Group Viii, I.e., Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt Patents (Class 524/785)
  • Patent number: 11327202
    Abstract: The present invention relates to a thermosetting composition for the manufacture of an ophthalmic lens which efficiently absorbs light rays without degradation of the light-absorbing additive, said composition comprising an allyl monomer or oligomer, a catalyst, at least one light-absorbing additive contained in nanoparticles which are dispersed in said allyl monomer or allyl oligomer. The present invention also relates to the use of said composition and to the ophthalmic lens obtained from said composition.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: May 10, 2022
    Assignee: Essilor International
    Inventors: Pierre Fromentin, Sanya Hokputsa
  • Patent number: 11066497
    Abstract: A method for manufacturing a liquid formulation for reaction injection molding for polymerizing a norbornene-based monomer in the presence of a metathesis polymerization catalyst comprising tungsten as a center metal, the liquid formulation comprising a norbornene-based monomer, provided that in case where the norbornene-based monomer includes exo-dicyclopentadiene, a content of exo-dicyclopentadiene is from 0 to 2% by mass of the norbornene-based monomer, an activator of the catalyst, and a specific ether compound.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: July 20, 2021
    Assignee: RIMTEC CORPORATION
    Inventor: Michiru Kamada
  • Patent number: 10774254
    Abstract: Disclosed is a composition for a heat dissipation pad, for example, a heat dissipation sheet in a cooling system for a water-cooling-type battery pack in a vehicle, for example, an electric vehicle. The heat dissipation pad may dissipate heat generated from the battery pack. Further disclosed is a method of manufacturing a heat dissipation pad having high thermal conductivity and low specific gravity. The composition may include the polymer composition including a carbon fiber, aluminum hydroxide and hollow glass beads.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: September 15, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation, THERMATEC CO., LTD.
    Inventors: Ji Eun Kim, Sang Soo Jeon, Sung Hoon Kim
  • Patent number: 10377888
    Abstract: Methods of preparing high-density polyethylene (HDPE) nanocomposites by in situ polymerization with a zirconocene catalyst, a methylaluminoxane cocatalyst, a calcium zirconate nanofiller in a solvent. The calcium zirconate nanofiller, which is dispersed across the polyethylene matrix, is found to enhance catalyst activity, and other properties of the HDPE nanocomposites produced, including but not limited to flame retardancy, crystallinity and surface morphology.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: August 13, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Mamdouh Ahmed Al-Harthi
  • Patent number: 10294353
    Abstract: Methods of preparing high-density polyethylene (HDPE) nanocomposites by in situ polymerization with a zirconocene catalyst, a methylaluminoxane cocatalyst, a calcium zirconate nanofiller in a solvent. The calcium zirconate nanofiller, which is dispersed across the polyethylene matrix, is found to enhance catalyst activity, and other properties of the HDPE nanocomposites produced, including but not limited to flame retardency, crystallinity and surface morphology.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: May 21, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Mamdouh Ahmed Al-Harthi
  • Patent number: 10113057
    Abstract: Methods of preparing high-density polyethylene (HDPE) nanocomposites by in situ polymerization with a zirconocene catalyst, a methylaluminoxane cocatalyst, a calcium zirconate nanofiller in a solvent. The calcium zirconate nanofiller, which is dispersed across the polyethylene matrix, is found to enhance catalyst activity, and other properties of the HDPE nanocomposites produced, including but not limited to flame retardency, crystallinity and surface morphology.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: October 30, 2018
    Assignee: King Fahd University of Pertoleum and Minerals
    Inventor: Mamdouh Ahmed Al-Harthi
  • Patent number: 9783651
    Abstract: A method involving polymerizing ethylene in the presence of a catalyst composition containing BaFe12O19 nanoparticles, a zirconocene catalyst, and an alkylaluminoxane co-catalyst. A nanocomposite is formed by the polymerization, whereby the BaFe12O19 nanoparticles are dispersed in a matrix of polyethylene (PE), and the % crystallinity is lowered. The activity of the catalyst is increased in the presence of the BaFe12O19 nanoparticles.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: October 10, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mamdouh Ahmad Al-Harthi, Farrukh Shehzad
  • Publication number: 20150045503
    Abstract: Curable silicone mixture containing an alkenyl-functional silicone, an Si—H functional silicone, an epoxy-functional silicone, a ferrocene, and a hydrosilylation curing catalyst, provide thermally stable silicones which are also adherent. The compositions are particularly useful for embedding power semiconductor devices.
