Process Of Preparing A Cellular Product By Removal Of Material From A Solid Polymer-containing Matrix Without Expanding The Matrix; Composition Which Is Nonexpandible And Is Designed To Form A Cellular Product By Said Process; Or Process Of Preparing Said Composition Patents (Class 521/61)
  • Patent number: 10413881
    Abstract: Porous articles are provided that include a fibrous porous matrix and porous polymeric particles. The porous polymeric particles are distributed throughout the fibrous porous polymeric matrix. The porous article can be used to prepare a separation device or a system that includes the separation device. The porous articles can be used for the separation of a target material such as a microorganism (i.e., cellular analyte) from a sample.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: September 17, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Manjiri T. Kshirsagar, Hassan Sahouani
  • Patent number: 10364305
    Abstract: The present disclosure relates to a polyolefin characterized by melt flow index ranging from 1 and 100 g/10 min; tacticity ranging from 97 and 99.5%; and porosity ranging from 0.1 to 0.4 cm3/g. The present disclosure also relates to a simple and economic method for preparing the polyolefin.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: July 30, 2019
    Assignee: Reliance Industries Limited
    Inventors: Virendrakumar Gupta, Yogeshwar Narayanrao Thakare, Bhavesh Kiritbhai Desai, Suketu Vakil
  • Patent number: 10325780
    Abstract: There is provided a method of manufacturing a semiconductor device, which includes: supplying a raw material for polymerization to a porous low dielectric constant film formed on a substrate for manufacturing a semiconductor device, and filling holes formed in the porous low dielectric constant film with a polymer having a urea bond; subsequently, forming a pattern mask for etching on a surface of the porous low dielectric constant film; subsequently, etching the porous low dielectric constant film; subsequently, removing the pattern mask; and heating the substrate to depolymerize the polymer.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: June 18, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Koichi Yatsuda, Takashi Hayakawa, Tatsuya Yamaguchi
  • Patent number: 10196274
    Abstract: A porous SiO2 xerogel is produced using temporary pore fillers or solid skeletal supports, which are removed by thermal oxidation at the end of the production process (e.g. carbon or organic), by means of a sol-gel-process by subcritical drying of the gel. The SiO2 xerogel includes pores having a pore size from more than 50 nm to less than 1000 nm. The SiO2 xerogel has a density of less than 400 kg/m3, a carbon content of less than 10%, a thermal conductivity at 800° C. below 0.060 W/m*K, a thermal conductivity at 400° C. below 0.040 W/m*K, and a thermal conductivity at 200° C. below 0.030 W/m*K.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: February 5, 2019
    Assignees: BSH Hausgeräte GmbH, Bayerisches Zentrum für Angewandte Energieforschung e. V.
    Inventors: Hans-Peter Ebert, Theresa Noisser, Gudrun Reichenauer, Lena Weigold
  • Patent number: 10134583
    Abstract: A method of forming a dielectric layer includes forming a preliminary dielectric layer on a substrate using a silicon precursor and performing an energy treatment on the preliminary dielectric layer to form a dielectric layer. In the dielectric layer, a ratio of Si—CH3 bonding unit to Si—O bonding unit ranges from 0.5 to 5.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: November 20, 2018
    Assignees: Samsung Electronics Co., Ltd., DNF Co., Ltd.
