Reactions With Ethylenic Reactants In Two Or More Diverse Phases, E.g., Bulk, Emulsion, Melt, Solution, Etc. Patents (Class 525/243)
  • Patent number: 10525439
    Abstract: The invention relates to a process for the production of thermoplastic moulding compounds, in particular ABS, wherein at least a first reagent (11) and a second reagent (12) of the thermoplastic moulding compounds are fed to a gear pump (10) which comprises a housing and at least a first gear wheel that is rotatable relative to the housing about a first axis, and a second gear wheel that is rotatable relative to the housing about a second axis, wherein a loop conduit (29) is provided, and wherein the reagents (11, 12) are pressed in a loop through the loop conduit (29) and passing the gear wheels, whereby the reagents (11, 12) are dispersed to form a dispersion (15) in the gear pump (10). The invention also relates to a thermoplastic moulding compound that is produced by the inventive process.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: January 7, 2020
    Assignee: INEOS STYROLUTION GROUP GMBH
    Inventors: SangJun Ahn, Wolfgang Fischer, Norbert Niessner, Brian J. Banaszak, Roland Walker, Ula El-Jaby, Achim Stammer, Klaus-Dieter Hungenberg, Bernd Hisgen
  • Patent number: 10501610
    Abstract: The present invention relates to a method for preparing styrene-butadiene rubber in which a molecular weight modifier containing two or more components is used in a polymerization reaction and each of the two or more components is added at a optimal time, and the method is capable of improving physical properties of the prepared styrene-butadiene rubber, and styrene-butadiene rubber prepared thereby. The styrene-butadiene rubber prepared according to the preparation method of the present invention has improvement in characteristics such as tensile strength, elongation, etc., and thus may be usefully used in the production of a tire having environmental friendliness, abrasion resistance, and the like.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: December 10, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Jae Min Lee, Se Eun Lee, Byoung Yun Kim, In Sung Jo, Woo Seok Choi
  • Patent number: 10287232
    Abstract: At least a first fluid and a second fluid are used and are not miscible with each other. At least the first fluid includes one or two items selected from an organic compound, a reactant, and a phase transfer catalyst. From among the fluids other than the first fluid, at least the second fluid includes at least one item from among the items not selected from the three items. The first fluid and second fluid contain all three items. Each of the fluids are merged in a thin-film fluid formed between processing faces that rotate relative to each other. A phase transfer catalyst reaction occurs in the thin-film fluid. Among the first fluid and the second fluid, at least the fluid containing the phase transfer catalyst is prepared so that the phase transfer catalyst is substantially homogeneously mixed before being introduced between the processing faces.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 14, 2019
    Assignee: M. TECHNIQUE CO., LTD.
    Inventors: Masakazu Enomura, Daisuke Honda, Kazutaka Takeda
  • Patent number: 10189984
    Abstract: The present invention relates to a thermoplastic resin composition and a molded article manufactured thereofrom. In accordance with the present invention, a thermoplastic resin composition providing higher chemical resistance with respect to a blowing agent while providing the same impact strength, gloss, and vacuum moldability as existing resin compositions when used to produce an inner case of a refrigerator, and a molded article manufactured from the same are provided.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: January 29, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Seo Hwa Kim, Seong Lyong Kim, Tae Hoon Kim, Ju Hyeong Lee
  • Patent number: 10059851
    Abstract: An ink composition that performs recording by being attached on a heated non-absorbent recording medium or a heated low absorbency recording medium, the ink composition including a pigment; a core polymer and a shell polymer that covers at least a portion of the core polymer, and polymer particles in which the glass transition point of the polymer that configures the core polymer is more than 10° C. lower than the glass transition point of the polymer that configures the shell polymer, and in which the polymer that configures the shell polymer includes a polymer having a (meth)acrylate monomer unit and a carboxylic acid monomer unit, and the content of the polymer particles is 3.0 mass % or more with respect to the total amount of the ink composition.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: August 28, 2018
    Assignee: Seiko Epson Corporation
    Inventors: Takayoshi Kagata, Masahiro Yatake, Hiroshi Mukai
  • Patent number: 9745392
    Abstract: Provided is a method for producing water-absorbent resin particles suitable for use in absorbent article and the like, the water-absorbent resin particles having better water-absorbent performance, a suitable particle size, and a narrow particle-size distribution. A method for producing water-absorbent resin particles by reversed-phase suspension polymerization of a water-soluble ethylenic unsaturated monomer in a carrier fluid, wherein the method for producing water-absorbent resin particles comprises conducting the reversed-phase suspension polymerization reaction in the presence of an organic acid monoglyceride.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: August 29, 2017
