Contains Non-transition Elemental Metal, Hydride Thereof, Or Carbon To Non Transition Metal Atom Bond Patents (Class 526/114)
  • Patent number: 10604606
    Abstract: Catalyst systems and methods for making and using the same are described. A method includes selecting a catalyst blend using a blend polydispersity index (bPDI) map. The polydispersity map is generated by generating a number of polymers for at least two catalysts. Each polymer is generated at a different hydrogen to ethylene ratio. At least one catalyst generates a higher molecular weight polymer and another catalyst generates a lower molecular weight polymer. A molecular weight for each polymer is measured. The relationship between the molecular weight of the polymers generated by each of the catalysts and the ratio of hydrogen to ethylene is determined. A family of bPDI curves for polymers that would be made using a number of ratios of a blend of the at least two catalysts for each of a number of ratios of hydrogen to ethylene.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 31, 2020
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Ching-Tai Lue, Timothy M. Boller, Garth R. Giesbrecht, C. Jeff Harlan
  • Patent number: 10570221
    Abstract: The present invention provides a metallocene supported catalyst that can prepare a polyolefin having excellent transparency even when processed into a film, as well as excellent processibility and mechanical properties, with high catalytic activity, and a method for preparing a polyolefin using the same.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: February 25, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Young Suk You, Sung Ho Park, Ki Soo Lee, Heon Yong Kwon, Dae Sik Hong, Eun Young Shin, Hyun Jee Kwon, Jin Young Lee
  • Patent number: 10556972
    Abstract: A gas-phase process for the homopolymerization or copolymerization of olefins carried out in the presence of a catalyst system formed by a contacting, in a liquid hydrocarbon and in the presence of hydrogen, (a) a solid catalyst component comprising Ti, Mg, and Cl, and optionally an internal electron donor compound, (b) an aluminum alkyl compound and optionally (c) an external donor compound.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: February 11, 2020
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Pietro Baita, Massimo Covezzi, Maria Di Diego, Lorella Marturano, Antonio Mazzucco, Gabriele Mei, Roberta Pica
  • Patent number: 10450390
    Abstract: Provided are a novel metallocene compound, a metallocene-supported catalyst, and a method of preparing a polyolefin using the same. The metallocene-supported catalyst according to the present disclosure exhibits a high polymerization activity even when the metallocene compound is supported on a support, thereby showing an excellent activity and preparing a polyolefin having a high molecular weight.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: October 22, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Sung Min Lee, Bog Ki Hong, Kyung Jin Cho, Se Young Kim, Chang Woan Han, Ki Soo Lee, Eun Kyoung Song
  • Patent number: 10414887
    Abstract: A catalyst system including the reaction product of a fluorided support (such as a fluorided silica support) that preferably has not been calcined at a temperature of 400° C. or more, an activator and at least a first transition metal catalyst compound; methods of making such catalyst systems, polymerization processes using such catalyst systems and polymers made therefrom.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Xuan Ye, Matthew W. Holtcamp, Gregory S. Day, Matthew S. Bedoya, David F. Sanders, Laughlin G. McCullough
  • Patent number: 10385149
    Abstract: A copolymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an ?-olefin having 3 to 8 carbon atoms, wherein the copolymer has a melting point within a temperature range of 0 to 10° C. and has a fusion enthalpy of 5 J/g or more as measured on a differential scanning calorimeter under the following conditions. Conditions: (1) cooling from 200° C. to ?150° C. at a rate of 10° C./min; (2) retaining at ?150° C. for 1 minute; and (3) heating from ?150° C. to 200° C. at a rate of 20° C./min.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 20, 2019
    Assignee: JSR CORPORATION
    Inventors: Takuo Sone, Shouichi Matsumoto, Ayumi Watanabe, Ayumi Hara
  • Patent number: 10351645