    Inventors: Sunhye Hwang, Myong Woon Kim, Younjoung Cho, Sang Ick Lee, Sang Yong Jeon, In Kyung Jung, Wonwoong Chung, Jungsik Choi
  • Patent number: 9985251
    Abstract: The present invention is directed towards a thin-film device. In one embodiment, the thin film device comprises a scattering layer comprising a substrate, the substrate comprising a plurality of voids, and a device stock formed atop the scattering layer, wherein the plurality of voids have a high refractive index as compared to a refractive index of the substrate. Another embodiment of the present invention is directed towards a process for fabricating a thin-film device, the process comprising dissolving a precursor in an organic solvent to form a solution, coating the solution onto a substrate to form a film, immersing the film and the substrate into an antisolvent bath for a first period of time so as to form a plurality of air voids within the film, removing the film and substrate from the anti-solvent bath to dry and cure for a second period of time to create a porous film adhered to the substrate, the porous film and the substrate forming a scattering layer.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: May 29, 2018
    Assignee: The Trustees of Princeton University, Office of Technology and Trademark Licensing
    Inventors: Barry P. Rand, Tae-Wook Koh
  • Patent number: 9941151
    Abstract: A method of forming a metallization layer of an IC having a lower via level and an upper trench level is disclosed. In one aspect, the method includes applying a dual damascene process to a stack of two layers. The bottom layer includes a porous low-k dielectric in which the pores have been filled by a template material. The top layer is a template layer. This stack is obtained by depositing a template layer on top of a porous low-k dielectric and annealing in order to let the template material diffuse into the pores of the low-k layer. At the end of the anneal process, a stack of a pore-filled layer and a template layer is obtained. Vias are etched in the low-k layer and trenches are etched in the template layer. The template pore-filling protects the low-k dielectric during plasma etching, metal barrier deposition and metal deposition.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: April 10, 2018
    Assignees: IMEC vzw, Katholieke Universiteit Leuyen
    Inventors: Liping Zhang, Mikhail Baklanov
  • Patent number: 9852824
    Abstract: In one embodiment, an aerogel or xerogel includes column structures of a material having minor pores therein and major pores devoid of the material positioned between the column structures, where longitudinal axes of the major pores are substantially parallel to one another. In another embodiment, a method includes heating a sol including aerogel or xerogel precursor materials to cause gelation thereof to form an aerogel or xerogel and exposing the heated sol to an electric field, wherein the electric field causes orientation of a microstructure of the sol during gelation, which is retained by the aerogel or xerogel. In one approach, an aerogel has elongated pores extending between a material arranged in column structures having structural characteristics of being formed from a sol exposed to an electric field that causes orientation of a microstructure of the sol during gelation which is retained by the elongated pores of the aerogel.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 26, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Theodore F. Baumann, Joe H. Satcher, Jr., Tammy Y. Olson, Joshua D. Kuntz, Klint A. Rose
  • Patent number: 9776142
    Abstract: Microporous membranes comprising a single integral layer having first and second microporous surfaces; and, a porous bulk between the microporous surfaces, wherein the bulk comprises at least a first region and a second region; the first region comprising a first set of pores having outer rims, prepared by removing introduced silica dissolvable nanoparticles, the first set of pores having a first controlled pore size, and a second set of pores connecting the outer rims, the second set of pores having a second controlled pore size, and a polymer matrix supporting the first set of pores, wherein the first controlled pore size is greater than the second controlled pore size; the second region comprising a third set of pores prepared by phase inversion, the third set of pores having a third controlled pore size, filters including the membranes, and methods of making and using the membranes, are disclosed.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: October 3, 2017
    Assignee: Pall Corporation
    Inventors: Xiaosong Wu, Yolando David, Shane Edward Harton, Amarnauth Singh
  • Patent number: 9751050
    Abstract: The present disclosure provides methods for forming asymmetric membranes. More specifically, methods are provided for applying a polymerizable species to a porous substrate for forming a coated porous substrate. The coated porous substrate is exposed to an ultraviolet radiation source having a peak emission wavelength less than 340 nm to polymerize the polymerizable species forming a polymerized material retained within the porous substrate so that the concentration of polymerized material is greater at the first major surface than at the second major surface.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 5, 2017
    Assignee: 3M Innovative Properties Company