    Assignee: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Kenji Tanimura, Ryusuke Umeza, Hidenobu Kakimoto, Hideki Matsushita, Takahiro Imai
  • Patent number: 9732174
    Abstract: A process for preparation of a polymer product comprising the steps of i) feeding an aqueous mixture comprising a monoethylenically unsaturated monomer or a mixture of monoethylenically unsaturated monomers into a first reactor device (2) through at least one inlet; ii) partially polymerizing the monomer or monomers and transferring the polymerizing monomer or mixture of monomers from the inlet to an outlet (3) of the first reactor device (2) to provide a partially polymerized product; iii) flowing the partially polymerized product out of the outlet (3), in which no more than 60% of the monomer or mixture of monomers has been polymerized in the partially polymerized product as it exits the outlet (3) of first reactor device (2), and transferring it to a further reactor device (5), in which the further reactor device (5) has an inlet and an outlet (6); iv) continuing the polymerization in the further reactor device (5) and removing the polymer product from the outlet (6) of the further reactor device (5), ch
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: August 15, 2017
    Assignee: BASF SE
    Inventors: Shankara Narayanan Keelapandal Ramamoorthy, Oliver Soetje, John Scott Barratt, Gabriela Eugenia Fonseca Zepeda
  • Patent number: 9725588
    Abstract: It is intended to obtain a methacrylic resin composition that has high transparency, is excellent in fluidity and heat resistance, and is low variable in impact resistance.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: August 8, 2017
    Assignee: ASAHI KASEI CHEMICALS CORPORATION
    Inventor: Masahiro Watanabe
  • Patent number: 9382364
    Abstract: A process for preparation of a polymer product comprising the steps of i) feeding an aqueous mixture comprising a monoethylenically unsaturated monomer or a mixture of monoethylenically unsaturated monomers into a first reactor device (2) through at least one inlet; ii) partially polymerising the monomer or monomers and transferring the polymerising monomer or mixture of monomers from the inlet to an outlet (3) of the first reactor device (2) to provide a partially polymerised product; iii) flowing the partially polymerised product out of the outlet (3), in which no more than 60% of the monomer or mixture of monomers has been polymerised in the partially polymerised product as it exits the outlet (3) of first reactor device (2), and transferring it to a further reactor device (5), in which the further reactor device (5) has an inlet and an outlet (6); iv) continuing the polymerisation in the further reactor device (5) and removing the polymer product from the outlet (6) of the further reactor device (5), char
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: July 5, 2016
    Assignee: BASF SE
    Inventors: Shankara Narayanan Keelapandal Ramamoorthy, Oliver Soetje, John Scott Barratt, Gabriela Eugenia Fonseca Zepeda
  • Patent number: 9308511
    Abstract: Methods, apparatuses, and systems for fabricating porous materials using thixotropic gels. A shear force is applied to a thixotropic material causing the material to flow. Multiple components are added to the thixotropic material while applying the shear force causing the multiple components to be distributed in the material. The shear force is removed such that the static properties of the thixotropic material in the absence of the shear force retain a distribution of the multiple components in the thixotropic material to form a composite gel material that includes liquid within a network of inter-connected solid particles that include the distributed plurality of components. The liquid in the composite gel material is removed to form a porous composite material.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: April 12, 2016
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA ACTING FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Dong-Kyun Seo, Alex Volosin
  • Patent number: 9061909
    Abstract: A method for simultaneously producing carbon nanotubes and hydrogen according to the present invention is a method for simultaneously producing carbon nanotubes and hydrogen, in which using a carbon source containing carbon atoms and hydrogen atoms and being decomposed in a heated state, and a catalyst for producing carbon nanotubes and H2 from the carbon source, the above carbon nanotubes are synthesized on a support in a heated state, placed in a reactor, and simultaneously, the above H2 is synthesized from the above carbon source, the method comprising a synthesis step of flowing a source gas comprising the above carbon source over the above support, on which the above catalyst is supported, to synthesize the above carbon nanotubes on the above support and simultaneously synthesize the above H2 in a gas flow.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: June 23, 2015
    Assignees: The University of Tokyo, Hitachi Chemical Company, Ltd.