    Abstract: A copolymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an ?-olefin having 3 to 8 carbon atoms, wherein the copolymer has a melting point within a temperature range of 0 to 10° C. and has a fusion enthalpy of 5 J/g or more as measured on a differential scanning calorimeter under the following conditions. Conditions: (1) cooling from 200° C. to ?150° C. at a rate of 10° C./min; (2) retaining at ?150° C. for 1 minute; and (3) heating from ?150° C. to 200° C. at a rate of 20° C./min.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: July 16, 2019
    Assignee: JSR CORPORATION
    Inventors: Takuo Sone, Shouichi Matsumoto, Ayumi Watanabe, Ayumi Hara
  • Patent number: 10253121
    Abstract: A system and method of producing polyethylene, including: polymerizing ethylene in presence of a catalyst system in a reactor to form polyethylene, wherein the catalyst system includes a first catalyst and a second catalyst; and adjusting reactor conditions and an amount of the second catalyst fed to the reactor to control melt index (MI), density, and melt flow ratio (MFR) of the polyethylene.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: April 9, 2019
    Assignee: Univation Technologies, LLC
    Inventors: Timothy M. Boller, Ching-Tai Lue, Francis C. Rix, Daniel P. Zilker, Jr., C. Jeff Harlan, James M. Farley, Fathi D. Hussein, Dongming Li, Steven A. Best
  • Patent number: 10189920
    Abstract: Provided are a hybrid supported catalyst system and a method of preparing a polyolefin using the same. The hybrid supported catalyst system according to the present invention may be used to perform oligomerization and copolymerization of olefin monomers in a single reactor at the same time with high efficiency without a separate process of preparing alpha-olefin. Therefore, costs for preparing or purchasing comonomers which are expensive raw materials may be reduced, thereby reducing the production cost of a final product.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: January 29, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Seung Mi Lee, Yong Ho Lee, Jin Young Park, Ki Soo Lee, Eun Ji Shin, Seok Pil Sa
  • Patent number: 10150825
    Abstract: Provided is a production method for an olefin-based polymer, including polymerizing an olefin raw material using (A) a transition metal compound, (B) a boron compound capable of forming an ion pair with the component (A), (C) a specific organoaluminum compound, and (D) a specific aluminoxane in presence of at least one or more kinds of (N) a nonpolymerizable unsaturated hydrocarbon in the olefin raw material or a polymerization solvent.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: December 11, 2018
    Assignee: IDEMITSU KOSAN CO., LTD.
    Inventors: Masayuki Nishida, Kanako Samejima
  • Patent number: 10035868
    Abstract: Continuity compositions are provided as are methods of their preparation. The compositions comprise metal carboxylate salts and fatty amines and find advantageous use in olefin polymerization processes.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: July 31, 2018
    Assignee: Univation Technologies, LLC
    Inventors: Richard B. Pannell, David M. Glowczwski, Chi-I Kuo, Timothy R. Lynn, Fathi David Hussein, Phuong A. Cao, Wesley R. Mariott, Michael D. Awe
  • Patent number: 9676885
    Abstract: Continuity compositions are provided as are methods of their preparation. The compositions comprise at least one metal carboxylate salt which is modified with at least one molten fatty amine. These compositions find advantageous use in olefin polymerization processes.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: June 13, 2017
    Assignee: Univation Technologies, LLC
    Inventors: Richard B. Pannell, David M. Glowczwski, Chi-I Kuo, Timothy R. Lynn, F. David Hussein, Phuong A. Cao, Wesley R. Mariott, Michael D. Awe
  • Patent number: 9657119
    Abstract: The present invention relates to a preparation method of a highly active supported metallocene catalyst which can prepare a polyolefin of high bulk density. More specifically, the present invention provides a method of preparing the supported metallocene catalyst in which one or more metallocene catalysts are loaded on the silica carrier of which the inside is penetrated by more cocatalyst than the prior art and the outside is attached with a substantial amount of the cocatalyst. The catalyst according to the present invention can prepare a polyolefin polymer with improved bulk density and efficiency while maintaining its highly active catalytic characteristic.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: May 23, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Seung Mi Lee, Yi Young Choi, Ki Soo Lee, Eun Kyoung Song, Heon Yong Kwon, Min Seok Cho, Dae Sik Hong, Hyun Jee Kwon, Yu Taek Sung, Dong Hoon Jeong
