At Least One Group Ivb Metal Atom (ti, Zr, Hf) And At Least One Group Vb Meta L (v, Nb, Ta) Patents (Class 526/116)
-
Patent number: 11577494Abstract: Embodiments disclosed herein include multilayer films having a cling layer, a core layer, and a release layer, wherein the cling layer comprises a propylene interpolymer and the core layer comprises a core layer polyethylene composition.Type: GrantFiled: September 11, 2017Date of Patent: February 14, 2023Assignees: Dow Global Technologies LLC, DOW QUIMICA DE COLOMBIA SA, PBBPOLISUR SRLInventors: Marlos Giuntini De Oliveira, Teresa P. Karjala, Mustafa Bilgen, Jorge Caminero Gomes, Maximiliano Zanetti, Miguel A. Molano Niampira, Jorge Mario Rodriguez Camelo, Camila Do Valle, Guillermo A. Raimondi
-
Patent number: 11123726Abstract: Method of preparing a molecular catalyst from a mixture comprising a (C5-C7)alkane, a spray-dried alkylaluminoxane, and a molecular procatalyst. Molecular catalysts prepared by the method may be screened.Type: GrantFiled: September 26, 2017Date of Patent: September 21, 2021Assignee: UNIVATION TECHNOLOGIES, LLEInventors: Ian M. Munro, Roger L. Kuhlman, Angela I. Padilla-Acevedo
-
Patent number: 10865260Abstract: The present disclosure provides a supported hybrid catalyst which facilitates the preparation of polyolefins having improved bubble stability and exhibiting excellent processability for a blown film while maintaining high transparent haze and improved melt strength, and a method for preparing the same.Type: GrantFiled: January 25, 2018Date of Patent: December 15, 2020Inventors: Jin Young Lee, Sung Ho Park, Heon Yong Kwon, Hyun Jee Kwon, Sol Cho, Oh Joo Kwon, Ki Soo Lee, Dae Sik Hong
-
Patent number: 10344286Abstract: A microorganism including a foreign gene encoding a protein having a hydroxylase activity that reduces the concentration of CHnF4-n (n is an integer of 0 to 3) in a sample, as well as a composition including the microorganism or lysate thereof, and a method of reducing the concentration of CHnF4-n in a sample using the microorganism or lysate.Type: GrantFiled: May 13, 2016Date of Patent: July 9, 2019Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Seunghoon Song, Taeyong Kim, Jinhwan Park, Joonsong Park, Yukyung Jung, Hunsu Chu, Jiyoon Song, Kwangmyung Cho
-
Process for preparing spherical polymerization catalyst components for use in olefin polymerizations
Patent number: 9714302Abstract: A method of making a solid catalyst component for production of a polyolefin, including the steps of: a) dissolving a halide-containing magnesium compound in a mixture including alkylepoxide, an organic phosphorous compound, a carboxylic acid or anhydride, and a hydrocarbon solvent to form a homogenous solution; b) optionally treating the homogeneous solution with a halogenating agent; c) treating the homogenous solution with a first titanium halide compound in the presence of a surface modifier and optionally a first electron donor to form a solid precipitate, wherein, if present, the first electron donor is an ether; d) optionally treating the solid precipitate with a second electron donor; and e) treating the solid precipitate with a second titanium halide compound and optionally with a second electron donor to form the solid catalyst component.Type: GrantFiled: October 10, 2014Date of Patent: July 25, 2017Assignee: W. R. GRACE & CO.—CONN.Inventors: Kayo Umezawa-Vizzini, Vladimir P. Marin, Michael Spencer, Neil J. O'Reilly, Ahmed Hintolay -
Patent number: 9458258Abstract: The present invention relates to a process for the preparation of catalytic support and the supported bimetallic catalysts, used in the production of ethylene homopolymers and ethylene copolymers with ?-olefins, of high and ultra high molecular weight with broad molecular weight distribution, in gas or liquid phase polymerization processes, the latter being in slurry, bulk or suspension, and the products obtained from these processes.Type: GrantFiled: March 4, 2011Date of Patent: October 4, 2016Assignee: Braskem America, Inc.Inventors: Marcia Silva Lacerda Miranda, Fernanda Oliveira Vieira da Cunha
-