    Inventors: Suguru Noda, Dong Young Kim, Toshio Osawa, Hisashi Sugime, Kei Hasegawa, Eisuke Haba
  • Patent number: 9000098
    Abstract: Polymer spheres are fabricated. Dispersing polymerization and a two-stage swelling procedure are processed. The polymer spheres fabricated have uniform granular sizes and are highly cross-linking. Thus, the polymer spheres are heat-resistant and solvent-resistant.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: April 7, 2015
    Assignee: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Ming-Hsiung Wei, Yu-Wei Hou, Hui Chen, Chun-Lan Tseng
  • Publication number: 20140378576
    Abstract: The present invention relates to rubber polymer latex with a multi-layer core-shell structure, a method of preparing thereof, an acrylonitrile-butadiene-styrene graft copolymer comprising the same, and a thermoplastic resin composition using the same. The rubber polymer latex with a multi-layer core-shell structure has improved weather resistance while maintaining the properties of a diene-based rubber component. The impact resistance, the coloring properties and the weather resistance of the acrylonitrile-butadiene-styrene graft copolymer including the same may be improved. Thus, the impact strength, the coloring properties and the weather resistance of the thermoplastic resin including the acrylonitrile-butadiene-styrene graft copolymer may be improved, and the graft copolymer may be easily applied in industries using thereof.
    Type: Application
    Filed: April 30, 2014
    Publication date: December 25, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Yu Sung JUNG, Joo Byung CHAI, Eun Seon PARK, Tae Young JEON, Keun Hoon YOO, Bong Keun AHN
  • Patent number: 8841384
    Abstract: Material composed of a polyazacycloalkane grafted on polypropylene fibres. Process for the preparation of this material. Process for removing metal cations present in a liquid by bringing this liquid into contact with the said material.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: September 23, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Frédéric Rascalou, Franck Denat, Roger Guilard, Jean-Louis Babouhot, Hervé Chollet, Michel Meyer
  • Patent number: 8809463
    Abstract: Disclosed is a method for preparing a rubber latex which includes adding a basic solution to an initial reaction hydrophilic monomer and a small amount of fat-soluble monomer when a polymerization conversion ratio is 90% or more to form particles having a small diameter and superior stability, ionizing an end of the particles to secure stability of the particles and growing the formed particles, and thereby obtains a stable latex with a large particle diameter using a minimal amount of emulsifying agent and minimizes gas generation and heat discoloration derived from the emulsifying agent.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: August 19, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Joo Byung Chai, Yu Sung Jung, Won Deok Han, Keun Hoon Yoo, Chan Hong Lee, Tae Young Jeon
  • Publication number: 20140127510
    Abstract: Disclosed is a water-absorbent resin particle in which the water-absorption rate of physiological saline is 1 second to 15 seconds, the median particle size is 100 ?m to 600 ?m, and the residual volatile component content is 1.5% by weight or less.
    Type: Application
    Filed: July 23, 2012
    Publication date: May 8, 2014
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Masayoshi Handa, Kenji Tanimura, Atsushi Heguri, Yuichi Onoda
  • Publication number: 20140080976
    Abstract: Disclosed is a method for preparing a rubber latex which includes adding a basic solution to an initial reaction hydrophilic monomer and a small amount of fat-soluble monomer when a polymerization conversion ratio is 90% or more to form particles having a small diameter and superior stability, ionizing an end of the particles to secure stability of the particles and growing the formed particles, and thereby obtains a stable latex with a large particle diameter using a minimal amount of emulsifying agent and minimizes gas generation and heat discoloration derived from the emulsifying agent.
    Type: Application
    Filed: November 9, 2012
    Publication date: March 20, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Joo Byung Chai, Yu Sung Jung, Won Deok Han, Keun Hoon Yoo, Chan Hong Lee, Tae Young Jeon
  • Patent number: 8580896
    Abstract: A process for preparing a fluorine-containing polymer which includes a first step for preparing a dispersion of fluorine-containing emulsified particles (A) having ionic functional groups where a fluorine-containing monomer mixture (i) is polymerized by using a water soluble radical polymerization initiator (a) without addition of an emulsifying agent, and a second step for preparing a fluorine-containing polymer (b) having a small amount of ionic functional groups where fluorine-containing monomers (ii) are emulsion-polymerized by using a radical polymerization initiator (b) in the presence of the fluorine-containing emulsified particles (A) having ionic functional groups without addition of an emulsifying agent.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 12, 2013
    Assignee: Daikin Industries, Ltd.
