Yasushi Nakata, Yasuhiro Kawaguchi, Takahiro Yoshida
  • Patent number: 7285578
    Abstract: A water-in-oil emulsion composition for forming a silicone elastomer porous material contains a liquid silicone rubber material which forms a silicone elastomer upon curing, a silicone oil material which has a surface activation function, and water.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: October 23, 2007
    Assignee: Nitto Kogyo Co., Ltd.
    Inventors: Naka Hirayama, Atsushi Ikeda
  • Patent number: 7268169
    Abstract: A substantially closed-cell silicone elastomer porous body includes cells with diameters of 50 ?m or less, which occupy 50% or more of all the cells, and has a closed cell rate of 60% or more.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: September 11, 2007
    Assignee: Nitto Kogyo Co., Ltd.
    Inventors: Naka Hirayma, Atsushi Ikeda
  • Patent number: 7166362
    Abstract: There are provided a film-forming composition that includes a hydrolysis product and/or a condensation product of a compound having a repeating unit represented by Formula (1) below. (In the formula, at least one of P and Q is a silane coupling group represented by -L3-Si(R3)m(OR4)3-m, R3 to R8 independently denote H or a hydrocarbon group (C1 to 8), m denotes 0, 1, or 2, x denotes 100 to 1 mol %, y denotes 0 to 99 mol %, and P and Q denote terminal groups; L1 to L3 independently denote a single bond or a divalent organic linking group, Y1 and Y2 independently denote —N(R9)(R10), —OH, —NR0COR9, —CON(R9)(R10), —OR9, —CONR92, —COR9, —CO2M, —COOR9, or —SO3M, in which R0, R9, and R10 independently denote H or alkyl (C1 to 8), R0 and R9 may form a ring, and M denotes H, an alkali metal, an alkaline earth metal, or onium.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: January 23, 2007
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Takeyoshi Kano
  • Patent number: 7167354
    Abstract: A mesoporous polymer and method of preparing a mesoporous polymer whose polymerization kinetics are dependent upon pH and whose pore size is controlled by pH and solvent concentration are disclosed. The polymer is optionally pyrolyzed to form a primarily carbonaceous solid. The material has an average pore size in the mesopore range and is suitable for use in liquid-phase surface limited applications including chromatographic, sorbent, catalytic, and electrical applications.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: January 23, 2007
    Assignee: TDA Research, Inc.
    Inventors: Steven Dietz, Vinh The Nguyen
  • Patent number: 7148264
    Abstract: The present invention relates to a method of producing one or more macroporous cross-linked polymer particles, which comprises polymerization and cross-linking of divinyl ether monomers in an inert solvent, in which method the polymerization is free radical initiated. The invention also relates to particles so produced, which are useful as separation medium e.g. in RPC or, after suitable derivatization, in other chromatographic methods.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: December 12, 2006
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Tobias Söderman, Anders Larsson, Philippe Busson
  • Patent number: 7087656
    Abstract: A block copolymer, preferably a block copolymer such as poly(isoprene-block-ethylene oxide), PI-b-PEO, is used as a structure directing agent for a polymer derived ceramic (PDC) precursor, preferably a silazane, most preferably a silazane commercially known as Ceraset. The PDC precursor is preferably polymerized after mixing with the block copolymer to form a nanostructured composite material. Through further heating steps, the nanostructured composite material can be transformed into a nanostructured non-oxide ceramic material, preferably a high temperature SiCN or SiC material.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: August 8, 2006
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Carlos Garcia, Ulrich Wiesner
  • Patent number: 7081272
    Abstract: A composition comprising a fluid, silica precursor (A) obtained by subjecting alkoxysilane(s) to hydrolysis/polycondensation in the presence of an acid catalyst, a basic compound (B) having a basic hydroxyl group and/or a basic nitrogen atom, wherein the pH of a 0.1 N aqueous solution of compound (B) is 11 or more, and the vapor pressure of compound (B) is 1.3 kPa or lower at 100° C., and an organic compound (C) having a boiling point of 100° C. or higher, compound (C) being compatible with silica precursor (A), wherein the amount of compound (B) is from 0.0015 to 0.5 mol, in terms of the total molar amount of the basic hydroxyl groups and the basic nitrogen atoms in compound (B), per mole of Si atoms contained in silica precursor (A).