Patent number: 9403921Abstract: A system and method for polymerizing olefin in the presence of a chain transfer agent in a first reactor to form a first polyolefin, discharging from the first reactor a transfer slurry having the first polyolefin and the chain transfer agent, and processing the transfer slurry in a separator to remove chain transfer agent and to provide a fluff slurry having the first polyolefin and a lower content of chain transfer agent than in the transfer slurry. The system and method provide for feeding the fluff slurry to a second reactor, polymerizing olefin in the second reactor to form a second polyolefin, and discharging from the second reactor a slurry having the second polyolefin.Type: GrantFiled: August 18, 2015Date of Patent: August 2, 2016Assignee: Chevron Phillips Chemical Company, LPInventors: Maruti Bhandarkar, Elizabeth A. Benham, Rebecca A. Gonzales, Scott E. Kufeld, Joel A. Mutchler, Catherine M. Gill, Thanh T. Nguyen, Timothy O. Odi
-
Patent number: 9290591Abstract: Provided are methods of preparing polymers, such as polyisoprene, polybutadiene, polypiperylene, polycyclohexadiene, poly-?-farnesene, or poly-?-myrcene, using iron complexes. Also provided are novel iron complexes, pre-catalysts, intermediates, and ligands useful in the inventive polymerization system.Type: GrantFiled: February 8, 2012Date of Patent: March 22, 2016Assignee: President and Fellows of Harvard CollegeInventors: Tobias Ritter, Jean B. Raynaud, Jessica Yung Wu
-
Patent number: 9000113Abstract: New plastomer material for use in automotive parts such as bumpers is devised here, which is a novel polyethylene produced by a gas phase process.Type: GrantFiled: May 26, 2011Date of Patent: April 7, 2015Assignee: Basell Polyolefine GmbHInventors: Fabiana Fantinel, Shahram Mihan, Gerhardus Meier, Ulf Schueller, Maclovio Salinas Herrera, Giampaolo Pellegatti, Gerd Mannebach
-
Publication number: 20140288249Abstract: Described herein are methods comprising contacting one or more olefins with a catalyst system in a polymerization reactor at conditions sufficient to produce a polyolefin, wherein the catalyst system comprises a first metallocene catalyst compound comprising a first transition metal atom, two cyclopentadienyl ligands bound to the first transition metal atom, and two leaving groups bound to the first transition metal atom, wherein at least one leaving group is selected from the group consisting of a halo-phenoxy and a halo-alkoxy; wherein the first metallocene catalyst compound has a catalyst productivity that is at least 20% greater than a comparative metallocene catalyst compound used to produce the same polyolefin, wherein the comparative metallocene catalyst compound is the same as the first metallocene catalyst compound except neither leaving group is a halo-phenoxy or a halo-alkoxy.Type: ApplicationFiled: November 6, 2012Publication date: September 25, 2014Applicant: UNIVATION TECHNOLOGIES, LLCInventors: Lixin Sun, Francis C. Rix, Sun-Chueh Kao, Parul A. Khokhani, Phuong A. Cao
-
Patent number: 8841392Abstract: The invention relates to a catalyst system comprising I. a solid reaction product obtained by reaction of: (a) a hydrocarbon solution comprising (1) an organic oxygen containing magnesium compound (2) an organic oxygen containing titanium compound and (3) at least one compound containing zirconium and/or hafnium (b) a mixture comprising a metal compound having the formula MeRnX3-n wherein X is a halogenide, Me is a metal of Group III of Mendeleev's Periodic System of Chemical Elements, R is a hydrocarbon radical containing 1-10 carbon atoms and 0<n<3 and a silicon compound of formula RmSiCI4-m wherein 0<m?2 and R is a hydrocarbon radical containing 1-10 carbon atoms wherein the molar ratio of metal from (b): titanium from (a) is lower than 1:1 and II. an organo aluminum compound having the formula AIR3 in which R is a hydrocarbon radical containing 1-10 carbon atoms. The catalyst is applied during the polymerization of ethylene, preferably ultra high molecular weight polyethylene.Type: GrantFiled: August 13, 2010Date of Patent: September 23, 2014Assignee: Saudi Basic Industries CorporationInventors: Nicolaas Hendrika Friederichs, Raymond Gerlofsma
-
Publication number: 20140275429Abstract: A method for producing an olefin block polymer, the method includes: polymerizing olefin using a polymerization catalyst (X), a polymerization catalyst (Y), and an organometallic compound (C) having an atom of any of Groups 2, 12, and 13 of the periodic table of the elements, the organometallic compound (C) excluding an activating co-catalyst agent (B), wherein: the polymerization catalyst (X) is formed by bringing a transition metal compound (A-X) represented by a general formula (1-X) into contact with an activating co-catalyst agent (B); and the polymerization catalyst (Y) is formed by bringing a transition metal compound (A-Y) represented by a general formula (1-Y) into contact with the activating co-catalyst agent (B). [Chem.Type: ApplicationFiled: May 30, 2014Publication date: September 18, 2014Applicant: Sumitomo Chemical Company, LimitedInventors: Koji ISHIWATA, Kazuo TAKAOKI, Kazuyuki ITO