    Inventors: Jinsheng Zhou, Jonathan F. Hester, Derek J. Dehn, Daniel P. Meehan, Robin E. Wright
  • Patent number: 9345477
    Abstract: A staple cartridge assembly for use with a surgical stapler. The assembly has a cartridge body having a support portion with a plurality of staple cavities with openings. There is also a plurality of staples, wherein at least a portion of each the staple is removably stored within the staple cavity. Each the staple is movable between an unfired position and a fired position, and is deformable between an unfired configuration and a fired configuration. The assembly also includes a compressible tissue thickness compensator configured to be captured within the staples. The compressible tissue thickness compensator at least partially covers the staple cavity openings. The compressed tissue thickness compensator is configured to assume different compressed heights within different the staples. The compressible tissue thickness compensator comprising a lyophilized foam having a hemostatic agent embedded therein.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: May 24, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Jacqueline A. Anim, Samardh Onukuri, Anthony Silvestri, Jr., Frederick E. Shelton, IV, Michael F. Clem, Tamara S. Vetro-Widenhouse
  • Patent number: 9132607
    Abstract: A fiber-reinforced molded product 10 includes a core material 11, a fiber reinforcing material 21 laminated on at least one surface of the core material 11, and a surface material 25 laminated on the fiber reinforcing material 21. The core material 11, the fiber reinforcing material 21, and the surface material 25 are integrated. The fiber reinforcing material 21 includes a fiber fabric 21A and a thermosetting resin 11B and 21B impregnated into the fiber fabric 21 and cured. The surface material 25 includes a porous sheet 25A having open cells, the number of the cells being 8 to 80 cells/25 mm, and the thermosetting resin 11B and 21B moved out of the fiber fabric 21 into the porous sheet 25A and cured, and the surface material 25A has a surface roughness Rz of 30 ?m or less.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: September 15, 2015
    Assignee: INOAC CORPORATION
    Inventors: Yosuke Kasuga, Masumi Koide, Yoshinori Sugiura
  • Patent number: 9117636
    Abstract: A plasma device is disclosed. The plasma device includes: at least one electrode including a nanoporous dielectric layer disposed on at least a portion thereof, the nanoporous dielectric layer including a plurality of pores, wherein at least a portion of the plurality of pores include a catalyst embedded therein.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: August 25, 2015
    Assignee: Colorado State University Research Foundation
    Inventors: Il-Gyo Koo, Jin Hoon Cho, Myeong Yeol Choi, Cameron A. Moore, George J. Collins
  • Publication number: 20150108618
    Abstract: A porous layer is described. The porous layer comprises a solidified sol-gel inorganic material having a distribution of nanometric voids, wherein at least some of nanometric voids are at least partially coated internally by carbon or a hydrophobic substance containing carbon.
    Type: Application
    Filed: May 7, 2013
    Publication date: April 23, 2015
    Inventors: Simon Litsyn, Gil Rosenman, Amir Handelman, Yakov Roizin
  • Publication number: 20150056438
    Abstract: Disclosed are hollow silica particles having oil absorption ratio of at most 0.1 ml/g, porosity of hollow particles when mixed with a resin of at least 90%, and melting temperature of 130-200° C., and including a silicon compound having an organic group as a main component, and a composition including the hollow silica particles. A sheet including a base and a coating layer formed on the base and including a resin, and a method of manufacturing the same are provided. The coating layer includes a plurality of inner cavities, and components of the hollow particles are attached to the inner circumference of the inner cavities. The sheet has good transparency and insulation performance, and the inner cavities may be formed by simply melting hollow particles.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 26, 2015
    Inventors: Hyung Sup Lim, Hyung Jun Lim, Young Cheol Yoo, O Sung Kwon
  • Publication number: 20150057381
    Abstract: Provided are porogen compositions and methods of using such porogen compositions in the manufacture of porous materials, for example, porous silicone elastomers. The porogens generally include comprising a core material and shell material different from the core material. The porogens can be used to form a scaffold for making a resulting porous elastomer when the scaffold is removed.
    Type: Application
    Filed: October 1, 2014
    Publication date: February 26, 2015
    Inventors: Futian Liu, Nicholas J. Manesis, Xiaojie Yu, Athene Wan Chie Chan
  • Patent number: 8944257
    Abstract: The invention provides modified polysulfones substituted in one or more of the phenyl rings by functional groups and membranes composed of the modified polysulfones. Also provided are methods for the preparation of monodispersed nanoporous polymeric membranes. The membranes are useful for reverse osmosis, nanofiltration, and ultrafiltration, particularly for purification of water.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: February 3, 2015
    Assignee: Technion Research and Development Foundation Ltd.