    Inventors: Mitsuru Kishine, Masanori Kitaichi, Daisuke Ota, Masahiko Oka
  • Patent number: 8580890
    Abstract: The present invention concerns a heterophasic propylene copolymer of high melt flow for injection molding, which comprise a propylene polymer matrix and a rubber. The heterophasic propylene copolymers of the present invention are characterized by a high viscosity of the rubber phase and a well-defined ratio of the intrinsic viscosities of the rubber phase and the propylene polymer matrix, thus resulting in improved mechanical properties. The present invention further relates to a process for the production of such heterophasic propylene copolymers, their use and articles produced with them.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: November 12, 2013
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Rita De Luca, Philippe Hoslet
  • Patent number: 8545980
    Abstract: A polypropylene resin having: (1) a melt flow rate (MFR) of 6 to 100 g/10 minutes, (2) a molecular weight distribution (Mw/Mn), measured by gel permeation chromatography, of 3 to 6, and (3) a 116° C. non-eluted component content (100-W116(%)) of 50% or more and a content of components eluted at 90° C. or less (W90) of 10 to 30%, measured by temperature-rising fractional chromatography (TREF).
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: October 1, 2013
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Takeharu Tajima, Toshitaka Kanai, Tomoaki Takebe, Yutaka Minami
  • Patent number: 8513355
    Abstract: Disclosed is a graft copolymer highly improving the adhesion resistance and impact strength, a method of preparing the same, and PVC composition containing the same, wherein the graft copolymer comprises i) 55 to 85 wt % of a conjugated diene-based rubber core; and ii) 15 to 45 wt % of a graft shell surrounding the rubber core, and formed by comprising a (meth)acrylate-based monomer, and at least one selected from the group consisting of a vinyl-based monomer having a polyalkylene oxide group represented by the following Formula 1; in which the graft copolymer includes 0.1 to 5 wt % of the vinyl-based monomer having the polyalkylene oxide group represented by the following Formula 1: wherein R is independently hydrogen, or C1 to C4 alkyl group, and n is independently 3 to 14.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 20, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Yoon Ho Kim, Geon Soo Kim, Yeon Hwa Wi, Ki Hyun Yoo, Chan Hong Lee
  • Patent number: 8445559
    Abstract: A polymeric particle including a core, a first shell, and a second shell is provided: the core including, when dry, at least one void; the first shell polymer having a calculated glass transition temperature (“Tg”) greater than 50° C. and including, as polymerized units, from 15% to 60%, by weight based on the weight of the first shell, monomer selected from the group consisting of acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, and mixtures thereof; and from 0.3% to 10%, by weight based on the weight of the first shell polymer, multiethylenically unsaturated monomer; and the second shell polymer having a Tg of from ?60° C. to 50° C.; wherein the weight ratio of the second shell polymer to the total of all other structures of the polymeric particle is from 0.5:1 to 3:1. The particle provides binding functionality and, when dry, opacity and energy savings. A method for providing a polymeric particle and a method for providing opacity to a dry coating are also provided.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: May 21, 2013
    Assignee: Rohm and Haas Company
    Inventor: James Keith Bardman
  • Patent number: 8415433
    Abstract: A process for producing polymer microparticles by suspension polymerization of a vinyl-based monomer in which, when polymer microparticles are produced by suspension polymerization of a vinyl-based monomer, a macromonomer having a radically polymerizable unsaturated group at a terminus of a vinyl-based monomer-derived polymer is used as a dispersion stabilizer.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: April 9, 2013
    Assignee: Toagosei Co., Ltd.