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: July 25, 2006
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Yoro Sasaki, Hiroyuki Hanahata, Takaaki Ioka
  • Patent number: 7078441
    Abstract: An organic porous material having a continuous pore structure, which comprises interconnected macropores and mesopores with a radius of 0.01 to 100 ?m in the walls of the macropores, having a total pore volume of 1 to 50 ml/g and having pore distribution curve characteristics wherein the value obtained by dividing the half-width of the pore distribution curve at the main peak by the radius at the main peak is 0.5 or less. The organic porous material is useful as an adsorbent having high physical strength and excelling in adsorption amount and adsorption speed, an ion exchanger excelling in durability against swelling and shrinkage, and a filler for chromatography exhibiting high separation capability.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: July 18, 2006
    Assignee: Organo Corporation
    Inventors: Hiroshi Inoue, Koji Yamanaka
  • Patent number: 7056455
    Abstract: The present invention comprises a novel process for the preparation of carbon based structured materials with controlled topology, morphology and functionality. The nanostructured materials are prepared by controlled carbonization, or pyrolysis, of precursors comprising phase separated copolymers. The precursor materials are selected to phase separate and self organize in bulk, in solution, in the presence of phase selective solvents, at surfaces, interfaces or during fabrication, into articles, fibers or films exhibiting well-defined, self-organized morphology or precursors of well-defined, self-organized, bi- or tri-phasic morphology. Compositional control over the (co)polymers provides control over the structure of the phase separated precursor whose organization therein dictates the nanostructure of the material obtained after carbonization or pyrolysis, wherein each dimension of the formed structure can be predetermined.
    Type: Grant
    Filed: April 6, 2002
    Date of Patent: June 6, 2006
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Tomasz Kowalewski, David N. Lambeth, James Spanswick, Nicolay V. Tsarevsky
  • Patent number: 7052608
    Abstract: A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: May 30, 2006
    Assignee: Sandia National Laboratories
    Inventors: Timothy J. Shepodd, Elizabeth Franklin, Zane T. Prickett, Alexander Artau
  • Patent number: 7022745
    Abstract: In forming pressure sensitive adhesive microspheres by copolymerizing a non-ionic monomer of an alkyl acrylate or alkyl methacrylate ester of a non-tertiary alcohol and an acid monomer copolymerizable with said non-ionic monomer, an electrolyte is present during the polymerization to promote formation of solid rather than hollow microspheres.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: April 4, 2006
    Assignee: Surf Chip, Inc.
    Inventors: Jong-Shing Guo, Augustin T. Chen, Sharon D. Trembley
  • Patent number: 7019040
    Abstract: The present invention relates to a process for the preparation of porous polymer particles based on acrylate and/or methacrylate, comprising the steps of provision of a reaction mixture comprising at least one monomer chosen from the group consisting of acrylate and methacrylate compounds, and at least one monoterpene as porogen and of polymerization with the formation of porous polymer particles based on acrylate and/or methacrylate. The present invention also covers the porous polymer particles based on acrylate and/or methacrylate prepared in this way.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: March 28, 2006
    Assignee: Metrohm AG
    Inventors: Andreas Seubert, Sandra Schuetze
  • Patent number: 6991678
    Abstract: A process for the preparation of crystalline microporous titanium silicates using ethylsilicate-40 and titanium peroxide as silicon and titanium sources respectively is described. The process permits a significant decrease in the production cost of titanium silicate containing higher amount of titanium (Si/Ti=20) because of cheaper raw materials as well as reduction in the quantity of tetarpropylammonium hydroxide (TPAOH) template (SiO2:TPAOH=1:0.06–0.1) required for preparation. The material obtained by the present invention is useful as an active catalyst in the reactions such as oxidation of hydrocarbons, alcohols, sulphides, and thioethers.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 31, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Mohan Keraba Dongare, Pratap Tukaram Patil, Kusum Madhukar Malshe
  • Patent number: 6897247
    Abstract: A high internal phase emulsion composition comprising: a) at least three components; b) component A is a polymer, monomer or mixture thereof; c) component B is a polymer; d) component C is a compatiblizer; e) substantially no voids; and wherein the volume fraction of component A represents at least about 80% by volume of the total volume of components A, B and C; and wherein the volume fraction of component B represents less than about 20% by volume of the total volume of components A, B and C; and wherein at least two phases are formed, a phase containing a majority of component A is discrete and a phase containing a majority of component B is continuous.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: May 24, 2005
    Assignee: PolyE Inc.