  • Patent number: 9475893
    Abstract: A supported catalyst system may include a titanated silica-containing catalyst support having at least 0.1 wt % of Ti and a specific surface area of from 150 m2/g to 800 m2/g. The Ti may be of a titanium compound of the general formula selected from RnTi(OR?)m, and (RO)nTi(OR?)m, wherein R and R? are the same or different and are selected from hydrocarbyl groups containing from 1 to 12 carbons or halogens, wherein n is 0 to 4, wherein m is 0 to 4, and wherein m+n equals 4. The supported catalyst system may include a catalyst activating agent and a metallocene. The supported catalyst system may be obtained by a process including titanating a silica-containing catalyst support with at least one vaporized titanium compound, and treating the titanated silica-containing catalyst support with a catalyst activating agent and a metallocene.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: October 25, 2016
    Assignee: Total Research & Technology Feluy
    Inventors: Christopher Willocq, Martine Slawinski, Aurélien Vantomme
  • Patent number: 9238763
    Abstract: The present invention is related to adhesive compositions comprising a polymer blend of at least two different propylene-based polymers and one or more tackifiers. The polymer blend has a melt viscosity of about 900 cP to about 19,000 cP. When subjected to Temperature Rising Elution Fractionation, the polymer blend exhibits a first fraction that is soluble at ?15° C. in xylene, the first fraction having an isotactic (mm) triad tacticity of about 70 mol % to about 90 mol %; and a second fraction that is insoluble or less soluble than the first fraction at ?15° C. in xylene, the second fraction having an isotactic (mm) triad tacticity of about 85 mol % to about 98 mol %. The tackifier has a softening point, as determined by ASTM E-28, of about 85 to about 135° C. and an aromaticity of about 2 to about 12 mol % aromatic protons.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: January 19, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ranjan Tripathy, Jennifer J. Austin, James N. Coffey, Yann Devorest, Jurgen J. Schroeyers, Joseph M. Delucia
  • Patent number: 9175105
    Abstract: Copolymer of ethylene and an alpha-olefin, having a density>0.930 g/cm3,melt index (g/10 min)>4, molecular weight distribution (MWD)>3.0, and FNCT>250 hours. The copolymer is suitable for use in rotomolding applications. The copolymer possesses improved impact strength, improved permeation resistance and improved environmental stress crack resistance and may suitably be prepared by use of metallocene catalysts.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: November 3, 2015
    Assignee: INEOS SALES (UK) LIMITED
    Inventor: Choon Kool Chai
  • Patent number: 9156927
    Abstract: A catalyst component for olefin polymerization comprising magnesium, titanium, halogen and electron donor, wherein the electron donor is selected from at least one of the diol diester compounds, when the diol diester comprised contains a certain amount of isomer with Fischer projection formula as shown in Formula (II), the activity and stereospecificity of the catalyst are greatly improved, especially in the production of polymers with high melt index, the isotactic index of the obtained polymers is improved substantially.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: October 13, 2015
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Mingzhi Gao, Changxiu Li, Haitao Liu, Xiaofan Zhang, Jianhua Chen, Jing Ma, Xiaoxia Cai, Xianzhong Li, Jixing Ma
  • Patent number: 9156922
    Abstract: A process for preparing a supported catalyst system comprising the following steps: a. titanating a silica-containing catalyst support having a specific surface area of from 150 m2/g to 800 m2/g, preferably 280 to 600 m2/g, with at least one vaporized titanium compound of the general formula selected from RnTi(OR?)m and (RO)nTi(OR?)m, wherein R and R? are the same or different and are selected from hydrocarbyl groups containing from 1 to 12 carbon and halogens, and wherein n is 0 to 4, m is 0 to 4 and m+n equals 4, to form a titanated silica-containing catalyst support having at least 0.1 wt % of Ti based on the weight of the titanated silica-containing catalyst support, b. treating the support with a catalyst activating agent, preferably an alumoxane. c. treating the titanated support with at least one metallocene during or after step (b).