    Inventors: Hideo Matsuzaki, Akihiro Gotou, Tomotaka Mizuno, Michihiro Kaai
  • Patent number: 8404762
    Abstract: Disclosed is a core-shell microparticle (10) which is produced by heating a mixture of a crosslinked microparticle (11) having an alkoxyamine group (12) and a monomer to 100 to 180° C. to cause graft polymerization. The crosslinked microparticle (11) is produced by allowing a seed particle to absorb a monomer mixture comprising 15 to 99% by mass of a crosslinkable monomer and 1 to 85% by weight of a monomer having an alkoxyamine group, and then adding a polymerization initiator to the resulting product to cause the polymerization of the monomer mixture.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: March 26, 2013
    Assignee: NOF Corporation
    Inventors: Masaki Hayashi, Masumi Takamura
  • Patent number: 8404788
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprises reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: March 26, 2013
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, Nicolay V. Tsarevsky, James Spanswick
  • Patent number: 8378033
    Abstract: The present invention relates to a method of producing water-absorbent resin particles in which a median particle size of primary particles (d) and a median particle size of secondary particles (D) satisfy the relationship of the formula, 5d/3+150<D<5d+150, comprising the steps of: (1) subjecting a water-soluble ethylenically unsaturated monomer to a first-step reversed phase suspension polymerization reaction, in a petroleum hydrocarbon solvent, in the presence of a dispersion stabilizer, to give spherical primary particles having a median particle size (d) of from 30 to 130 ?m; (2) cooling the polymerization reaction solution, to precipitate the dispersion stabilizer; and (3) carrying out a second-step reversed phase suspension polymerization reaction by adding the water-soluble ethylenically unsaturated monomer for the second step to the polymerization reaction solution to agglomerate the primary particles, to give secondary particles having a median particle size (D) of from 200 to 500 ?m.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: February 19, 2013
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Masayoshi Handa, Yasuhiro Nawata
  • Patent number: 8349961
    Abstract: A process for the preparation of vinylaromatic (co)polymers grafted on an elastomer comprising a rigid matrix consisting of vinylaromatic polymers or copolymers and of an elastomeric phase dispersed in the matrix in form of particles with a strictly bimodal distribution which comprises the functionalization of a first elastomeric fraction by means of a catalytic system containing a stable free radical initiator and subsequently the polymerization of the thus obtained mixture also in presence of a second non functionalized elastomeric fraction.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: January 8, 2013
    Assignee: Polimeri Europa S.p.A.
    Inventors: Leonardo Chiezzi, Luca Monti, Aldo Longo
  • Patent number: 8299175
    Abstract: Disclosed is a method for preparing a thermoplastic resin with superior impact resistance, chemical resistance and processability as well as excellent gloss and whiteness. The method includes emulsion-polymerizing a conjugated diene compound monomer to prepare a rubber latex having an average particle diameter of 1,800 ? to 5,000 ?, a polymerization conversion ratio of at least 90% and a swelling index of 12 to 40, an average gel content of 70 to 95%, emulsion-polymerizing 45 to 75 parts by weight of the rubber latex with 17 to 40 parts by weight of an aromatic vinyl compound and 4 to 20 parts by weight of a vinyl cyanide compound to prepare a graft copolymer latex, and coagulating the graft copolymer latex with a coagulant at 60 to 80° C., and aging the graft copolymer latex at 80 to 99° C. to obtain a graft copolymer powder.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: October 30, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Keun-hoon Yoo, Chan-hong Lee, Jin-hyoung Lee, Joo-byung Chai, Yu-sung Jung, Bong-keun Ahn, Won-deok Han
  • Patent number: 8273823
    Abstract: The invention is directed to a microemulsion polymerization comprising adding a polymerization catalyst precursor, such as a transition metal complex in the higher of two accessible oxidation states, an ATRP initiator, and an organic solvent to an aqueous solution to form an emulsion. Radically polymerizable monomers and a reducing agent may then be added to the emulsion. The reducing agent converts the catalyst precursor to a catalyst for polymerization of the first monomer from the initiator. In certain embodiments the organic solvent may comprise radically polymerizable monomers. The aqueous solution may comprise a surfactant.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: September 25, 2012
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Ke Min
  • Patent number: 8232353
    Abstract: A polymer film substrate is irradiated with ions to make a large number of nano-sized through-holes and the substrate may be further irradiated with ionizing radiation so that a functional monomer may be grafted or co-grafted onto a surface of the film and within the holes; in addition, sulfonic acid group(s) may be introduced into the graft chains to produce a polymer ion-exchange membrane that may have high oxidation resistance, dimensional stability, electrical conductivity and/or methanol resistance, as well as may have an ion-exchange capacity controlled over a wide range.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: July 31, 2012
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Masaru Yoshida, Tetsuya Yamaki, Masaharu Asano, Yosuke Morita
  • Patent number: 8227542
    Abstract: An aqueous dispersion of polymeric particles and process for forming thereof is provided. The particles comprise a first polymer comprising, when dry, at least one void; and, substantially encapsulating the first polymer, at least one second polymer comprising, as polymerized units, at least one ethylenically unsaturated monomer.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 24, 2012
    Assignee: Rohm and Haas Company
    Inventors: James Keith Bardman, Robert Mitchell Blankenship, John Michael Friel
  • Patent number: 8143327
    Abstract: A core-shell fine particle (10) is produced as follows. First of all, a monomer mixture containing 15-99% by mass of a crosslinkable monomer and 1-85% by mass of a monomer having an ATRP initiating group is adsorbed into an organic monodispersed seed particle. Next, the monomer mixture is polymerized by a polymerization initiator, thereby forming a core layer composed of a monodispersed crosslinked fine particle (11) containing an ATRP initiating group (12). A shell layer (13) is then formed by graft polymerizing a monomer onto the thus-obtained core layer.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: March 27, 2012
    Assignee: NOF Corporation
    Inventors: Masaki Hayashi, Masumi Takamura
  • Publication number: 20110301295
    Abstract: The present invention relates to copolymers with polar and non-polar olefin blocks with a variable polar monomer content of 0.1 mol % to 99.9 mol %. The invention also relates to a method for obtaining copolymers with olefin blocks and vinyl polar monomer blocks, said method using a single-component catalytic system made up of an organometallic complex containing a metal belonging to groups VIII to X. Said organometallic complex is advantageously active in the medium without adding cocatalyst.