    Inventor: Glenn Fredrickson
  • Patent number: 6841580
    Abstract: An organic porous material having a continuous pore structure, which comprises interconnected macropores and mesopores with a radius of 0.01 to 100 ?m in the walls of the macropores, having a total pore volume of 1 to 50 ml/g and having pore distribution curve characteristics wherein the value obtained by dividing the half-width of the pore distribution curve at the main peak by the radius at the main peak is 0.5 or less. The organic porous material is useful as an adsorbent having high physical strength and excelling in adsorption amount and adsorption speed, an ion exchanger excelling in durability against swelling and shrinkage, and a filler for chromatography exhibiting high separation capability.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: January 11, 2005
    Assignee: Organo Corporation
    Inventors: Hiroshi Inoue, Koji Yamanaka
  • Patent number: 6797738
    Abstract: The invention is directed to a process for preparing porous polymer materials by a combination of gas foaming and particulate leaching steps. The invention is also directed to porous polymer material prepared by the process, particularly having a characteristic interconnected pore structure, and to methods for using such porous polymer material, particularly for tissue engineering.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: September 28, 2004
    Assignee: The Regents of the University of Michigan
    Inventors: Leatrese Harris, David J. Mooney, Lonnie Shea
  • Patent number: 6777454
    Abstract: This invention relates to a process of preparing vesiculated granules of crosslinked carboxylated polyester resin utilising a particular class of non-alkylphenolethoxylate surfactant.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: August 17, 2004
    Assignee: Orica Australia Pty Ltd.
    Inventors: Philip J. A. Ritchie, Algirdas K. Serelis
  • Patent number: 6770201
    Abstract: A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: August 3, 2004
    Assignee: Sandia National Laboratories
    Inventors: Timothy J. Shepodd, Elizabeth Franklin, Zane T. Prickett, Alexander Artau
  • Patent number: 6759080
    Abstract: The invention discloses methods for making foams by photopolymerizing emulsions comprising a reactive phase and a phase immiscible with the reactive phase components. Foams made from water-in-oil emulsions, including high internal phase emulsion are disclosed. Articles and uses for the foams are also described.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: July 6, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Kristin La Velle Thunhorst, Mark David Gehlsen, Robin Edgar Wright, Eric Wayne Nelson, Steven Dean Koecher, Douglas Gold
  • Patent number: 6649665
    Abstract: In producing a porous cross-linked polymer by forming a water-in-oil type high internal phase emulsion and subsequently polymerizing the emulsion, a method for the production of a porous cross-linked polymer material which comprises a step of polymerizing a water-in-oil type high internal phase emulsion obtained in the presence of a polyglycerine fatty acid ester. This invention permits an HIPE to be polymerized at a high temperature for the purpose of stabilizing the HIPE and consequently warrants quick production of a porous cross-linked polymer material possessed of an excellent water absorbing property.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: November 18, 2003
    Assignees: Nippon Shokubai Co., Ltd., The Proctor & Gamble Company
    Inventors: Kenji Kadonaga, Akiko Mitsuhashi, Kazutomo Takahashi
  • Patent number: 6630519
    Abstract: This invention concerns a method for the production of a porous polymer from a water-in-oil type high internal phase emulsion (HIPE). By using an oil-soluble polymerization initiator as the polymerization initiator, the method for producing a porous polymer with outstanding characteristics in a very short period even when the porous polymer is produced from an HIPE exhibiting a viscosity of not more than 500 mPa second at the emulsion formation temperature or when the porous polymer to be produced possesses a number-average pore diameter of not less than 80 &mgr;m is provided.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: October 7, 2003
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hirotama Fujimaru, Kenji Kadonaga, Kinya Nagasuna, Kenji Minami
  • Patent number: 6562449
    Abstract: A nanoporous polymer comprises hollow structures fabricated from crosslinked polymeric strands. The hollow structures are further coupled to other crosslinked polymeric strands by a covalent bond. Particularly contemplated nanoporous polymers have a Tg of no less than 400° C. and a dielectric constant k of no more than 2.5.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: May 13, 2003
    Inventor: Jim Drage
  • Patent number: 6525106
    Abstract: This application relates to flexible, microporous, open-celled polymeric foam materials with physical characteristics that make them suitable for a variety of uses. This application particularly relates to methods particularly suitable for continuously curing high internal phase emulsions to form such foams.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: February 25, 2003
    Assignee: The Procter & Gamble Company
    Inventors: Thomas Allen DesMarais, Thomas Michael Shiveley, John Collins Dyer, Stephen Thomas Dick, Bryn Hird
  • Patent number: 6472443
    Abstract: Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: October 29, 2002
    Assignee: Sandia National Laboratories
    Inventor: Timothy J. Shepodd
  • Patent number: 6465532
    Abstract: The present invention includes a composition having a co-continuous interconnecting channel morphology for controlled gas transmission rate. These co-continuous interconnecting channels are predominately occupied with a polymer and particles that control the percolation through the composition. The polymer composition may be used to form a desired shaped article such as plug type inserts and liners for closed containers, or it may be formed into a film, sheet, bead or pellet.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: October 15, 2002
    Assignee: CSP Tecnologies, Inc.