    Type: Application
    Filed: January 2, 2013
    Publication date: February 12, 2015
    Inventor: Philipp Mueller
  • Patent number: 8802207
    Abstract: A method of making a polymer composition comprising dispersed nanoparticles of an oxygen scavenging catalyst includes polymerizing one or more monomers or pre-polymers in the presence of a platinum group metal catalyst or precursor to obtain a polymer composition having dispersed nanoparticles of the platinum group metal. The oxygen scavenging catalyst is added during the polymerization as a solution of the platinum group metal or a compound thereof and a polyhydric alcohol (e.g., glycols). The food or beverage containers made from such polymer compositions exhibit high clarity and high oxygen scavenging properties.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: August 12, 2014
    Assignee: Graham Packaging Company, L.P.
    Inventor: Murali K. Akkapeddi
  • Patent number: 8716388
    Abstract: Polycarbonate nanocomposites comprising a polycarbonate matrix having non-oxidized metal nanoparticles dispersed therein are disclosed. The polycarbonate nanocomposite is produced by a process comprising forming a reaction mixture comprising a dihydroxy compound, an activated carbonate, a metal precursor, and a solvent; and in-situ polymerizing the reaction mixture to form a nanocomposite comprising a polycarbonate matrix and metal nanoparticles dispersed therein. The metal precursor comprises a metal selected from a specified group. The nanocomposites have improved mechanical, optical, electrical and/or magnetic properties. Also disclosed are articles formed from such polycarbonate nanocomposites.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 6, 2014
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Parnasree Maiti, Sonia Oberoi, Roopali Rai, Vaidyanath Ramakrishnan, Sandeep Tvagi
  • Publication number: 20130253134
    Abstract: A compound having a guanidine structure and uses thereof as organopolysiloxane polycondensation catalysts are described.
    Type: Application
    Filed: May 22, 2013
    Publication date: September 26, 2013
    Applicant: BLUESTAR SILICONES FRANCE
    Inventor: Christian Maliverney
  • Publication number: 20130165547
    Abstract: Polycarbonate nanocomposites comprising a polycarbonate matrix having non-oxidized metal nanoparticles dispersed therein are disclosed. The polycarbonate nanocomposite is produced by a process comprising forming a reaction mixture comprising a dihydroxy compound, an activated carbonate, a metal precursor, and a solvent; and in-situ polymerizing the reaction mixture to form a nanocomposite comprising a polycarbonate matrix and metal nanoparticles dispersed therein. The metal precursor comprises a metal selected from a specified group. The nanocomposites have improved mechanical, optical, electrical and/or magnetic properties. Also disclosed are articles formed from such polycarbonate nanocomposites.
    Type: Application
    Filed: February 25, 2013
    Publication date: June 27, 2013
    Applicant: SABIC INNOVATIVE PLASTICS IP BV
    Inventor: SABIC INNOVATIVE PLASTICS IP BV
  • Publication number: 20130157226
    Abstract: The present disclosure relates to a curable composition to be prepared by mixing a base paste and a catalyst paste, the base paste comprising (A) a hardenable compound comprising at least two aziridine moieties, and (B) a metal containing component containing anions and/or ligands, the metal containing component being present in an amount of about 0.1 to about 5 wt.-%, the metal being selected from Zn, Cu, Co, Ni, Ag and combinations thereof, the anions or ligands being selected from oxide, hydroxyl, (hydro)carbonate, sulphate, nitrate, halide, lactate, benzoate, wolframate, linear or branched aliphatic carboxylic acid anions, ligands having not more than two coordinating moieties and combinations thereof, the catalyst paste comprising (C) a Lewis acid, the composition optionally further comprising (D) a retarder, (E) filler and (F) additive(s).
    Type: Application
    Filed: August 23, 2011
    Publication date: June 20, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Joachim W. Zech, Hendrik Grupp, Thomas Klettke
  • Publication number: 20130115402
    Abstract: Co-polyester resin compositions and processes for manufacturing resin compositions are provided, said resin compositions being suitable for extrusion blow molding for the manufacture of containers with good color, clarity for both food, non-food applications and other applications such as profile extrusions and manufacture of blown films which require high melt strength polyester.