    Type: Application
    Filed: October 27, 2009
    Publication date: December 8, 2011
    Applicants: CNRS, Arkema France
    Inventors: Christophe Navarro, Alexandra Leblanc, Vincent Monteil, Roger Spitz, Christophe Boisson, Jean-Pierre Broyer
  • Publication number: 20110294954
    Abstract: Disclosed is a vinyl polymer powder which is superior to dispersibility to curable resin compositions, which immediately gives a gel state for curable resin compositions by short-time heating with predetermined temperature, which is with high ion concentration, and which is useful as a pre-gel agent suitable for fields of electronic materials, to provide a curable resin composition comprising the vinyl polymer powder, and to provide a cured substance of the curable resin composition. The vinyl polymer powder of the present invention has an acetone-soluble component of 30% by mass or more, mass average molecular weight of the acetone-soluble component of 100,000 or more, a content of an alkali metal ion of 10 ppm or less, and a volume average primary particle size (Dv) of 200 nm or more.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 1, 2011
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Kaori Fukutani, Toshihiro Kasai
  • Patent number: 8039557
    Abstract: A process for the preparation of vinylaromatic (co)polymers grafted on an elastomer in a controlled way, comprising the dissolving of an elastomer, such as polibutadiene, in a mixture consisting of a monomer and of a solvent in the presence of a polymerization catalytic system, which comprises an initiator of free radicals and a stable initiator of free radicals. The mixture obtained in this way is heated to a temperature of about 100° C. to functionalize the rubber, then more monomer is added and the temperature is raised to start the polymerization reaction.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: October 18, 2011
    Assignee: Polimeri Europa S.p.A.
    Inventors: Aldo Longo, Leonardo Chiezzi
  • Patent number: 8013049
    Abstract: The present invention discloses a production method of core-shell type highly liquid absorbent resin particles comprising: (1) a first step in which a particle core portion is formed by suspension polymerizing an aqueous solution (e) containing (meth)acrylic acid, a crosslinking agent (c) and an anionic surfactant (d) in a hydrophobic organic solvent (a) containing a nonionic surfactant (b), and (2) a second step in which a shell portion that covers the particle core portion is formed by suspension polymerizing an aqueous solution (g) containing a water-soluble vinyl polymer (f), having carboxyl groups and polymerizable unsaturated double bonds and having a number average molecular weight of 500 to 10000, in a suspension obtained in the first step.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: September 6, 2011
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Hisakazu Tanaka, Kazuo Yamamura, Yoshiki Hasegawa, Masayuki Kamei
  • Patent number: 8008397
    Abstract: Provided are a rubber latex having a multi-layer structure, wherein an inner-layer rubber latex has a refractive index greater than that of an outer-layer rubber latex, a graft copolymer prepared from the rubber latex, a polyvinyl chloride (PVC) resin blend containing the graft copolymer, and a method of preparing the rubber latex. The PVC resin blend containing the graft copolymer including the rubber latex according to the present invention has improved color property and low-temperature impact strength than conventional PVC resins.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: August 30, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Yoon Ho Kim, Wonsuk Jang, Geon Soo Kim
  • Patent number: 7973104
    Abstract: The present invention relates to rubbery core/shell polymers that have improved heat and ultraviolet light resistance. These polymers can be blended with thermoplastics to make leathery compositions. The core/shell polymers of this invention have an inner core and an outer shell. The inner core is has repeat units which are derived from (a) butyl acrylate, (b) a member selected from the group consisting of methyl methacrylate, ethyl methacrylate, methyl acrylate, and ethyl acrylate, (c) optionally, an alkoxy ethyl acrylate or an alkoxy ethyl methacrylate, (d) acrylonitrile, (f) a cross-linking agent, and (g) a monomer containing reactive cure sites The outer core has repeat units which are derived from (d) acrylonitrile, (e) styrene, and (f) additional cross-linking agent. The outer core of these polymers is void of repeat units that are derived from methyl methacrylate.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: July 5, 2011
    Assignee: Eliokem S.A.S.