    Inventor: Ihab M. Hekal
  • Patent number: 6455600
    Abstract: A water-absorbing, expanded, crosslinked polymer obtainable by (I) foaming a polymerizable aqueous mixture which comprises (a) monoethylenically unsaturated monomers which contain acidic groups and are optionally neutralized, (b) optionally other monoethylenically unsaturated monomers, (c) crosslinkers, (d) initiators, (e) 0.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: September 24, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Joachim Hähnle, Ulrich Schröder, Martin Beck, Wolfgang Heider, Gunnar Schornick, Thomas Anstock
  • Patent number: 6444716
    Abstract: This application relates to microporous, open-celled polymeric foam materials with physical characteristics that make them suitable for a variety of uses produced from high internal phase emulsions (HIPEs). This application particularly relates to oxidatively stable emulsifiers used to stabilize the HIPE and the foams produced from such HIPEs.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: September 3, 2002
    Assignee: The Procter & Gamble Company
    Inventors: Bryn Hird, Edward Joseph Urankar, Brian Bernard Filippini, Richard Michael Lange, Bryan Allers Grisso, Yan Zhao
  • Publication number: 20020115735
    Abstract: A nanoporous polymer comprises hollow structures fabricated from crosslinked polymeric strands. The hollow structures are further coupled to other crosslinked polymeric strands by a covalent bond. Particularly contemplated nanoporous polymers have a Tg of no less than 400° C. and a dielectric constant k of no more than 2.5.
    Type: Application
    Filed: February 22, 2001
    Publication date: August 22, 2002
    Applicant: Honeywell International Inc.
    Inventor: Jim Drage
  • Patent number: 6426372
    Abstract: Object: to provide a porous polyimide whose dielectric constant and refractive index are lowered while maintaining intrinsic performances of a polyimide, such as heat resistance, etc., and which is highly transparent. Means for solving: a porous polyimide comprising a polyimide containing matrix, and a plurality of micropores dispersed in said matrix, characterized in that said micropores are formed by removing a hydrophilic polymer from a precursor comprising a polyimide-containing matrix, and the hydrophilic polymer dispersed in said matrix, and that the porous polyimide has light transmittance of no less than 70%.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: July 30, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Kazuhiko Minami, Mitsuaki Kobayashi
  • Patent number: 6395792
    Abstract: An object of this invention is to provide a method for the production of a porous cross-linked polymer, which permits the polymerization (curing) of a water in oil type high internal phase emulsion (HIPE) in such an exceptionally brief time as not more than 30 minutes, preferably not more than 10 minutes without impairing the stability of the HIPE. The object of this invention mentioned above can be accomplished by a method for the production of a porous cross-linked polymer which comprises steps of mixing an oil phase containing a polymerizing monomer, a cross-linking monomer, and a surfactant as essential components with a water phase containing water as an essential component thereby obtaining a water in oil type high internal phase emulsion and heating said emulsion to a prescribed curing temperature thereby polymerizing the emulsion, wherein said emulsion is formed in a thickness of not more than 50 mm and the temperature-increasing rate of the emulsion is not less than 5° C./minute.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: May 28, 2002
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kinya Nagasuna, Hirotama Fujimaru, Kenji Kadonaga, Kozo Nogi, Katsuhiko Sakamoto, Masazumi Sasabe, Kenji Minami
  • Patent number: 6391932
    Abstract: Porous polyimide dielectric materials having low dielectric constants useful in electronic component manufacture are disclosed along with methods of preparing the porous polyimide dielectric materials. Also disclosed are methods of forming integrated circuits containing such porous polyimide dielectric material.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: May 21, 2002
    Assignee: Shipley Company, L.L.C.