-
Patent number: 8802803Abstract: A novel polyethylene is devised which polyethylene is particularly advantageous for manufacturing rotomoulded articles.Type: GrantFiled: August 20, 2010Date of Patent: August 12, 2014Assignee: Basell Polyolefine GmbHInventors: Gerd Mannebach, Heinz Vogt, Fabiana Fantinel, Shahram Mihan, Peter Bisson, Cees Besems, Gerhardus Meier, Ulf Schüller, Barbara Gall, Iakovos Vittorias, Manfred Hecker, Michael Olmscheid
-
Publication number: 20140178614Abstract: Mono- and multi-layer films comprising a polyethylene composition which comprises the reaction product of ethylene and optionally one or more alpha olefin comonomers in the presence of a catalyst composition comprising a multi-metallic procatalyst via a solution polymerization process in at least one reactor; wherein said polyethylene composition is characterized by one or more of the following properties: a melt index, I2, measured according to ASTM D 1238 (2.16 kg@190° C.), from 0.1 to 5 g/10 min; density, measured according to ASTM D-792, from 0.910 to 0.935 g/cc; melt flow ratio, I10/I2, wherein I10 is measured according to ASTM D1238 (10 kg@190° C.), from 6 to 7.4; and molecular weight distribution, (Mw/Mn) from 2.5 to 3.5 are provided. Also provided are articles made from the mono- and/or multi-layer films.Type: ApplicationFiled: February 7, 2014Publication date: June 26, 2014Applicant: Dow Global Technologies LLCInventors: Mehmet Demirors, Teresa P. Karjala, Nilesh R. Savargaonkar, Rajen M. Patel, Sylvie Desjardins
-
Patent number: 8716423Abstract: A novel polyethylene is devised which polyethylene is particularly advantageous for manufacturing rotomoulded articles.Type: GrantFiled: August 20, 2010Date of Patent: May 6, 2014Assignee: Basell Polyolefine GmbHInventors: Gerd Mannebach, Heinz Vogt, Fabiana Fantinel, Shahram Mihan, Peter Bisson, Cees Besems, Gerhardus Meier, Ulf Schüller, Barbara Gall, Iakovos Vittorias, Manfred Hecker, Michael Olmscheid
-
MULTI-METALLIC ZIEGLER-NATTA PROCATALYSTS AND CATAYSTS PREPARED THEREFROM FOR OLEFIN POLYMERIZATIONS
Publication number: 20140080970Abstract: Novel catalyst compositions comprising three or more transition metals are effective in increasing catalyst efficiency, reducing polydispersity, and increasing uniformity in molecular weight distribution when used in olefin, and particularly, linear low density polyethylene (LLDPE), polymerizations. The resulting polymers may be used to form differentiated products including, for example, films that may exhibit improved optical and mechanical properties.Type: ApplicationFiled: May 23, 2012Publication date: March 20, 2014Applicant: Dow Global Technologies LLCInventors: Sylvie Desjardins, Mehmet Demirors, Ellen Donkers, Manvel Fontaine, Cristina Serrat -
Patent number: 8637421Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.Type: GrantFiled: April 24, 2013Date of Patent: January 28, 2014Assignee: Total Petrochemicals Research FeluyInventor: Abbas Razavi
-
Patent number: 8598284Abstract: An oxygen-bridged bimetallic complex of the general formula (I) Cp2R1M1-O-M2R22Cp??(I), wherein Cp is independently a cyclopentadienyl, indenyl or fluorenyl ligand which can be substituted, or a ligand isolobal to cyclopentadienyl, R1, R2 independently are halide, linear or branched or cyclic alkyl, aryl, amido, phosphido, alkoxy or aryloxy groups, which can be substituted, M1 is Zr, Ti or Hf, and M2 is Ti, Zn, Zr or a rare earth metal. The complex can be useful as a polymerization catalyst.Type: GrantFiled: September 10, 2010Date of Patent: December 3, 2013Assignee: Georg-August-Universitat GoettingenInventors: Herbert W Roesky, Prabhuodeyara M Gurubasavaraj
-
Patent number: 8507621Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. An improved method for preparing cyclopentadienyl complexes used to produce polyolefins is also provided.Type: GrantFiled: October 30, 2012Date of Patent: August 13, 2013Assignee: Chevron Phillips Chemical Company LPInventors: Kumundini C. Jayaratne, Michael D. Jensen, Qing Yang
-
Patent number: 8455386Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.Type: GrantFiled: March 28, 2012Date of Patent: June 4, 2013Assignee: Total Research & Technology FeluyInventor: Abbas Razavi