    Inventor: Hung Dang Ngoc
  • Patent number: 7943704
    Abstract: The present invention provides a process for preparing emulsion polymer particles of a hollow core/shell structure in the presence of a monomer plasticizer having a ceiling temperature less than 181° C. wherein a polymerization inhibitor or reducing agent is not added to the aqueous emulsion of the core shell particles during the neutralization and swelling stage. The obtained core shell particles are useful in paints, paper coatings, foams, and cosmetics.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: May 17, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Konrad Roschmann, Arno Tuchbreiter, Ekkehard Jahns, Joerg Leuninger, Bernhard Schuler, Oliver Wagner, Michaela Reinsch, Robert Wrazidlo
  • Patent number: 7893174
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprise reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 22, 2011
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay V. Tsarevsky
  • Patent number: 7875678
    Abstract: Compositions, processes, and methods are provided relating to styrenic polymers, including high impact polystyrene (HIPS), also referred to as rubber-modified polystyrene. In one aspect, a process is provided for making high impact polystyrenes, comprising the steps of combining a monovinylarene component, a monovinylarene-conjugated diene block copolymer, and a conjugated diene polymer. In another aspect, the feed components form an emulsion having a continuous phase and a dispersed phase. The continuous phase comprises at least a portion of the monovinylarene component and at least a portion of the conjugated diene polymer. The dispersed phase is suspended within the continuous phase, and comprises globules having at least a portion of the monovinylarene-conjugated diene block copolymer, a remaining portion of the monovinylarene component, and a remaining portion of the conjugated diene polymer.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: January 25, 2011
    Assignee: Chevron Phillips Cheimcal Company, LP
    Inventors: Michael J. Hanner, Chen-Youn Sue, Clifford C. Pettey, Carleton Stouffer, Paul M. Hunt, Ken E. Bowen
  • Patent number: 7858706
    Abstract: A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: December 28, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Daniel J. Arriola, Edmund M. Carnahan, Yunwa Wilson Cheung, David D. Devore, David D. Graf, Phillip D. Hustad, Roger L. Kuhlman, Colin Li Pi Shan, Benjamin C. Poon, Gordon R. Roof, James C. Stevens, Pamela J. Stirn, Timothy T. Wenzel
  • Patent number: 7816446
    Abstract: Modified scrap rubber particles, a method for forming the modified rubber particles and compositions including the modified rubber particles. The rubber particles are impregnated with at least one polymerizable monomer and polymerized to impregnate the rubber particles with a polymer. The impregnated polymer provides the modified rubber particles with improved properties which increase the potential uses for recycled scrap rubber. The modified rubber particles are useful in surface coatings, such as latex paint or powder coatings and can be used as a soil substitute.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 19, 2010
    Assignee: Illinois Institute of Technology
    Inventors: Nima Shahidi, Hamid Arastoopour, Fouad Teymour
  • Patent number: 7812092
    Abstract: This invention discloses a process for synthesizing a hairy polymer particle which comprises the steps of (1) polymerizing a vinyl aromatic monomer by emulsion polymerization in an aqueous medium to produce core particles, (2) recovering the core particles from the aqueous medium, (3) dispersing the core particles in an organic solvent, (4) adding an organo-lithium compound to the dried core particles in the organic solvent to produce the hairless core initiator, and (5) utilizing the hairless core initiator to initiate the anionic polymerization of a conjugated diolefin monomer in an organic solvent to produce a solution of the hairy polymer particles. The hairy polymer nanoparticles can then be recovered from the organic solvent. These hairy polymer particles are comprised of (1) a core which is comprised of a polymer of a vinyl aromatic monomer and (2) hairs which are polymer chains of a conjugated diolefin monomer, wherein the hairs are covalently bonded to the core.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: October 12, 2010
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Lei Zheng, Eric Sean Castner, Thierry Florent Edme Materne
  • Patent number: 7807763
    Abstract: A method for polymerizing conjugated diene monomer into polydienes, the method comprising: polymerizing conjugated diene monomer within a liquid-phase polymerization mixture that includes conjugated diene monomer, a lanthanide-based catalyst system, dicyclopentadiene or substituted dicyclopentadiene, and optionally organic solvent, with the proviso that the organic solvent, if present, is less than about 20% by weight based on the total weight of the polymerization mixture.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: October 5, 2010