    Inventors: Moris S. Eisen, Raphael Semiat, Natalia Vainrot
  • Patent number: 8916619
    Abstract: A porosity is freely controlled in preparation of a porous polymer film by a phase separation method. A solvent absorption sheet is used for a solvent in a polymer solution so that the coating film of the polymer solution may be covered with the sheet. After that, the solvent in the film is selectively removed. Then, the resultant is immersed in a poor solvent. Thus, a porous polymer film can be produced.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: December 23, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Naotake Sato, Toshihiro Kikuchi, Yuichi Hashimoto, Yohei Miyauchi
  • Patent number: 8906973
    Abstract: Disclosed and claimed herein are hybrid silica aerogels containing non-polymeric, functional organic materials covalently bonded at one or both ends to the silica network of the aerogels through a C—Si bond between a carbon atom of the organic material and a silicon atom of the aerogel network. Methods of their preparation are also disclosed.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: December 9, 2014
    Assignee: Aspen Aerogels, Inc.
    Inventors: Wendell E Rhine, Decio Coutinho, Kiranmayi Deshpande
  • Patent number: 8906978
    Abstract: The present application is generally directed to activated carbon materials and methods for making the same. The disclosed methods comprise rapidly freezing synthetically prepared polymer gel particles. The methods further comprise drying, pyrolyzing, and activating steps to obtain an activated carbon material of high porosity. The disclosed methods represent viable manufacturing processes for the preparation of activated carbon materials.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: December 9, 2014
    Assignee: EnerG2 Technologies, Inc.
    Inventors: Henry R. Costantino, Aaron Feaver, William D. Scott
  • Patent number: 8889751
    Abstract: The present specification discloses porous materials, methods of forming such porous materials, materials and devices comprising such porous materials, and methods of making such materials and devices.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: November 18, 2014
    Assignee: Allergan, Inc.
    Inventors: Futian Liu, Nicholas J. Manesis, Alexei Goraltchouk, Dimitrios Stroumpoulis
  • Patent number: 8883868
    Abstract: A rock dusting composition composed of rock dust, e.g., limestone or other mineral dust, water, pumping aid, and polymer, e.g., acrylamide homopolymers, acrylamide copolymers, and combinations thereof, and a method for applying the composition to the surface of a mine. The composition has a water content and a polymer content sufficient to allow the polymer to (i) disperse water molecules within the composition and, upon drying of the composition, (ii) dissipate forming void spaces in the dried composition. The composition is useful for suppressing propagation of a flame and/or fire caused by ignition of coal dust and/or gas within a coal mine.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: November 11, 2014
    Assignee: DSI Underground Systems, Inc.
    Inventors: Brian Peter Masloff, James Edward Pinkley, Billy J. Brown, Steven J. Thorogood, John C. Fodor
  • Patent number: 8877822
    Abstract: Provided are porogen compositions and methods of using such porogen compositions in the manufacture of porous materials, for example, porous silicone elastomers. The porogens generally include comprising a core material and shell material different from the core material. The porogens can be used to form a scaffold for making a resulting porous elastomer when the scaffold is removed.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 4, 2014
    Assignee: Allergan, Inc.