-
Patent number: 8426535Abstract: A process is disclosed for the preparation of zinc alkyl chain growth products via a catalyzed chain growth reaction of an alpha-olefin on a zinc alkyl, wherein the chain growth catalyst system employs a group 3-10 transition metal, or a group 3 main group metal, or a lanthanide or actinide complex, and optionally a suitable activator. The products can be further converted into alpha-olefins by olefin displacement of the grown alkyls as alpha-olefins from the zinc alkyl chain growth product, or into primary alcohols, by oxidation of the resulting zinc alkyl chain growth product to form alkoxide compounds, followed by hydrolysis of the alkoxides.Type: GrantFiled: June 23, 2010Date of Patent: April 23, 2013Assignee: Ineos Europe LimitedInventors: George Johan Peter Britovsek, Steven A. Cohen, Vernon Charles Gibson
-
Patent number: 8426537Abstract: A solid catalyst component for olefin polymerization is produced by causing (a) a solid component that includes magnesium, titanium, a halogen, and an electron donor, (b) an aminosilane compound shown by the following general formula (1), and (c) at least one organosilicon compound selected from an organosilicon compound shown by the following general formula (2-A) and an organosilicon compound shown by the following general formula (2-B) to come in contact with each other. A polymer having high stereoregularity is produced in high yield while achieving a high melt flow rate due to hydrogen by polymerizing an olefin in the presence of a catalyst that includes the solid catalyst component.Type: GrantFiled: February 26, 2010Date of Patent: April 23, 2013Assignee: Toho Titanium Co., Ltd.Inventor: Motoki Hosaka
-
Patent number: 8409681Abstract: A process is disclosed for producing a multi-modal linear low density polyethylene in at least two staged reactors connected in series, comprising (i) polymerizing in a first slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a first polyethylene fraction component (A); and (ii) polymerizing in a second gas or slurry phase stage ethylene monomers with a Ziegler-Natta polymerization catalyst system to obtain a second polyethylene fraction component (B). The Ziegler-Natta polymerization catalyst system comprises: 1) a solid procatalyst formed by contacting at least: a) a Mg-alcoholate complex of formula (I) b) an aluminum compound of formula (II); and c) a vanadium compound and a titanium compound having a molar ratio (V:Ti) from 10:90 to 90:10; and 2) one or more organometallic cocatalvsts of formula (III). The linear low density polyethylene shows an improved comonomer composition distribution Formulas (I), (II), and (III) are described herein.Type: GrantFiled: February 22, 2010Date of Patent: April 2, 2013Assignee: Borealis AGInventors: Thomas Garoff, Paivi Waldvogel, Kalle Kallio, Virginie Eriksson, Aki Aittola, Esa Kokko
-
Patent number: 8404833Abstract: Preparation and use of synthetic disaccharides useful for the preparation of synthetic heparinoids.Type: GrantFiled: December 14, 2011Date of Patent: March 26, 2013Assignee: Alchemia LimitedInventors: Joachim Seifert, Latika Singh, Tracie E. Ramsdale, Michael L. West, Nicholas B. Drinnan
-
Patent number: 8329833Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.Type: GrantFiled: February 20, 2012Date of Patent: December 11, 2012Assignee: Chevron Phillips Chemical Company LPInventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
-
Patent number: 8318872Abstract: A method of performing a polymerization reaction in a gas phase polymerization reactor to produce a bimodal polymer while controlling activity of a bimodal polymerization catalyst composition in the reactor by controlling concentration of at least one induced condensing agent (‘ICA’) in the reactor is provided. In some embodiments, the ICA is isopentane (or another hydrocarbon compound) and the bimodal catalyst composition includes a Group 15 and metal containing catalyst compound (or other HMW catalyst for catalyzing polymerization of a high molecular weight fraction of the product), and a metallocene catalyst compound (or other LMW catalyst for catalyzing polymerization of a low molecular weight fraction of the product).Type: GrantFiled: December 17, 2008Date of Patent: November 27, 2012Assignee: Univation Technologies, LLCInventors: Bruce J. Savatsky, John H. Oskam, Mark W. Blood, Mark B. Davis, Douglas H. Jackson, Timothy R. Lynn, Daniel P. Zilker, Jr.