    Assignee: Bridgestone Corporation
    Inventors: Mark W. Smale, Steven Luo, Kevin McCauley, Randhir Shetty
  • Patent number: 7795351
    Abstract: Adhesive composition for bonding and filling large assemblies, including a mixture of about 5 percent to about 75 percent by weight of a thermoplastic polymer, about 0.5 percent to about 35 percent by weight of a polyester resin or vinyl ester resin, and about 20 percent to about 80 percent by weight of an alkyl acrylate or methacrylate monomer.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: September 14, 2010
    Assignee: IPS Corporation
    Inventors: Samuel B. Osae, Paul C. Briggs
  • Patent number: 7732532
    Abstract: A multistage propylene-based polymer including the following components (A) and (B): (A) 5 to 20 wt % of a propylene homopolymer component or a copolymer component of propylene and an ?-olefin with 2 to 8 carbon atoms having an intrinsic viscosity [?] of more than 10 dL/g in tetralin at 135° C.; and (B) 80 to 95 wt % of a propylene homopolymer component or a copolymer component of propylene and an ?-olefin with 2 to 8 carbon atoms having an intrinsic viscosity [?] of 0.5 to 3.0 dL/g in tetralin at 135° C.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: June 8, 2010
    Assignee: Prime Polymer Co., Ltd.
    Inventors: Ryoichi Tsunori, Yasuhiko Otsuki, Tsutomu Onodera, Shohei Ikeda, Masayuki Shinohara
  • Patent number: 7713623
    Abstract: A process for producing a water-absorbent resin particle comprising subjecting a water-soluble ethylenically unsaturated monomer to a reverse phase suspension polymerization, characterized in that the process for producing a water-absorbent resin particle comprises the steps of (A) subjecting the water-soluble ethylenically unsaturated monomer to a first-step reverse phase suspension polymerization in a hydrocarbon-based solvent using a water-soluble radical polymerization initiator in the presence of a surfactant and/or a polymeric protective colloid, and optionally an internal crosslinking agent; (B) carrying out at least one step of the procedures of adding an aqueous solution of a water-soluble ethylenically unsaturated monomer containing a water-soluble radical polymerization initiator and optionally an internal crosslinking agent to a reaction mixture after the termination of the first-step reverse phase suspension polymerization in a state that the surfactant and/or the polymeric protective colloid is
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: May 11, 2010
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Kenya Matsuda, Yuji Kinpara, Tomoki Kawakita, Yasuhiro Nawata
  • Publication number: 20090281247
    Abstract: The present invention relates to a method of producing water-absorbent resin particles in which a median particle size of primary particles (d) and a median particle size of secondary particles (D) satisfy the relationship of the formula, 5d/3+150<D<5d+150, comprising the steps of: (1) subjecting a water-soluble ethylenically unsaturated monomer to a first-step reversed phase suspension polymerization reaction, in a petroleum hydrocarbon solvent, in the presence of a dispersion stabilizer, to give spherical primary particles having a median particle size (d) of from 30 to 130 ?m; (2) cooling the polymerization reaction solution, to precipitate the dispersion stabilizer; and (3) carrying out a second-step reversed phase suspension polymerization reaction by adding the water-soluble ethylenically unsaturated monomer for the second step to the polymerization reaction solution to agglomerate the primary particles, to give secondary particles having a median particle size (D) of from 200 to 500 ?m.
    Type: Application
    Filed: April 20, 2007
    Publication date: November 12, 2009
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Masayoshi Handa, Yasuhiro Nawata
  • Patent number: 7528194
    Abstract: The present invention relates to the modification of copolymers, in particular of grafted copolymers into comb copolymers. The modification comprises the steps (i) of controlled radical polymerization of a polymer or copolymer bearing a epoxide group at one end resulting from the initiation step, and (ii) a heating step of the polymer prepared under (i) and a copolymer bearing a functional group either in the backbone or attached to a side chain, which is able to react with the epxide group. The result is a comb copolymer with well controlled chain length of the grafted side arms expressed for example by a low polydispersity.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: May 5, 2009
    Assignee: Ciba Specialty Chemicals Corp.
    Inventors: Jochen Fink, Michael Roth, Rudolf Pfaendner