    Type: Application
    Filed: June 24, 2011
    Publication date: May 9, 2013
    Applicant: BASF SE
    Inventors: Kulkarni Sanjay Tammaji, Akhilesh Vijra, Vyas Chandrakant Onkar, Albert Luckyto Soekarno, Roelof Van Der Meer, Simone Schillo
  • Patent number: 8389626
    Abstract: Polycarbonate nanocomposites comprising a polycarbonate matrix having non-oxidized metal nanoparticles dispersed therein are disclosed. The polycarbonate nanocomposite is produced by a process comprising forming a reaction mixture comprising a dihydroxy compound, an activated carbonate, a metal precursor, and a solvent; and in-situ polymerizing the reaction mixture to form a nanocomposite comprising a polycarbonate matrix and metal nanoparticles dispersed therein. The metal precursor comprises a metal selected from a specified group. The nanocomposites have improved mechanical, optical, electrical and/or magnetic properties. Also disclosed are articles formed from such polycarbonate nanocomposites.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: March 5, 2013
    Assignee: Sabic Innovative Plastics IP BV
    Inventors: Parnasree Maiti, Sonia Oberoi, Roopali Rai, Vaidyanath Ramakrishnan, Sandeep Tyagi
  • Patent number: 8378021
    Abstract: The invention relates to subduedly colored (brown, gray, black, green), infrared reflecting PMMA compounds which can be applied to other plastic compounds as an IR barrier layer.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: February 19, 2013
    Assignee: Evonik Röhm GmbH
    Inventors: Klaus Schultes, Ernst Becker, Ursula Golchert, Elisabeth Clamer
  • Patent number: 8349928
    Abstract: A metal particle dispersion structure characteristically comprising (B) 0.005 to 100 weight parts of metal nanoparticles dispersed in (A) 100 weight parts of polymerized polymer, wherein the metal nanoparticles are metal particles obtained by mixing (b1) organohydrogenpolysiloxane and (b2) at least one metal compound which is soluble in component (b3) to uniformity in (b3) cyclic or chain dimethylpolysiloxane or at least one organic solvent.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: January 8, 2013
    Assignee: Dow Corning Toray Co., Ltd.
    Inventor: Yukinari Harimoto
  • Patent number: 8268912
    Abstract: A process for preparing aqueous dispersions of composite particles using monomers containing silane groups.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: September 18, 2012
    Assignee: BASF SE
    Inventors: Arno Tuchbreiter, Harm Wiese
  • Patent number: 8202928
    Abstract: A silicone composition is provided that is resistant to a hydrocarbon fluid, such as a transmission fluid, and other harsh environments when cured. The silicone composition includes a dihydroxy-terminated silicone fluid, a filler material and amine-cured cross-linking agent, the composition containing substantially no plasticizer, and wherein the cured composition can be utilized as a sealant that is resistant to exposure to transmission fluid and high temperatures for extended periods of time. The silicone composition provides effective sealant properties that withstand the foregoing conditions present in the transmission fluids. Methods of making and using the cured silicone sealants made from the present compositions are also provided.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: June 19, 2012
    Assignee: Continental Automotive Systems, Inc
    Inventors: Jinbao Jiao, Stanton Rak
  • Publication number: 20120149839
    Abstract: Polycarbonate nanocomposites comprising a polycarbonate matrix having non-oxidized metal nanoparticles dispersed therein are disclosed. The polycarbonate nanocomposite is produced by a process comprising forming a reaction mixture comprising a dihydroxy compound, an activated carbonate, a metal precursor, and a solvent; and in-situ polymerizing the reaction mixture to form a nanocomposite comprising a polycarbonate matrix and metal nanoparticles dispersed therein. The metal precursor comprises a metal selected from a specified group. The nanocomposites have improved mechanical, optical, electrical and/or magnetic properties. Also disclosed are articles formed from such polycarbonate nanocomposites.