-
Publication number: 20120190804Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.Type: ApplicationFiled: February 15, 2012Publication date: July 26, 2012Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: QING YANG, KUMUDINI C. JAYARATNE, MICHAEL D. JENSEN, MAX P. MCDANIEL, JOEL L. MARTIN, MATTHEW G. THORN, JERRY T. LANIER, TONY R. CRAIN
-
Publication number: 20120149857Abstract: The invention relates to a catalyst system comprising I. a solid reaction product obtained by reaction of: (a) a hydrocarbon solution comprising (1) an organic oxygen containing magnesium compound (2) an organic oxygen containing titanium compound and (3) at least one compound containing zirconium and/or hafnium (b) a mixture comprising a metal compound having the formula MeRnX3-n wherein X is a halogenide, Me is a metal of Group III of Mendeleev's Periodic System of Chemical Elements, R is a hydrocarbon radical containing 1-10 carbon atoms and 0<n<3 and a silicon compound of formula RmSiCI4-m N wherein 0<m<2 and R is a hydrocarbon radical containing 1-10 carbon atoms wherein the molar ratio of metal from (b): titanium from (a) is lower than 1:1 and II. an organo aluminum compound having the formula AIRS in which R is a hydrocarbon radical containing 1-10 carbon atoms. The catalyst is applied during the polymerisation of ethylene, preferably ultra high molecular weight polyethylene.Type: ApplicationFiled: August 13, 2010Publication date: June 14, 2012Applicant: SAUDI BASIC INDUSTRIES CORPORATIONInventors: Nicolaas Hendrika Friederichs, Raymond Gerlofsma
-
Polyolefins prepared from a metallocene and a new single site catalyst component in a single reactor
Patent number: 8178634Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.Type: GrantFiled: October 20, 2005Date of Patent: May 15, 2012Assignee: Total Petrochemicals Research FeluyInventor: Abbas Razavi -
Patent number: 8163853Abstract: This invention relates to new transition metal complexes for use in olefin polymerization and oligomerization. The active complex is a pyridine amide having a metallocenyl substituent as part of the ligand structure. The invention also relates to novel precursors for the ligand systems of such complexes obtained from metallocenyl-substituted pyridine compounds through sequences involving addition-condensation or lithium-halogen exchange (with subsequent metathesis) reactions.Type: GrantFiled: August 13, 2010Date of Patent: April 24, 2012Assignee: Exxonmobil Chemical Patents Inc.Inventor: John R. Hagadorn
-
Patent number: 8148588Abstract: The invention relates to a continuous process for preparing polyolefins having a bimodal or multimodal molar mass distribution in suspension in at least two reactors R1, R2.x, R3.y which are connected in series and in which different reaction conditions are set. In this process, the offgases A1, A2.x, A3.y, A4 and A5 leaving all the reactors connected in series are firstly collected, the collected offgases are then compressed in a compression stage 10, the compressed offgases are subsequently cooled and the cooled material is separated into a gaseous fraction and a liquid fraction. The separated fractions are then recirculated to the polymerization process at different points. The process of the invention allows the total conversion of the polymerization, based on monomer and comonomer used, to be increased to a surprising extent.Type: GrantFiled: January 25, 2005Date of Patent: April 3, 2012Assignee: Basell Polyolefine GmbHInventors: Joachim Berthold, Frank Peter Alt, Kaspar Evertz, Peter Kölle
-
Patent number: 8143183Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.Type: GrantFiled: November 10, 2010Date of Patent: March 27, 2012Assignee: Chevron Phillips Chemical Company LPInventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
-
Publication number: 20110319575Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.Type: ApplicationFiled: September 8, 2011Publication date: December 29, 2011Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy L. Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yáng, Matthew G. Thorn
-