    Inventors: Futian Liu, Nicholas J. Manesis, Xiaojie Yu, Athene Wan Chie Chan
  • Patent number: 8840989
    Abstract: Reinforced, laminated, impregnated, and materials with composite properties as cross linked polyvinyl alcohol hydrogel structures in bulk or cellular matrix forms that can take essentially any physical shape, or can have essentially any size, degree of porosity and surface texture. They have a wide range of physical properties, unusual and unique combinations of physical properties and unique responses to stress fields, which allows for their use in many end use applications.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: September 23, 2014
    Inventor: Nedeljko Gvozdic
  • Patent number: 8829062
    Abstract: The object of the present invention is concerned with a stimuli-responsive polymer membrane and method of making the same. The method and making the membrane is a new one The entire body of the responsive membrane is a gel. Gels are used as membranes because they are permeable-swollen network. This disclosure discusses a new combination of cylindrical pores in a swollen network. When the network swells or shrinks the cylindrical pores open or close. Thus, inside the network, one can introduce ligands, function groups which due to specific interaction with some signaling molecules in the surrounding environment can cause swelling or shrinking the membrane and this way they open or close pores. With cylindrical pores in a gel there is the ability to regulate pore size in a broad range and an ability to arrange response by adding some functional groups inside the gel body.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: September 9, 2014
    Assignee: Clarkson University
    Inventors: Serigy Minko, Maxim Orlov, Ihor Tokarev, Evengy Katz
  • Patent number: 8829063
    Abstract: The present disclosure provides a high heat radiation composite material including a hybrid filler comprising expanded graphite filled with expandable polymeric beads, and a fabrication method thereof. In the method, a dispersion solution is prepared by dispersing expandable polymeric beads in ethanol. Expanded graphite is immersed in the dispersion solution, and heat-treated to remove ethanol, thereby producing the hybrid filler. The hybrid filler is dispersed into the matrix polymer via an extrusion/injection process, thereby producing the composite material.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: September 9, 2014
    Assignee: Hyundai Motor Company
    Inventors: Kyong Hwa Song, Han Saem Lee, Jin Woo Kwak, Byung Sam Choi
  • Patent number: 8822555
    Abstract: There is provided a novel polyamide particles having an approximately spherical outer shape, which are spongy particles having through-holes in an outer surface part and closed voids in an inside part. The polyamide particles can be produced by dissolving a polyamide in a cyclic amide with heating to obtain a homogeneous solution and then cooling the solution.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: September 2, 2014
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Kaiso, Masanori Abe, Tsunemi Sugimoto
  • Publication number: 20140207237
    Abstract: Embodiments described include devices and methods for forming a porous polymer material. Devices disclosed and formed using the methods described a spacer for spinal fusion, craniomaxillofacial (CMF) structures, and other structures for tissue implants.
    Type: Application
    Filed: August 15, 2013
    Publication date: July 24, 2014
    Applicant: Depuy Synthes Products, LLC
    Inventors: Sean Hamilton Kerr, Ali Recber, Thomas Pepe, Dominique Messerli, Lawton Laurence, Ryan Walsh, Thomas Kueenzi, Brandon Randall
  • Patent number: 8728617
    Abstract: Provided is a microporous material, e.g., a microporous sheet material, having a matrix of polyolefin, finely-divided, substantially water insoluble particulate filler, a network of interconnecting pores communicating throughout the microporous material, and at least one retrospectively identifiable taggant material embedded within the matrix, optionally the at least one taggant being unique to an end user for the microporous material, wherein the polyolefin is present in the microporous material in an amount of 20 to 35 weight percent, based on the weight of the microporous material. The taggant material provides a marker, signature or code that is capable of retrospective identification by machine, instrument or by the naked eye. Articles including the microporous material and processes for preparing the microporous material also are provided.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 20, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Paul L. Benenati, James L. Boyer, Charles R. Coleman, Luciano M. Parrinello, Narayan K. Raman
  • Patent number: 8722749
    Abstract: A method for producing foams, such as sponges, from hydrocolloids is described. A solid or semi-solid gel is formed by dissolving polymeric material in an aqueous solvent. The gel formed is allowed to set, and may optionally then be cut into the desired shape. The gel may be frozen to allow formation of ice crystals to act as porogens. Subsequently, the gel is exposed to a radiant energy field for drying under vacuum. This causes the solvent to boil and the foam or sponge is formed. Medicinally active ingredients may be included in the process, so that the sponge or foam formed contains the active ingredient dispersed within the structure. The method described provides an alternative to the conventional methods of particulate leaching or freeze drying.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: May 13, 2014
    Assignee: Enwave Corporation
    Inventors: Timothy D. Durance, Jaya Sundaram, Mareike Ressing
  • Patent number: 8710111
    Abstract: Porous polymeric resins, reaction mixtures and methods that can be used to prepare the porous polymeric resins, and uses of the porous polymeric resin are described. More specifically, the polymeric resins typically have a hierarchical porous structure plus reactive groups that can be used to interact with or react with a variety of different target compounds. The reactive groups can be selected from an acidic group or a salt thereof, an amino group or salt thereof, a hydroxyl group, an azlactone group, a glycidyl group, or a combination thereof.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: April 29, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Wickert, Simon K. Shannon, Kannan Seshadri, Jerald K. Rasmussen, James I. Hembre, Robert T. Fitzsimons, Jr.