    Type: Application
    Filed: March 28, 2008
    Publication date: June 14, 2012
    Inventors: Parnasree Maiti, Sonia Oberoi, Roopali Rai, Vaidyanath Ramakrishnan, Sandeep Tyagi
  • Patent number: 8123972
    Abstract: The present invention is to impart, to a sheet-like soft magnetic material, a configuration in which sheet thickness change is suppressed and in which fluctuation in magnetic permeability is small even under a high-temperature or a high-temperature, high-humidity environment, even when a plurality of thin curable soft magnetic sheets produced by a coating method are laminated. The sheet-like soft magnetic material is formed from a soft magnetic composition which is formed by mixing at least a flat soft magnetic powder, an acrylic rubber, an epoxy resin, a curing agent for the epoxy resin, and a solvent. The flat soft magnetic powder is arranged in an in-plane direction of the sheet-like soft magnetic material. An acrylic rubber having a glycidyl group is used for the acrylic rubber. The weight ratio of the flat soft magnetic powder with respect to the total amount of the acrylic rubber, the epoxy resin, and the curing agent for the epoxy resin is 3.7 to 5.8.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: February 28, 2012
    Assignees: Sony Corporation, Sony Chemical & Information Device Corporation
    Inventors: Keisuke Aramaki, Junichiro Sugita, Morio Sekiguchi
  • Patent number: 8120189
    Abstract: A wiring structure having a wiring-terminal-connection adhesive that includes a curing agent capable of generating a free radical upon heating, a radically polymerizable substance and silicone particles.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: February 21, 2012
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Motohiro Arifuku, Itsuo Watanabe, Kouji Motomura, Kouji Kobayashi, Yasushi Gotoh, Tohru Fujinawa
  • Patent number: 8115322
    Abstract: This invention provides a wiring-terminal-connecting adhesive comprising a curing agent capable of generating a free radical upon heating, a radically polymerizable substance and silicone particles, and a wiring-terminal-connecting method and a wiring structure which make use of such an adhesive.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 14, 2012
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Motohiro Arifuku, Itsuo Watanabe, Kouji Motomura, Kouji Kobayashi, Yasushi Gotoh, Tohru Fujinawa
  • Patent number: 8039559
    Abstract: The present invention relates to a two-component composition comprising a first component and a second component, wherein the first component being a non-aqueous resin composition comprising an unsaturated polyester resin or vinyl ester resin, a transition metal compound selected from a copper, iron, manganese or titanium compound, a potassium compound, and the resin composition contains less than 0.01 mmol cobalt per kg primary resin system and less than 0.01 mmol vanadium per kg primary resin system; and the second component comprises a peroxide compound.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: October 18, 2011
    Assignee: DSM IP Assets B.V.
    Inventors: Johan Franz Gradus Antonius Jansen, Ronald Ivo Kraeger
  • Patent number: 8029911
    Abstract: There are provided an adhesive for connecting a circuit to be interposed between substrates having circuit electrodes thereon opposed to each other and to electrically connect the circuit electrodes on the substrates opposed to each other to the pressurizing direction under pressure, wherein the adhesive contains a compound having an acid equivalent of 5 to 500 KOH mg/g, and an adhesive for connecting a circuit to be interposed between substrates having circuit electrodes opposed to each other and to electrically connect the electrodes on the substrate opposed to each other to the pressurizing direction under pressure, wherein the adhesive comprises a first adhesive layer and a second adhesive layer, and a glass transition temperature of the first adhesive layer after pressure connection is higher than the glass transition temperature of the second adhesive layer after pressure connection.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 4, 2011
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Satoyuki Nomura, Tohru Fujinawa, Hiroshi Ono, Hoko Kanazawa, Masami Yusa
  • Patent number: 7998370
    Abstract: The task of the present invention is to offer a conductive paste that can be molded into a conductive coating or film that can maintain flexibility and ductility even while possessing a thickness of 50 ?m˜125 ?m. The conductive paste of the present invention includes a conductive particulate, a metal capture agent and a polyimide precursor solution. The metal capture agent can be selected as at least one from among either pyrimidinethiol compounds, triazinethiol compounds and imidazole compounds with a mercapto group. Moreover, the conductive particulate is preferably a core particle that is covered with a metal shell. In addition, a polyamic acid solution is preferred as the polyimide precursor solution.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: August 16, 2011
    Assignee: I.S.T. Corporation
    Inventors: Nobuyuki Hama, Yasuaki Takeda, Koji Moriuchi
  • Patent number: 7947622
    Abstract: Nanohybrid sol-gel materials, based on silica organically modified (ormosil) and doped with the ruthenium species tetra-n-propylammonium perruthenate (TPAP) are highly efficient catalysts for the selective oxidation of alcohols to carbonyls with oxygen at low pressure, in organic solvents as well as in carbon dioxide in supercritical state. Novel, highly active and stable materials are the fluorinated ormosils. Optimal conditions for the preparation and use thereof in liquid-phase as well as in supercritical CO2 were set by studying the structure-activity relationships of the materials, with particular reference to the surface hydrophobic/hydrophilic properties and to the textural ones.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: May 24, 2011
    Assignee: Consiglio Nazionale Delle Ricerche
    Inventors: Mario Pagliaro, Rosaria Ciriminna
  • Patent number: 7897675
    Abstract: The present invention relates to a process for producing a colloidal metal solution, which comprises a first step of forming colloidal metal particles with a sulfur compound of low molecular weight on the particle surfaces in a solution, a second step of adjusting the solution to a pH of not more than 5, thereby aggregating the colloidal metal particles and recovering the colloidal metal particles by filtration, and a third step of dispersing the recovered colloidal metal particles into a dispersion medium at a pH of 8-14.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: March 1, 2011
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventor: Masanori Tomonari
  • Publication number: 20100324211
    Abstract: The object of the invention is a method for the dispersion of reactive monomers, wherein a monomer emulsion (8) is fed at a first pressure through a dispersion jet (7) and a second dispersion (9) is fed laterally behind the dispersion jet at a second pressure that is less than the first pressure, both the emulsion and the dispersion being dispersed with one another in a mixing chamber. Using the method, nanoparticle-laden monomer emulsions may be produced that, after polymerization, produce polymer-coated nanoparticles.