Publication number: 20110263801Abstract: Multi-stage polymerization process for the production of a multi-modal linear low density polyethylene in at least two staged reactors connected in series comprising at least (i) polymerizing in a first slurry phase stage ethylene monomers and optionally one or more alpha-olefin comonomers, in the presence of a Ziegler-Natta polymerization catalyst system to obtain a first polyethylene fraction component (A) (ii) polymerizing in a second gas or slurry phase stage ethylene monomers and one or more alpha-olefine comonomers, in the presence of a Ziegler-Natta polymerization catalyst system to obtain a second polyethylene fraction component (B), whereby the Ziegler-Natta polymerization catalyst system comprises: 1) a solid procatalyst formed by contacting at least: a) a Mg-alcoholate complex of the formula (I): Mg(OR1)2-n(R1)n, wherein each R1 independently represents a C1-C20 hydrocarbyl group and 0<n<2 and may or may not be an integer; b) an aluminium compound of the formula (II) Al(R2)mX3-m, wherein eachType: ApplicationFiled: February 22, 2010Publication date: October 27, 2011Inventors: Thomas Garoff, Päivi Waldvogel, Kalle Kallio, Virginie Eriksson, Aki Aittola, Esa Kokko
-
Patent number: 8008403Abstract: A polyethylene which comprises ethylene homopolymers and/or copolymers of ethylene with 1-alkenes and has a molar mass distribution width Mw/Mn of from 5 to 30, a density of from 0.92 to 0.955 g/cm3, a weight average molar mass Mw of from 50000 g/mol to 500 000 g/mol and has from 0.01 to 20 branches/1000 carbon atoms and a z-average molar mass Mz of less than 1 million g/mol, a process for its preparation, catalysts suitable for its preparation and also films in which this polyethylene is present.Type: GrantFiled: April 25, 2005Date of Patent: August 30, 2011Assignee: Basell Polyolefine GmbHInventors: Jennifer Kipke, Shahram Mihan, Rainer Karer, Dieter Lilge
-
Patent number: 8003740Abstract: Method of preparing olefin polymers, which comprises the polymerization of at least one ?-olefin in the presence of a hybrid catalyst to produce a polymer comprising at least a higher molecular weight polymer component and a lower molecular weight polymer component in the presence of water in an amount of from 2 to 100 mol ppm and/or carbon dioxide in an amount of from 2 to 100 mol ppm, in each case based on the total reaction mixture, in order to alter the ratio of the higher molecular weight polymer component to the lower molecular weight polymer component. This enables the ratio of the higher molecular weight component to the lower molecular weight component to be controlled selectively.Type: GrantFiled: July 13, 2006Date of Patent: August 23, 2011Assignee: Basell Polyolefine GmbHInventors: Shahram Mihan, Rainer Karer, Harald Schmitz, Dieter Lilge
-
Publication number: 20110184132Abstract: A catalyst composition that includes a support material having an improved particle-size distribution is provided. Processes for producing polyolefin composition also are provided. Polymers and films also are provided. An example of a catalyst composition is a supported multi-transition-metal catalyst composition that includes: (a) at least two catalyst components selected from the group consisting of: a nonmetallocene catalyst component and a metallocene catalyst component; (b) a support material that has a D50 of less than about 30 microns and a particle size distribution having a D90/D10 ratio of less than about 6; and (c) an activator.Type: ApplicationFiled: April 4, 2011Publication date: July 28, 2011Applicant: UNIVATION TECHNOLOGIES, LLCInventors: Chi-I Kuo, Tae Hoon Kwalk, Dongming Li, Porter Clarke Shannon
-
Publication number: 20110183097Abstract: A polyethylene may be prepared using a mixture of a silica supported catalyst and a magnesium chloride supported catalyst. By changing the ratio of the two catalysts, the polyethylene produced may have a varying bulk density and shear response. The method allows for the tuning or targeting of properties to fit a specific application, such as a blow molding or vapor barrier film.Type: ApplicationFiled: April 8, 2011Publication date: July 28, 2011Applicant: FINA TECHNOLOGY, INC.Inventors: Vincent Barre, Kayo Vizzini, Steven D. Gray
-