  • Patent number: 8703284
    Abstract: An amalgam comprising a highly porous, carbon-enveloped structure, such as aerogel. The carbon dispersion within the aerogel substrate consists of sonicated (using ultrasonic cleanser) carbon nanotubes, which can be inserted into the aerogel/xerogel through various techniques. Procedures include mixture of nanotubes to any aerogel/xerogel preparation solution prior and/or during solgel/alcogel stage; addition of nanotubes to aerogel during any solvent exchange with liquids (ethanol, etc.) or gas (carbon dioxide, etc.) as a solgel/alcogel; permeation of vapor containing nanotubes (by way of carbon burning using the Kratschmer-Huffman, or any other related, similar machine) in aerogel/solgel/alcogel/xerogel pore structure and/or preparation solutions; intravenous introduction of nanotubes, manually or by way of any conveyance device (i.e. syringe) to finished aerogels/xerogels or solgels/alcogels.
    Type: Grant
    Filed: April 28, 2001
    Date of Patent: April 22, 2014
    Inventor: Joel Ricardo Lee Meeks-Matous
  • Patent number: 8703834
    Abstract: Crosslinked organic polymeric porous particles have a crosslinked organic solid phase and discrete pores dispersed within the crosslinked solid phase which pores are isolated from each other. These porous particles are prepared using one or more water-in-oil emulsions containing a polyfunctional reactive compound, a reagent that causes crosslinking, optionally an ethylenically unsaturated polymerizable monomer, and optionally an organic solvent, and can include various marker materials.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: April 22, 2014
    Assignee: Eastman Kodak Company
    Inventor: Mridula Nair
  • Patent number: 8691883
    Abstract: An aerogel-foam composite includes an open cell foam and an aerogel matrix polymer disposed in the open cell foam. The aerogel-foam composite has compression strength of about 15 megaPascals (MPa) or more. The open cell foam may be a polyurethane foam including a carbonate group (—OC(O)O—).
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-Dong Cho, Sang-Ho Park, Kwang-Hee Kim, Sung-Woo Hwang
  • Patent number: 8686056
    Abstract: Olefin polymer-based, durable, open-cell foam compositions, structures and articles derived from same; methods for preparation of such foams; and use of the dry durable foams in various applications are disclosed. Further described is use of the foams and structures and articles made of same in absorption, filtration, insulation, cushioning and backing applications, and in particular for odor removal, hygiene and medical applications due to, among other properties, good absorption capabilities, softness and/or flexibility of the foams and their recyclable nature.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Gary M. Strandburg, Mark W. VanSumeren, Shaofu Wu, Luther E. Stockton
  • Patent number: 8669002
    Abstract: To provide a thermoplastic resin microporous film being difficult in longitudinal tearing and excellent in tear resistance; a microporous film comprising a thermoplastic resin, wherein a melt flow rate of the thermoplastic resin in the microporous film is in the range of 0.1 to 2.0 g/10 min, tensile strength in a cross-machine direction is in the range of 5 to 10 MPa and tensile elongation in the cross-machine direction is 300% or more.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: March 11, 2014
    Assignees: JNC Corporation, JNC Petrochemical Corporation
    Inventors: Yasuhiro Yamamoto, Hitoshi Satou, Kazuyuki Fukudome
  • Publication number: 20140045957
    Abstract: A method for manufacturing a dispersion of hollow particles includes producing a core-shell type particle by forming a shell made mainly of an inorganic-based compound on a surface of a particle made mainly of an organic compound in an aqueous medium, and obtaining the dispersion of the hollow particles formed of the shell by hydrophobizing the core-shell type particles and extracting the core-shell type particles with an aromatic organic solvent.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 13, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Yu Kameno
  • Patent number: 8628673
    Abstract: Disclosed are: a resin composition for pattern formation, which enables the stable formation of a pattern at a level of the wavelength of light; a method for forming a pattern having a sea-island structure using the composition; and a process for producing a light-emitting element that can achieve high luminous efficiency properties.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: January 14, 2014
    Assignees: Kabushiki Kaisha Toshiba, Asahi Kasei E-Materials Corporation
    Inventors: Koji Asakawa, Ryota Kitagawa, Akira Fujimoto, Yoshiaki Shirae, Tomohiro Yorisue, Akihiko Ikeda
  • Patent number: 8618183
    Abstract: A method of forming a porous composite material in which substantially all of the pores within the composite material are small having a diameter of about 5 nm or less and with a narrow PSD is provided. The porous composite material includes a first solid phase having a first characteristic dimension and a second phase comprised of pores having a second characteristic dimension, wherein the characteristic dimensions of at least one of said phases is controlled to a value of about 5 nm or less.