    Inventors: Robert H. Gore, Michael K. Gallagher, Scott A. Ibbitson
  • Publication number: 20020045672
    Abstract: The invention is directed to a process for preparing porous polymer materials by a combination of gas foaming and particulate leaching steps. The invention is also directed to porous polymer material prepared by the process, particularly having a characteristic interconnected pore structure, and to methods for using such porous polymer material, particularly for tissue engineering.
    Type: Application
    Filed: August 28, 2001
    Publication date: April 18, 2002
    Applicant: The Regents Of The University Of Michigan
    Inventors: Leatrese J. Harris, David J. Mooney, Lonnie Shea
  • Patent number: 6372808
    Abstract: A porous polyimide having a finely cellular structure and having a low dielectric constant and heat resistance. The porous polyimide can be produced by a process comprising adding a dispersible compound to a polyimide precursor to form a micro-domain structure in which the dispersible compound is dispersed in the polymer so as to have a size smaller than 10 &mgr;m and then removing the dispersible compound by extraction with supercritical carbon dioxide to thereby make the precursor porous, wherein the interaction parameter &khgr;AB between the polyimide precursor A and the dispersible compound B is larger than 3. This porous polyimide has an average cell diameter smaller than 5 &mgr;m and a dielectric constant of 3 or lower.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: April 16, 2002
    Assignee: Nitto Denko Corporation
    Inventors: Mitsuhiro Kanada, Takayuki Yamamoto, Amane Mochizuki, Takahiro Fukuoka
  • Patent number: 6369121
    Abstract: A method of making high internal phase emulsions is described. The method forms high internal phase emulsion (HIPE) using a single pass through the static mixer. In alternative embodiments, the HIPE may be further processed to farther modify the size of dispersed phase droplets, to incorporate additional materials into the HIPE, to alter emulsion temperature, and the like.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: April 9, 2002
    Assignee: The Procter & Gamble Company
    Inventors: Vincenzo Catalfamo, Thomas Michael Shiveley, Gina Lynn Blum, Paul Martin Lipic, Thomas Allen DesMarais
  • Patent number: 6365642
    Abstract: This application relates to flexible, microporous, open-celled polymeric foam materials with physical characteristics that make them suitable for a variety of uses. This application particularly relates to monomer compositions having short curing times for preparing such foam materials from high internal phase emulsions.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: April 2, 2002
    Assignee: The Procter & Gamble Company
    Inventors: John Collins Dyer, Robert Joseph McChain, Yan Zhao
  • Patent number: 6355730
    Abstract: Membrane materials for removing uremic toxins from a hydrophobic polymer such as polysulfone and two polyvinyl pyrrolidones, hydrophilic polymers of different molecular weights, that is 10-50 wt. % of a low molecular weight component (molecular weight<100,000) and 90-50 wt. % of a high molecular weight component (molecular weight≧100,000). The membranes are permselective useful in dialysis. The membrane material may have an overall mass transfer coefficient (K0), for a Strokes' radius of at least 30 Å (as determined by a diffusion test during dextran), of ≧0.0025 cm/min and a permeability to albumin of ≦4%.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: March 12, 2002
    Assignee: Toray Industries, Inc.