Patent number: 7981992Abstract: Copolymers, especially multi-block copolymer containing therein two or more segments or blocks, are prepared by polymerizing propylene, 4-methyl-1-pentene, or another C4-8 ?-olefin in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers having increased incidence of regio-irregular branching compared to the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.Type: GrantFiled: January 30, 2006Date of Patent: July 19, 2011Assignee: Dow Global Technologies LLCInventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
-
Patent number: 7964681Abstract: A process is disclosed for the preparation of zinc alkyl chain growth products via a catalysed chain growth reaction of an alpha-olefin on a zinc alkyl, wherein the chain growth catalyst system employs a group 3-10 transition metal, or a group 3 main group metal, or a lanthanide or actinide complex, and optionally a suitable activator. The products can be further converted into alpha-olefins by olefin displacement of the grown alkyls as alpha-olefins from the zinc alkyl chain growth product, or into primary alcohols, by oxidation of the resulting zinc alkyl chain growth product to form alkoxide compounds, followed by hydrolysis of the alkoxides.Type: GrantFiled: January 31, 2007Date of Patent: June 21, 2011Assignee: Ineos Europe LimitedInventors: George Johan Peter Britovsek, Steven Alan Cohen, Vernon Charles Gibson
-
Publication number: 20110144290Abstract: The present invention provides polymerization catalyst compositions employing novel heterodinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins are also provided.Type: ApplicationFiled: February 24, 2011Publication date: June 16, 2011Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LPInventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin, Gary L. Glass
-
Control of polymer architecture and molecular weight distribution via multi-centered shuttling agent
Patent number: 7947787Abstract: A process for the polymerization of one or more addition polymerizable monomers and the resulting polymer composition, said process comprising contacting an addition polymerizable monomer or mixture of monomers in a reactor or reactor zone with a composition comprising at least one polymerization catalyst and a cocatalyst under polymerization conditions, characterized in that at least a portion of said polymerization is conducted in the presence of a multi-centered shuttling agent thereby causing the composition to have a bimodal molecular weight distribution.Type: GrantFiled: September 14, 2006Date of Patent: May 24, 2011Assignee: Dow Global Technologies LLCInventors: Edmund M. Carnahan, Phillip D. Hustad, Brian A. Jazdzewski, Roger L. Kuhlman, Timothy T. Wenzel -
Patent number: 7943711Abstract: In a process for producing an elastomer composition, ethylene, at least one alpha-olefin, and at least one diene is contacted with a catalyst system comprising at least two metallocene catalyst compounds and a non-coordinating anion activator wherein one of the metallocene catalyst compounds is an indenyl complex having the general formula: (In1R1m)R3(In2R2p)MXq, and at least one metallocene catalyst compound comprises a compound having the general formula: wherein M is a transition metal from Group 3, 4, or 5 of the Periodic Table of the Elements and other deatures defined herein.Type: GrantFiled: May 14, 2007Date of Patent: May 17, 2011Assignee: ExxonMobil Chemical Patents Inc.Inventor: Periagaram Srinivasan Ravishankar
-
Publication number: 20110092654Abstract: Single site reactor/catalyst continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation may be improved by treating the support with a metal salt. The activator and catalyst are then deposited on the treated support. The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.Type: ApplicationFiled: October 14, 2010Publication date: April 21, 2011Inventors: Xiaoliang Gao, Billy Gaspar Santos, Peter Phung Minh Hoang, Amy Marie Jones, Benjamin Milton Shaw, Ian Ronald Jobe
-