    Type: Grant
    Filed: September 1, 2012
    Date of Patent: December 31, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen M. Gates, Alfred Grill, Deborah A. Neumayer, Son Nguyen, Vishnubhai V. Patel
  • Patent number: 8592496
    Abstract: Methods of forming hybrid aerogels are described. The methods include forming a hybrid aerogel from a metal oxide precursor and a branched telechelic copolymer, e.g., co-hydrolyzing and co-condensing the metal oxide precursor and the branched telechelic copolymer. Aerogels and aerogel articles, including hydrophobic aerogels and hydrophobic aerogel articles are also described.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: November 26, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Jung-Sheng Wu, Jayshree Seth, Michael D. Determan, Peter D. Condo, Lian Soon Tan, Neeraj Sharma
  • Patent number: 8569391
    Abstract: The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: October 29, 2013
    Assignee: Cornell University
    Inventors: Scott Warren, Ulrich Wiesner, Francis J. DiSalvo, Jr.
  • Publication number: 20130280534
    Abstract: There is described a new disordered nanoporous crystalline form of syndiotactic polystyrene, characterized by a specific X-ray diffractrogram, the process for its preparation and various articles comprising this form of s-PS. This disordered nanoporous crystalline form exhibits empty crystalline cavities of nanometric sizes, and in this case performs the function of absorbing molecules with low molecular mass and is useful in particular as functionally active packaging for plant products.
    Type: Application
    Filed: December 29, 2011
    Publication date: October 24, 2013
    Applicant: Nano Active Film S.R.L.
    Inventors: Alexandra Romina Albunia, Riccardo Bianchi, Luciano Di Maio, Maurizio Galimberti, Gaetano Guerra, Roberto Pantani, Stanislao Senatore
  • Patent number: 8563620
    Abstract: The process for the synthesis of a silica monolith comprises the following steps: hydrolysis of a silicon alkoxide in order to form a hydrolysis precursor followed by a condensation of said hydrolysis precursor in the presence of an organic solvent, in the presence of water and of a basic catalyst in order to form oligomeric clusters containing several silicon atoms; dispersion of said oligomeric clusters in a solution in order to form a sol; polymerization of the sol in order to obtain a gel via a first heat treatment, at a temperature below the boiling point of the constituents of the sol; drying of the gel via a second heat treatment; conversion of the gel to a xerogel via a third heat treatment; dehydration and densification of the xerogel until the silica monolith is obtained via a fourth heat treatment.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: October 22, 2013
    Assignees: Universite des Sciences et Technologies de Lille, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Mohamed Bouazaoui, Bruno Capoen, Hicham El-Hamzaoui, Laurent Bigot, Géraud Bouwmans
  • Patent number: 8557270
    Abstract: The present invention relates to a method of manufacture of an interconnected porous non-biodegradable polymer implant suitable for implantation into a mammal for the treatment, repair or replacement of defects or injury in musculoskeletal tissue, wherein the mechanical properties of the implant can be controlled by varying the concentration of the non-biodegradable polymer and/or varying the duration and number of freeze-thaw cycles and the interconnected porous non-biodegradable polymer implant has sufficient percent porosity and pore diameter to facilitate integration of cells and attachment within the mammal via ingrowth of surrounding tissue. The present invention also relates to an implant manufactured by the method.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: October 15, 2013
    Assignee: New York Society for the Ruptured and Crippled Maintaining the Hospital for Special Surgery
    Inventors: Suzanne A. Maher, Kenneth Ng, Tony Chen, Florian Wanivenhaus
  • Patent number: 8487013