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: October 13, 2015
    Assignee: TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Christopher Willocq, Martine Slawinski, Aurélien Vantomme
  • Patent number: 9127094
    Abstract: Olefin polymerization is carried out with a supported phosphinimine catalyst which has been treated with a long chain substituted amine compound.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: September 8, 2015
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Patrick Lam, Victoria Ker, Cliff Robert Baar, Charles Ashton Garret Carter, Yan Jiang, Martina Elissa Djatmiko
  • Patent number: 9090762
    Abstract: A polyethylene composition, in particular suitable for the preparation of films, and a process for preparing the same are described. The polyethylene composition of the invention comprises from 50 to 89% by weight of a first polyethylene component comprising at least one multimodal polyethylene including a plurality of ethylene polymer fractions having distinct molecular weights and comonomer contents, at least one of said plurality of ethylene polymer fractions being prepared by the use of a single site catalyst, and from 50 to 11% by weight of a second polyethylene component comprising a low or medium density polyethylene.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 28, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Jennifer Kipke, Shahram Mihan, Rainer Karer, Jörg Auffermann, Manfred Hecker, Paulus De Lange, Harald Schmitz
  • Publication number: 20150133612
    Abstract: Methods for controlling properties of an olefin polymer using an alcohol compound are disclosed. The MI and the HLMI of the polymer can be decreased, and the Mw and the Mz of the polymer can be increased, via the addition of the alcohol compound.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 14, 2015
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Albert P. Masino, Ted H. Cymbaluk, John D. Stewart
  • Patent number: 8999875
    Abstract: The invention refers to a process for preparing a supported catalyst system for the polymerization of olefins comprising at least one active catalyst component on a support, the process comprising A) impregnating a dry porous support component with a mixture comprising at least one precatalyst, at least one cocatalyst, and a first solvent, such that the total volume of the mixture is from 0.8 to 2.0 times the total pore volume of the support component, and B) thereafter, adding a second solvent in an amount of more than 1.5 times the total pore volume of the support component. The invention refers further to a catalyst system made by this process and the use of this catalyst system for polymerization or copolymerization of olefins.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Shahram Mihan, Rainer Karer, Volker Fraaije
  • Patent number: 8957168
    Abstract: Methods for controlling properties of an olefin polymer using an alcohol compound are disclosed. The MI and the HLMI of the polymer can be decreased, and the Mw and the Mz of the polymer can be increased, via the addition of the alcohol compound.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: February 17, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Albert P. Masino, Ted H. Cymbaluk, John D. Stewart
  • Patent number: 8940842
    Abstract: Methods for controlling the weight ratio of a higher molecular weight component to a lower molecular weight component of an olefin polymer are disclosed. This weight ratio can be increased as polymerization reaction temperature and/or catalyst system residence time are increased.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Tony R. Crain, Jerry T. Lanier, Jeff S. Fodor
  • Patent number: 8932975
    Abstract: A catalyst composition comprising (a) a first metallocene complex represented by the general formula: where M1 is Ti, Zr or Hf, X1 and X2 are each independently F, Cl, Br, I, methyl, benzyl, phenyl, H, BH4, a hydrocarbyloxide group having up to 20 carbon atoms, a hydrocarbylamino group having up to 20 carbon atoms, a trihydrocarbylsilyl group having up to 20 carbon atoms, OBR?2 wherein R? may be an alkyl group having up to 12 carbon atoms or an aryl group having up to 12 carbon atoms, and SO3R? wherein R? may be an alkyl group having up to 12 carbon atoms or an aryl group having up to 12 carbon atoms, and Cp1 and Cp2 are each independently a substituted or unsubstituted cyclopentadienyl group, or a substituted or unsubstituted indenyl group, where any substituent on Cp1 and Cp2 is H, a hydrocarbyl group having up to 18 carbon atoms or a hydrocarbylsilyl group having up to 18 carbon atoms, (b) a second metallocene complex, (c) a non-group 4 metallocene transition-metal complex, (d) an activator or activato
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: January 13, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Joel L. Martin, Errun Ding, David C. Rohlfing, Tony R. Crain
  • Patent number: 8916664
    Abstract: An ethylene oligomerization catalyst that oligmerizes ethylene to a series of ?-olefins and that has a Schulz-Flory constant of about 0.75 to 0.995 produces a stream of ?-olefins. This stream is then added to a vessel containing ethylene and a copolymerization catalyst that copolymerizes ethylene and ?-olefins. The resulting branched polyethylene often has good processing properties. The good processing is presumably due to the presence of “long chain branching”. Such polymers are useful for films and other packaging materials, and for molding resins for molding parts such as industrial, automotive or electrical parts.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 23, 2014