    Type: Application
    Filed: March 20, 2008
    Publication date: December 23, 2010
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Andreas Huether, Sebastian Roos, Oliver Ruscitti, Heike Schuchmann, Karsten Koehler, Caroline Sauter, Freddy Aguilar
  • Patent number: 7807219
    Abstract: A process of repairing a plasma etched low-k dielectric material having surface-bound silanol groups includes exposing at least one surface of the dielectric material to (a) a catalyst so as to form hydrogen bonds between the catalyst and the surface-bound silanol groups obtaining a catalytic intermediary that reacts with the silane capping agent so as to form surface-bound silane compounds, or (b) a solution comprising a supercritical solvent, a catalyst, and a silane capping agent so as to form hydrogen bonds between a catalyst and the surface-bound silanol groups obtaining a catalytic intermediary that reacts with the silane capping agent so as to form surface-bound silane compounds. Horizontal networks can be formed between adjacent surface-bound silane compounds.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: October 5, 2010
    Assignee: Lam Research Corporation
    Inventor: James DeYoung
  • Patent number: 7777335
    Abstract: A wiring structure having a wiring-terminal-connection adhesive that includes a curing agent capable of generating a free radical upon heating, a radically polymerizable substance and silicone particles.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: August 17, 2010
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Motohiro Arifuku, Itsuo Watanabe, Kouji Motomura, Kouji Kobayashi, Yasushi Gotoh, Tohru Fujinawa
  • Patent number: 7723430
    Abstract: Provided is a thin film having self-supporting properties and having excellent strength, durability and flexibility and a method for manufacturing the thin film. A thin film having an interpenetrating net-work layer and having a film thickness of 500 nm or less, the interpenetrating net-work layer being constituted of at least a metal oxide and an organic polymer.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: May 25, 2010
    Assignee: Riken
    Inventors: Toyoki Kunitake, Richard Vendamme
  • Patent number: 7709594
    Abstract: A polyester composition produced without using an antimony compound as a polycondensation catalyst and including (I) composition containing, on a weight basis, 30 ppm or less of antimony, 0.5 to 50 ppm of titanium, and 0.1 to 100 ppm of phosphorus, in which the number density of titanium-containing particles, the equivalent circular diameter of which is 1?m or more, is less than 100/0.02 mg; and (II) a composition containing, on a weight basis, antimony, titanium and phosphorous as defined above, in which organic polymer particles are contained in amount of 0.1 to 5 wt%, the organic polymer particles having an average particle diameter determined by dynamic light scattering of 0.05 to 3?m and containing 0.01% or less of coarse particles relative to the total number of the particles, the coarse particles having a diameter at least twice the average particle diameter.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: May 4, 2010
    Assignee: TORAY Industries, Inc.