    Inventors: Hidetoshi Kozawa, Ichiro Itagaki, Kenji Nishikawa, Kazumi Tanaka
  • Patent number: 6323252
    Abstract: A composition comprising aqueous fluid absorbent polymer particles which have been heat-treated at temperatures greater than 170° C. for more than 10 minutes, wherein the composition has been remoisturized, after the heat-treatment, with an aqueous additive solution, in the absence of an organic solvent or water-insoluble, non-swellable powder, and comprises 1 to 10 percent by weight, based on the total weight of the composition, water and wherein the composition is characterized by the ability to absorb at least 20 grams of a 0.9 weight percent aqueous saline solution under a pressure of 0.3 psi (21,000 dynes/cm2), that is, a 60 minute 0.3 psi (21,000 dynes/cm2) AUL greater than 20 grams/gram. A process for preparing such a composition.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: November 27, 2001
    Assignee: The Dow Chemical Company
    Inventors: Herbert A. Gartner, Thomas L. Staples, Michael A. Fialkowski
  • Patent number: 6297293
    Abstract: A mesoporous material prepared by polymerizing a resorcinol/formaldehyde system from an aqueous solution containing resorcinol, formaldehyde and a surfactant and optionally pyrolyzing the polymer to form a primarily carbonaceous solid. The material has an average pore size between 4 and 75 nm and is suitable for use in liquid-phase surface limited applications, including sorbent, catalytic, and electrical applications.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: October 2, 2001
    Assignee: TDA Research, Inc.
    Inventors: William Bell, Steven Dietz
  • Patent number: 6296932
    Abstract: An adhesive coated article comprises a layer of microsphere adhesive onto a portion of at least one major surface of a substrate. The microspheres in the adhesive are obtained as the reaction product of (a) at least one alkyl (meth)acrylate ester wherein the alkyl group contains four to about 14 carbon atoms, preferably four to about 10 carbon atoms and (b) a comonomer(s). The comonomer may be a nonpolar, ionic, polar comonomer or mixtures of such monomers. This microsphere adhesive either contains a (meth)acrylamide comonomer or a polyacrylamide material is post-added to the microsphere adhesive. The adhesive exhibits a lower than expected adhesion to coated papers without sacrificing the adhesion to standard uncoated (bond) papers and preferably, the 90° peel adhesion, as measured on Kromkote® paper (used as an industry standard) is in the range of 20 to 250 grams/inch.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: October 2, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Michael D. Crandall, Terrence E. Cooprider
  • Patent number: 6281256
    Abstract: The invention is directed to a process for preparing porous polymer materials by a combination of gas forming and particulate leaching steps. The invention is also directed to porous polymer material prepared by the process, particularly having a characteristic interconnected pore structure, and to methods for using such porous polymer material, particularly for tissue engineering.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: August 28, 2001
    Assignee: The Regents of the University of Michigan
    Inventors: Leatrese Harris, David J. Mooney, Lonnie Shea
  • Patent number: 6231926
    Abstract: A process for producing poromeric synthetic leather comprises I. producing an essentially nonporous impregnate by impregnating a textile sheet material with an aqueous polyurethane dispersion and drying, and II. producing a poromeric synthetic leather from the impregnate by subjecting the impregnate to the action of an aqueous solution of a Brønsted base.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: May 15, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Cesare Ronzani, Ralf Mossbach, Karl Häberle
  • Patent number: 6231960
    Abstract: Biodegradable and/or compostable polymers are made from isoprene, 2,3-dimethyl-1,3-butadiene or like conjugated dienes and a crosslinking agent having a cleavable linking group such as ethylene glycol dimethacrylate. These polymers can be used to make absorbent foams that are useful in absorbent articles such as diapers, as well as other biodegradable articles such as films, and latexes useful as binders and adhesives.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: May 15, 2001
    Assignee: The Procter & Gamble Company
    Inventors: John C. Dyer, Bryn Hird, Pui Kwan Wong
  • Patent number: 6207724
    Abstract: This application relates to microporous, open-celled polymeric foam materials with physical characteristics that make them suitable for a variety of uses produced from high internal phase emulsions (HIPEs). This application particularly relates to oxidatively stable emulsifiers used to stabilize the HIPE and the foams produced from such HIPEs.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: March 27, 2001
    Assignee: The Procter & Gamble Company
    Inventors: Bryn Hird, Edward Joseph Urankar, Brian B. Filippini, Richard M. Lange, Bryan A. Grisso
  • Patent number: 6160030