    Assignee: E I Du Pont de Nemours and Company
    Inventors: Joel David Citron, Alex Sergey Ionkin
  • Patent number: 8912285
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes use a catalyst system containing three metallocene components, often resulting in polymers having a reverse comonomer distribution and a broad and non-bimodal molecular weight distribution.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: December 16, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu, Yongwoo Inn
  • Patent number: 8889581
    Abstract: The present invention relates to a catalyst composition comprising a novel transition metal compound and a preparation method for polyolefin using the same. The catalyst composition of the present invention has high catalytic activity for polymerization of olefin-based monomers and enables it to control the fine-structure characteristics of the polyolefin, such as molecular weight distribution, in a wide range, thereby easily providing a polyolefin with desired properties.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Lotte Chemical Corporation
    Inventors: Bun-Yeoul Lee, Ji-Hae Park, Seung-Hyun Do, Young-Kook Kim, In-Sung Nam, Seung-Woong Yoon
  • Patent number: 8877672
    Abstract: A catalyst composition comprising (i) a metal salt complex prepared from an imine phenol compound characterized by Structure 1: wherein O and N represent oxygen and nitrogen respectively; R comprises a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; R2 and R3 are each independently hydrogen, a halogen, a hydrocarbyl group, or a substituted hydrocarbyl group; and Q is a donor group; and (ii) a metallocene complex.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: November 4, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Mark L. Hlavinka, Qing Yang
  • Patent number: 8865846
    Abstract: Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can use a dual catalyst system containing a zirconium or hafnium based metallocene compound and a titanium based half-metallocene compound containing an indenyl group.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: October 21, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Qing Yang, Youlu Yu, Lloyd W. Guatney, Jim B. Askew
  • Patent number: 8846835
    Abstract: A scavenger is used to indirectly control the ratio of polymer components in a polyethylene composition made using a combination catalyst comprising an inorganic chromium catalyst, and a group 4 single site catalyst.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 30, 2014
    Assignee: NOVA Chemicals (International) S.A.
    Inventors: Victoria Ker, Peter Phung Minh Hoang, Yan Jiang, Yves Lacombe
  • Patent number: 8835577
    Abstract: A polymerization catalyst system and polymerization processes using the catalyst systems are disclosed. The polymerization catalyst systems may include a) a first catalyst compound, and b) a second catalyst compound, wherein the first catalyst compound comprises a biphenyl phenol compound having essentially no hydrogen response.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: September 16, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Francis C. Rix, Sun-Chueh Kao, Rainer Kolb, Dongming Li, Cesar A. Garcia-Franco
  • Publication number: 20140235804
    Abstract: The present invention provides dual catalyst systems and polymerization processes employing these dual catalyst systems. The disclosed polymerization processes can produce olefin polymers at higher production rates, and these olefin polymers may have a higher molecular weight and/or a lower melt index.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Albert P. Masino, Rex E. Murray, Qing Yang, Steve J. Secora, Kumudini C. Jayaratne, William B. Beaulieu, Errun Ding, Gary L. Glass, Alan L. Solenberger, Ted H. Cymbaluk
  • Patent number: 8809462
    Abstract: An ethylene-?-olefin copolymer comprising monomer units derived from ethylene and monomer units derived from an ?-olefin having 3 to 20 carbon atoms, having a density (d) of 860 to 950 kg/m3, having a melt flow rate (MFR) of 0.01 to 100 g/10 min, having a bimodal molecular weight distribution, and having a single melting peak measured by a differential scanning calorimeter (DSC).
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 19, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshinobu Nozue, Naoko Ochi
  • Patent number: 8802584
    Abstract: A supported catalyst system comprising a phosphinimine ligand containing catalyst on a porous inorganic support treated with a metal salt has improved reactor continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation. The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: August 12, 2014
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Lee Douglas Henderson, Peter Phung Minh Hoang, Ian Ronald Jobe, Xiaoliang Gao
  • Patent number: 8785574
    Abstract: According to the invention, a single or plural kinds of bridged metallocene compounds having differing cyclopentadienyl-derived groups afford macromonomers that are a source of long-chain branches and simultaneously catalyze the repolymerization of the macromonomers into olefin polymers having a large number of long-chain branches, small neck-in in the T-die extrusion, small take-up surge and superior mechanical strength. The olefin polymerization catalysts and the polymerization processes can efficiently produce the olefin polymers.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: July 22, 2014
    Assignees: Mitsui Chemicals, Inc., Prime Polymer Co., Ltd.