    Inventors: Jun Sakamoto, Masatoshi Aoyama, Yoshihiro Honma, Hitoshi Yoshimura, Yuzo Shimizu
  • Patent number: 7683122
    Abstract: Disclosed are processes for preparing polyareneazole polymers including contacting a molar excess of a free base in water with a terephthalic acid salt to form an aqueous mixture, adjusting the pH to precipitate a monomer complex, contacting the monomer complex with metal powder, and polymerizing the monomer complex. Polyareneazoles, filaments and yarns are also disclosed.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: March 23, 2010
    Assignees: E. I. du Pont de Nemours and Company, Magellan Systems International, LLC
    Inventors: Doetze Jakob Sikkema, David J. Rodini, Qinghong Fu Adkins, Steven R. Allen, Georg Valentin Martin, Ralf Demuth, Michael Schelhaas
  • Publication number: 20100036052
    Abstract: A process is proposed for preparing polymers filled with nanoscale metal oxides and comprises the following steps: a) preparing a nanosuspension of one or more crystalline metal oxides, hydroxides or oxide hydroxides by heating a suspension of one or more compounds comprising the corresponding metals in a first polymerizable compound to a temperature greater than the boiling point of water under process pressure and less than the boiling temperature of the first polymerizable compound and also less than the temperature at which the polymerization of the first polymerizable compound commences, ?in the presence of water in an amount corresponding to 1 to 10 oxygen atoms per metal atom of the compound or compounds comprising the corresponding metals, and b) polymerizing the first polymerizable compound under pressure and temperature conditions typical for the first polymerizable compound.
    Type: Application
    Filed: November 5, 2007
    Publication date: February 11, 2010
    Applicant: BASF SE
    Inventors: Andrey Karpov, Hartmut Hibst, Claudia Mettlach, Lionel Gehringer, Motonori Yamamoto, Berend Eling, Hans-Helmut Goertz
  • Publication number: 20100036051
    Abstract: A silicone resin composition comprising fine inorganic particles, wherein the silicone resin composition is obtained by a step comprising reacting (A) a bifunctional alkoxysilane and/or a dual end-disilanol, and (B) a compound having an alkoxysilyl group at an end of a molecule, in the presence of a dispersion of said fine inorganic particles. The silicone resin composition of the present invention can be suitably used for, for example, encapsulating materials, coating materials, molding materials, surface-protecting materials, adhesive agents, bonding agents, and the like.
    Type: Application
    Filed: June 22, 2009
    Publication date: February 11, 2010
    Applicant: NITTO DENKO CORPORATION
    Inventor: Keisuke HIRANO
  • Publication number: 20100001237
    Abstract: A method for selecting materials and processing conditions to prepare a heterogeneous structure in situ via the reaction of a homogeneous mixture of a reactive organic compound and a filler, which may then optionally be sintered. The method is employed to provide a heterogeneous composite possessing exceptionally high thermal and/or electrically conductivities for a given concentration of conductive filler. The choice of materials as well as processing conditions employed, as will be described below, have a strong effect on the rate domain formation/heterogeneity of the structure formed, the extent of filler particle-particle interactions within filler-rich domains, and ultimately the thermal and/or electrical conductivity. Proper choice of these conditions can lead to composites having enhanced properties at a reduced bulk filler concentration.
    Type: Application
    Filed: March 26, 2008
    Publication date: January 7, 2010
    Inventors: Timothy D. Fornes, Nicolas D. Huffman
  • Patent number: 7598316
    Abstract: A process for the preparation of polymer magnetic particles, which comprises: providing a water phase containing magnetic components homogeneously dispersed therein, wherein the water phase is contacted with or further contains a polymerisable metal-containing or organic monomer which is soluble in the water phase, and polymerizing the monomer in the presence of the magnetic components so as to form polymer magnetic particles in which the magnetic components are substantially uniformly distributed; wherein at least a part of the polymerizing step is carried out in a water-in-oil emulsion in which the water phase containing the magnetic components homogenously dispersed therein is present as a discontinuous phase in a continuous oil phase.