    Abstract: The present invention relates to a method for producing a porous resin particle containing an aromatic vinyl compound-aromatic divinyl compound copolymer having a hydroxyl group, the method including: dissolving a monomer mixture containing an aromatic vinyl compound, an aromatic divinyl compound and a (meth)acrylic acid ester having one hydroxyl group within the molecule thereof, and a polymerization initiator in an organic solvent to obtain a solution containing the monomer mixture and the polymerization initiator; suspending the solution in water in the presence of a dispersion stabilizer; and performing a suspension copolymerization. The method of the invention is capable of easily producing a porous resin particle containing an aromatic vinyl compound-aromatic divinyl compound copolymer having a hydroxyl group, that is used as a support for solid phase synthesis and enables efficient nucleic acid synthesis.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: July 16, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Kenjiro Mori, Tatsuya Konishi
  • Patent number: 8481603
    Abstract: The present invention relates to a polymer bead material that are characterised by having pore sizes that can be pre-determined and that can be obtained with a narrow distribution of such pore sizes created by use of sacrificial filler materials within the polymer material. The invention also discloses processes for production of the material as spherical or approximately spherical beads or resins with predefined sizes. Also, the invention relates to the preparation of molecularly imprinted polymer materials that are created by the said method. Further the invention relates to the use of said polymer materials for separation, detection, catalysis or entrapment of chemicals, metal ions, inorganic compounds, drags, peptides, proteins, DNA, natural and artificial polymers, natural or artificial compounds, food or pharma products, viruses, bacteria, cells and other entities.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: July 9, 2013
    Assignee: Biotage AB
    Inventors: Ecevit Yilmaz, Johan Billing
  • Patent number: 8470901
    Abstract: A composition for manufacturing an organic aerogel including at least one monomer having at least two substituted or unsubstituted acrylamide groups and a solvent is provided, along with an organic aerogel including a polymeric reaction product of the monomer or monomers.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: June 25, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ho Park, Sung-Woo Hwang, Myung-Dong Cho
  • Patent number: 8460628
    Abstract: The invention relates to spiro compounds of the formula (I) and to monolithic materials prepared therefrom by twin ring-opening polymerization which consist of a porous metal oxide or semimetal oxide framework and are suitable for use as catalyst supports or as supports for active compounds.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: June 11, 2013
    Assignee: BASF SE
    Inventors: Matthias Koch, Stefan Spange, Arno Lange, Hans Joachim Haehnle, Rainer Dyllick-Brenzinger, Phillip Hanefeld, Marc Schroeder, Illshat Gubaydullin
  • Patent number: 8436061
    Abstract: Organic, small pore area materials (“SPMs”) are provided comprising open cell foams in unlimited sizes and shapes. These SPMs exhibit minimal shrinkage and cracking. Processes for preparing SPMs are also provided that do not require supercritical extraction. These processes comprise sol-gel polymerization of a hydroxylated aromatic in the presence of at least one suitable electrophilic linking agent and at least one suitable solvent capable of strengthening the sol-gel. Also disclosed are the carbonized derivatives of the organic SPMs.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: May 7, 2013
    Assignee: American Aerogel Corporation
    Inventors: Donald F. Albert, Greg R. Andrews, Joseph W. Bruno
  • Patent number: 8436060
    Abstract: An organic aerogel includes a polymer prepared from a substituted or unsubstituted maleimide compound and a compound having at least two vinyl groups. A composition for the organic aerogel includes a substituted or unsubstituted maleimide compound and a compound having at least two vinyl groups.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Hee Kim, Myung-Dong Cho, Sang-Ho Park, Sung-Woo Hwang