    Abstract: The present invention relates to porous polymers comprising a perfluoropolyether unit, to a process for producing such porous polymers, in particular to a process for polymerising or copolymerising monomers incorporating perfluoropolyethers to form porous polymers, to articles made of or comprising porous polymers comprising a perfluoropolyether unit, such as membranes or ophthalmic devices, and to the use of porous polymers comprising perfluoropolyether units as articles, such as membranes or ophthalmic devices. The perfluoropolyether units are preferably of the formula (PFPE):--OCH.sub.2 CF.sub.2 O(CF.sub.2 CF.sub.2 O).sub.x (CF.sub.2 O).sub.y CF.sub.2 CH.sub.2 O-- wherein the CF.sub.2 CF.sub.2 O and CF.sub.2 O units may be randomly distributed or distributed as blocks throughout the chain and wherein x and y may be the same or different such that the molecular weight of the perfluorinated polyether is in the range of from 242 to 4,000.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: December 12, 2000
    Assignee: Novartis AG
    Inventors: Hassan Chaouk, Gordon Francis Meijs
  • Patent number: 6160028
    Abstract: Disclosed are microporous, open-celled polymeric foams formed by polymerizing a high internal phase water-in-oil emulsion comprising a continuous oil phase and discontinuous water phase where the foam has a Limiting Oxygen Index (LOI) value of at least about 18% Such foams are commonly known in the art as "HIPEs". The foams have a variety of flame retardant applications, including use in insulation.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: December 12, 2000
    Assignee: The Procter & Gamble Company
    Inventor: John Collins Dyer
  • Patent number: 6147131
    Abstract: High internal phase emulsions (HIPEs), porous polymeric materials made therefrom, and methods for making and using the same. Specific embodiments of the invention include water-in-oil high internal phase emulsions having at least 70 volume percent of an internal aqueous phase and less than 30 volume percent of an external oil phase wherein the oil phase comprises a vinyl polymerizable monomer and a surfactant effective to stabilize the emulsion. The subject surfactants are oil soluble and preferably include an oxyalkylene component.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: November 14, 2000
    Assignee: The Dow Chemical Company
    Inventors: Steven W. Mork, Daniel Patrick Green, Gene D. Rose
  • Patent number: 6136874
    Abstract: Disclosed are polymeric foam materials obtained using monomers based on silicon and/or germination. The copolymerization of silicon- or germanium-based monomers provide foams that have low glass transition temperatures and low densities. These foams also exhibit relatively high yield stress values, which make the foams suitable for absorption of fluids, particularly aqueous fluids such as urine and menses (when the foams are rendered hydrophilic). The foams have a variety of other uses, including insulation applications.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: October 24, 2000
    Assignee: The Procter & Gamble Company
    Inventors: John Collins Dyer, Herbert Louis Retzsch
  • Patent number: 6136873
    Abstract: Water-absorbing, expanded, crosslinked polymers obtainable by(I) foaming a polymerizable aqueous mixture which comprises(a) monoethylenically unsaturated monomers which contain acidic groups and are at least 50 mol % neutralized,(b) with or without other monoethylenically unsaturated monomers,(c) crosslinkers,(d) initiators,(e) 0.1-20% by weight of at least one surfactant,(f) with or without at least one solubilizer and(g) with or without thickeners, foam stabilizers, polymerization regulators, fillers and/or cell nucleating agents,where the foaming takes place by dispersing fine bubbles of a gas which is inert to free radicals, and(II) polymerizing the foamed mixture to form an expanded hydrogel and adjusting the water content of the expanded polymer to 1-45% by weight, a process for their production and their use in hygiene articles employed to absorb body fluids and in dressing material for covering wounds.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: October 24, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Joachim Hahnle, Manfred Walter, Jurgen Tropsch, Gunnar Schornick, Thomas Anstock
  • Patent number: RE37021
    Abstract: A process for producing a water-absorbing resin, which comprises polymerizing (D) an aqueous solution comprising (A) at least one monomer component selected from the group consisting of an unsaturated carboxylic acid and salts thereof; (B) a compound having two or more unsaturated groups in a molecule; and (C) a compound having two or more functional groups which are capable of reacting with carboxyl groups in a molecule, the polymerization being conducted in such a manner that the following conditions (a) to (c) are simultaneously satisfied: (a) the molar ratio (B)/(C) being in the range of from 2×10−3 to 300, (b) the polymerization being initiated by a redox polymerization initiator, and (c) the maximum reaction temperature being in the range of from 60° to 100° C., and a water-absorbing resin having a degree of reduction in absorption magnification of from 1 to 16, and n absorption magnification under pressure of from 20 to 40.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: January 16, 2001
    Assignee: Nippon Shokubai Co., Ltd.
    Inventor: Kenji Aida