    Type: Grant
    Filed: July 4, 2002
    Date of Patent: October 6, 2009
    Assignee: QIAGEN GmbH
    Inventors: Vidar Skagestad, Lars Kilaas
  • Patent number: 7528219
    Abstract: The present invention is a method for efficiently incorporating a nitrogen containing methine light absorber into a polyester resin. The method includes forming a reaction mixture comprising combining a diol component, a diacid component selected from the group consisting of dicarboxylic acids, dicarboxylic acid derivatives, and mixtures thereof, an antimony containing compound, a phosphorus containing compound, a metal containing compound, and a nitrogen containing methine light absorber. The reaction mixture is polymerized in a polycondensation reaction system. In another embodiment the light absorber is added while the reaction products of one reactor are being transferred to the next reactor in the polycondensation reaction system. The present invention is also directed articles made from the polyester resin.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 5, 2009
    Assignee: Eastman Chemical Company
    Inventors: Max Allen Weaver, Jason Clay Pearson, Dale Milton Blakely, Frederick Leslie Colhoun
  • Patent number: 7514500
    Abstract: The invention provides a process for preparing polymeric beads of complexing resin incorporating magnetic particles, which process comprises: producing a dispersion having a continuous aqueous phase and a dispersed organic phase, said organic phase comprising one or more polymerisable monomers, magnetic particles and a dispersing agent for dispersing said magnetic particles in the organic phase; polymerising said one or more polymerisable monomers to form polymeric beads incorporating said magnetic particles, wherein said polymeric beads include amine groups capable of complexing a transition metal cation, or wherein said polymeric beads are reacted with one or more compounds to provide amine groups capable of complexing a transition metal cation, complexing resins prepared by this process, and polymeric beads of complexing resin comprising a polymer matrix having magnetic particles dispersed substantially uniformly therein, wherein the polymer matrix incorporates amine groups capable of complexing a transiti
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: April 7, 2009
    Assignees: Commonwealth Scientific and Industrial Research Organization, Orica Australia Pty. Ltd.
    Inventors: Robert James Eldridge, Marck Norret, Thomas W. Dahlke, Mathew John Ballard, Beryn John Adams
  • Patent number: 7361710
    Abstract: An ethylenically unsaturated vegetable oil is modified by the addition of an enophile or dienophile having an acid, ester or anhydride functionality. The modified vegetable oil is then reacted with a functional vinyl monomer to form a vegetable oil derivative. The vegetable oil derivative is useful in forming latexes and coatings.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: April 22, 2008
    Assignee: Southern Diversified Products, LLC
    Inventors: Shelby F. Thames, Oliver W. Smith, James M. Evans, Sandipan Dutta, Lianzhou Chen
  • Patent number: 7335719
    Abstract: A polyester based on poly(trimethylene terephthalate) consisting essentially of trimethylene terephthalate repeating units, comprising at least one kind of compound selected from the group consisting of alkali metal compounds, alkaline earth metal compounds and manganese compounds in an amount of 10 to 150 ppm expressed in terms of the metal element in a molar ratio of the total amount of elements of the contained alkali metal elements, alkaline earth metal elements and manganese element to the amount of the contained phosphorus element within the range of the following formula (I): 0?P/M?1??(I) wherein, P is the molar amount of the phosphorus element in the polyester; M is the total amount of the alkali metal elements, alkaline earth metal elements and manganese element.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: February 26, 2008
    Assignee: Teijin Limited
    Inventor: Ryoji Tsukamoto
  • Publication number: 20080041099
    Abstract: The present invention provides a body accessory which can formed into a ring shape, comprising a silicone elastomer body having a silicone elastomer layer mixed with fine titanium powder, which contains titanium powder obtained by burning a gaseous oxygen-hydrogen mixture in high-pressure water, fusing metallic titanium using the resultant burning gas and precipitating the product in water at least as a major component, on the skin contacting side and the silicone elastomer decorative continuous protrusion on the exterior side.