Patent number: 7919569Abstract: The present invention relates to a process for the polymerization of olefins, comprising the steps of introducing at least one olefin, at least one polymerization catalyst, at least one cocatalyst and at least one cocatalyst aid, and optionally a scavenger, into a polymerization reactor, and polymerizing the olefin, wherein the cocatalyst aid is a reaction product prepared separately prior to the introduction into the reactor by reacting at least one metal alkyl compound of group IIA or IIIA of the periodic system of elements and at least one compound (A) of the formula RmXR?n, wherein R is a branched, straight, or cyclic, substituted or unsubstituted, hydrocarbon group having 1 to 30 carbon atoms, R? is hydrogen or any functional group with at least one active hydrogen, X is at least one heteroatom selected from the group of O, N, P or S or a combination thereof, and wherein n and m are each at least 1 and are such that the formula has no net charge.Type: GrantFiled: May 12, 2006Date of Patent: April 5, 2011Assignee: Saudi Basic Industries CorporationInventors: Wei Xu, Vugar O. Aliyev, Sirajudeen Mohamed, Atieh Abu-Raqabah
-
Patent number: 7919639Abstract: The present invention provides polymerization catalyst compositions employing novel heterodinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins are also provided.Type: GrantFiled: June 23, 2009Date of Patent: April 5, 2011Assignee: Chevron Phillips Chemical Company LPInventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin, Gary L. Glass
-
Patent number: 7915192Abstract: A composition for use in forming a multi-block copolymer from a single polymerizable monomer, said copolymer containing therein two or more segments or blocks differing in branching index, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization catalyst, (B) a second olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, at least one of catalyst (A) or catalyst (B) being capable of forming a branched polymer by means of chain walking or reincorporation of in situ formed olefinic polymer chains, and (C) a chain shuttling agent.Type: GrantFiled: March 17, 2005Date of Patent: March 29, 2011Assignee: Dow Global Technologies LLCInventors: Daniel J. Arriola, David D. Devore, Edmund M. Carnahan, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
-
Patent number: 7897706Abstract: The present invention relates to a supported, treated catalyst system and its use in a process for polymerizing olefin(s). More particularly, it provides a supported, treated catalyst system produced by a process comprising the steps of: (a) forming a supported bimetallic catalyst system comprising a first catalyst component and a metallocene catalyst compound; and (b) contacting the supported bimetallic catalyst system of (a) with at least one methylalumoxane-activatable compound.Type: GrantFiled: June 27, 2008Date of Patent: March 1, 2011Assignee: Univation Technologies, LLCInventor: Sun-Chueh Kao
-
Patent number: 7888522Abstract: An oxygen-bridged bimetallic complex of the general formula (I) Cp2R1M1-O-M2R22Cp??(I), wherein Cp is independently a cyclopentadienyl, indenyl or fluorenyl ligand which can be substituted, or a ligand isolobal to cyclopentadienyl, R1, R2 independently are halide, linear or branched or cyclic alkyl, aryl, amido, phosphido, alkoxy or aryloxy groups, which can be substituted, M1 is Zr, Ti or Hf, and M2 is Ti, Zn, Zr or a rare earth metal. The complex can be useful as a polymerization catalyst.Type: GrantFiled: April 28, 2008Date of Patent: February 15, 2011Assignee: Georg-August-Universität Göttingen Stiftung Öffentlichen RechtsInventors: Herbert W. Roesky, Prabhuodeyara M. Gurubasavaraj
-
Patent number: 7875568Abstract: The present invention provides a method for supporting a nonmetallocene olefin polymerization catalyst, comprising the following steps: a carrier reacts with a chemical activator to obtain a modified carrier; a magnesium compound is dissolved in a tetrahydrofuran-alcohol mixed solvent to form a solution, then the modified carrier is added to the solution to perform a reaction, then filtered and washed, dried and suction dried to prepare a composite carrier; a nonmetallocene olefin polymerization catalyst is dissolved in a solvent, and then reacts with said composite carrier, then is washed and filtered, dried and suction dried, to prepare a supported nonmetallocene olefin polymerization catalyst. The present invention further relates to a supported nonmetallocene olefin polymerization catalyst as prepared by this method.Type: GrantFiled: October 21, 2005Date of Patent: January 25, 2011Assignee: Yangzi Petrochemical Company Co., Ltd.Inventors: Houliang Dai, Houping You, Chuanfeng Li, Xiaoli Yao, Lijin Zhou, Xiaoqiang Li, Yarning Wang, Zhonglin Ma, Jiye Bai