    Inventors: Hideki Bando, Yasuo Satoh, Takashi Yukita, Yasuyuki Harada, Yoshiho Sonobe, Yasushi Tohi, Yusuke Sekioka, Masao Suzuki, Daisuke Tanifuji
  • Patent number: 8765886
    Abstract: The invention generally relates to chain shuttling agents (CSAs), a process of preparing the CSAs, a composition comprising a CSA and a catalyst, a process of preparing the composition, a processes of preparing polyolefins, end functional polyolefins, and telechelic polyolefins with the composition, and the polyolefins, end functional polyolefins, and telechelic polyolefins prepared by the processes.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: July 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Thomas P. Clark, Nahrain E. Kamber, Sara B. Klamo, Phillip D. Hustad, David R. Wilson
  • Patent number: 8759243
    Abstract: Embodiments of the invention generally include multi-component catalyst systems, polymerization processes and heterophasic copolymers formed by the processes. The multi-component catalyst system generally includes a first catalyst component selected from Ziegler-Natta catalyst systems including a diether internal electron donor and a metallocene catalyst represented by the general formula XCpACpBMAn, wherein X is a structural bridge, CpA and CpB each denote a cyclopentadienyl group or derivatives thereof, each being the same or different and which may be either substituted or unsubstituted, M is a transition metal and A is an alkyl, hydrocarbyl or halogen group and n is an integer between 0 and 4.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: June 24, 2014
    Assignee: Fina Technology, Inc.
    Inventors: Tim Coffy, Michel Daumerie, Kenneth Blackmon, William J. Gauthier, Jun Tian, Joseph L. Thorman
  • Patent number: 8754177
    Abstract: The invention relates to a polymerization process, the polymerization process includes contacting a cyclic bridged metallocene catalyst represented by the following formula: LA(A)LBMQn wherein A is a divalent group bound to each of LA and LB; each of LA and LB are bound to M, and each Q is bound to M; LA and LB are independently selected from the group consisting of cyclopentadienyl ligands and substituted cyclopentadienyl ligands; A is a divalent bridging group comprising a heterocyclic ring comprising from 3 to 6 carbon atoms and one silyl, thus forming a 4 to 7 member divalent ring; M is a Group 4, 5, or 6 transition metal; Q is independently a halogen, a hydride, or a hydrocarbyl radical having from 1 to 20 carbon atoms; wherein n is 1 or 2; with an activator, and optionally a support, to form an activated catalyst and, subsequently, contacting the activated catalyst with ethylene and optionally, at least one C3-C8 alpha olefin comonomer.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: June 17, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Donna J. Crowther, John F. Szul
  • Patent number: 8748546
    Abstract: The present invention provides dual catalyst systems and polymerization processes employing these dual catalyst systems. The disclosed polymerization processes can produce olefin polymers at higher production rates, and these olefin polymers may have a higher molecular weight and/or a lower melt index.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: June 10, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Albert P. Masino, Rex E. Murray, Qing Yang, Steve J. Secora, Kumudini C. Jayaratne, William B. Beaulieu, Errun Ding, Gary L. Glass, Alan L. Solenberger, Ted H. Cymbaluk
  • Patent number: 8735312
    Abstract: The present invention relates to a catalyst composition and a process for preparing an olefin polymer using the same. More specifically, the present invention relates to a novel catalyst composition comprising at least two types of catalysts and a process for preparing an olefin polymer having excellent heat resistance using the same. The present invention can provide an olefin polymer having excellent activity and high heat resistance, and also can control the values of density, heat resistance and melt index (MI) of the olefin polymer.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 27, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Kyung-Seop Noh, Hoon Chae, Cheon-Il Park, Won-Hee Kim, Sang-Jin Jeon, Eun-Jung Lee, Choong-Hoon Lee, Jong-Joo Ha
  • Patent number: 8716415
    Abstract: The present invention provides a method for preparing a supported metallocene catalyst, a supported metallocene catalyst prepared by the method, and a method for preparing a polyolefin using the supported metallocene catalyst. The supported metallocene catalyst according to the present invention contains catalyst components uniformly distributed deep into the whole porous carrier particles to secure a high catalytic activity and facilitates polymerization of polyolefins with high bulk density.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: May 6, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Eun-Kyoung Song, Yong-Ho Lee, Dae-Sik Hong
  • Patent number: 8716414