    Type: Application
    Filed: June 9, 2005
    Publication date: February 21, 2008
    Inventor: Yoshihiro Hirata
  • Patent number: 7282555
    Abstract: The present invention is a method for efficiently incorporating a nitrogen containing methine light absorber into a polyester resin. The method includes forming a reaction mixture comprising combining a diol component, a diacid component selected from the group consisting of dicarboxylic acids, dicarboxylic acid derivatives, and mixtures thereof, an antimony containing compound, a phosphorus containing compound, a metal containing compound, and a nitrogen containing methine light absorber. The reaction mixture is polymerized in a polycondensation reaction system. In another embodiment the light absorber is added while the reaction products of one reactor are being transferred to the next reactor in the polycondensation reaction system. The present invention is also directed articles made from the polyester resin.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: October 16, 2007
    Assignee: Eastman Chemical Company
    Inventors: Max Allen Weaver, Jason Clay Pearson, Dale Milton Blakely, Frederick Leslie Colhoun
  • Patent number: 7241855
    Abstract: A method is described for the manufacture of polyesters of aromatic dicarboxylic acids with aliphatic and/or cycloaliphatic dials, in which an aromatic dicarboxylic acid in the presence of a monocarboxylic acid or a mixture of a monocarboxylic acid present in a saturated solution with water or another suitable solvent is converted with an aliphatic or cycloaliphatic dial to a dicarboxylic acid alkanediolestercarboxylate and/or its oligomers, which are polycondensed in further process steps to the polyester.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: July 10, 2007
    Assignee: Zimmer Aktiengesellschaft
    Inventors: Stefan Deiss, Michael Reisen, Karl-Heinz Heldmann, Eckhard Seidel
  • Patent number: 7199212
    Abstract: A novel polymerization catalyst for polyesters, which does not contain any germanium or antimony compound as the main component; polyesters produced with the catalyst; and a process for producing polyesters. This polymerization catalyst is excellent in catalytic activity, little causes thermal degradation of polyesters in melt molding even when neither deactivated nor removed, and can give thermally stable polyesters which little generate foreign matter and are excellent in transparency and color. The polymerization catalyst is one which contains as the first metal-containing component at least one member selected from the group consisting of aluminum and aluminum compounds and which gives polyethylene terephthalate (PET) having a thermal stability parameter (TS) satisfying the relationship: (1) TS<0.3.
    Type: Grant
    Filed: December 25, 2000
    Date of Patent: April 3, 2007
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Takahiro Nakajima, Kenichi Tsukamoto, Shoichi Gyobu, Maki Sato
  • Patent number: 7144974
    Abstract: In a polyester production method, a titanium compound having a radical selected from a carbonyl group, a carboxyl group, or an ester group, and a phosphorous compound having a structure illustrated in Formula (I), are added This yields a polyester composition which does not exhibit increased filter pressure when forming, which has excellent filament and film forming properties, and which has a polymer color tone superb to that of conventional products.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: December 5, 2006
    Assignee: Toray Industries, Inc.
    Inventors: Keisuke Honda, Kunihiro Morimoto, Masatoshi Aoyama, Tatsuya Nagano, Minoru Fujimori
  • Patent number: 7101961
    Abstract: The present invention provides a method for preparation of poly(o-phenylenediamine) nano-belt comprising mixing aqueous solutions of o-phenylenediamine and of oxidant in a mole ratio of 1:0.1–1 under stirring; standing for 0.5–2 hrs at room temperature; and obtaining poly(o-phenylenediamine) nano-belt. The method is suitable for large-scale production. In the absence of template and surfactant, aqueous solutions of o-phenylenediamine and of oxidant are mixed in a specified mole ratio and thus obtain a poly(o-phenylenediamine) nano-belt with length of several hundred micrometers, width of several hundred nanometers and thickness of tens nanometers. The method is simple, quick and suitable for large-scale manufacture. The poly(o-phenylenediamine) nano-belt thus prepared possesses excellent semiconductor properties and is one of the most promising conductive polymer materials.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: September 5, 2006
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Erkang Wang, Xuping Sun, Shaojun Dong
  • Patent number: 7094830
    Abstract: A process for preparing an aqueous dispersion of composite particles composed of addition polymer and finely divided inorganic solid is described.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: August 22, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Zhijian Xue, Harm Wiese
  • Patent number: RE40571
    Abstract: The present invention provides a catalyst for polyester production capable of producing a polyester with high catalytic activity, a process for producing a polyester using the catalyst and a polyester produced thereby. The catalyst comprises a solid titanium compound obtained by dehydro-drying a hydrolyzate obtained by hydrolysis of a titanium halide and which has a molar ratio (OH/Ti) of a hydroxyl group (OH) to titanium (Ti) exceeding 0.09 and less than 4. In the process, the polyester is obtained by polycondensing an aromatic dicarboxylic acid, or an ester-forming derivative thereof, and an aliphatic diol, or ester-forming derivative thereof, in the presence of the catalyst. The resulting polyester has excellent transparency and tint, a titanium content of 1 to 100 ppm, a magnesium content of 1 to 200 ppm and a magnesium to titanium weight ratio of not less than 0.01.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: November 11, 2008
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takeshi Ohmatsuzawa, Fujito Ehara, Hideshi Hori, Kazuo Toyota, Kenzaburou Fukutani, Junichi Imuta, Akiyoshi Shimizu, Takayuki Onogi, Seiji Noda, Masayuki Sakai, Shoji Hiraoka, Koji Nakamachi, Michio Tsugawa, Satoru Miyazoe