    Abstract: The present invention relates to a mixed metallocene catalyst composition including a first metallocene catalyst and a second metallocene catalyst, and a method for preparing a polyolefin using the catalyst composition. According to the catalyst composition and the preparation method, provided is a polyolefin having a wide molecular weight distribution and superior mechanical properties and processability.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: May 6, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jong-Joo Ha, Choong-Hoon Lee, Don-Ho Kum, Eun-Jung Lee, Beom-Doo Seo
  • Publication number: 20140107301
    Abstract: The present invention provides polymerization processes utilizing an ansa-metallocene catalyst system for the production of olefin polymers. Polymers produced from the polymerization processes have properties that vary based upon the presence or the absence of hydrogen and/or comonomer in the polymerization process.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Richard M. Buck, Qing Yang, Albert P. Masino, Christopher E. Wittner
  • Patent number: 8691715
    Abstract: The present invention provides a polymerization process utilizing a dual ansa-metallocene catalyst system. Polymers produced from the polymerization process are also provided, and these polymers have a reverse comonomer distribution, a non-bimodal molecular weight distribution, a ratio of Mw/Mn from about 3 to about 8, and a ratio of Mz/Mw from about 3 to about 6.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 8, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, William B. Beaulieu, Joel L. Martin, Tony R. Crain
  • Patent number: 8680218
    Abstract: Methods for controlling properties of an olefin polymer using an organozinc compound are disclosed. The HLMI/MI shear ratio of the polymer can be decreased and the Mz/Mw ratio of the polymer can be increased via the addition of the organozinc compound.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: March 25, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Errun Ding, Ted H. Cymbaluk, Tony R. Crain, Gary L. Glass
  • Patent number: 8674026
    Abstract: Disclosed are an ethylene polymerization process, a catalyst for use in the process, a production method employing the catalyst, and a product produced thereby. More specifically, disclosed is a process of producing an ethylene copolymer from ethylene and an alpha-olefin comonomer, in which the produced ethylene copolymer has a multimodal molecular weight distribution and excellent processability and physical properties, and thus can increase the value and productivity of products, including pipes and films. Particularly, the produced ethylene copolymer has a trimodal or higher molecular weight distribution or density distribution, and thus, when it is a linear low-density copolymer, it has an excellent effect of improving the impact strength of films, and when it is a medium-density ethylene copolymer, it can be produced into pipes, which have slow crack growth rate and can be used even at high temperature.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: March 18, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Choon Sik Shim, Hyeong Taek Ham, Sung Seok Chae, Dae Ho Shin, Seung Bum Kwon, Jong Sok Hahn, Myung Ahn Ok
  • Patent number: 8664140
    Abstract: Process for supportation of a catalyst system comprising at least two different active catalyst components on a support wherein in an earlier supportation step a first active catalyst component is applied to the support at a first predetermined temperature and in a later supportation step a second active catalyst component is applied to the support at a temperature which is at least 20° C. lower than the first predetermined temperature.
    Type: Grant
    Filed: December 12, 2009
    Date of Patent: March 4, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Harald Schmitz, Fabiana Fantinel, Jürgen Hilz, Shahram Mihan
  • Patent number: 8637421
    Abstract: The present invention discloses a catalyst system based on a metallocene catalyst component and a new single site catalyst component for the production in a single reactor of improved polyolefins having a bimodal molecular weight distribution.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: January 28, 2014
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Patent number: 8633286
    Abstract: A catalyst composition that includes a support material having an improved particle-size distribution is provided. Processes for producing polyolefin composition also are provided. Polymers and films also are provided. An example of a catalyst composition is a supported multi-transition-metal catalyst composition that includes: (a) at least two catalyst components selected from the group consisting of: a nonmetallocene catalyst component and a metallocene catalyst component; (b) a support material that has a D50 of less than about 30 microns and a particle size distribution having a D90/D10 ratio of less than about 6; and (c) an activator.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: January 21, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, Tae Hoon Kwalk, Dongming Li, Porter Clarke Shannon