At Least One Group Ivb Metal Atom (ti, Zr, Hf) And At Least One Group Vb Meta L (v, Nb, Ta) Patents (Class 526/116)
  • Publication number: 20110015356
    Abstract: An oxygen-bridged bimetallic complex of the general formula (I) Cp2R1M1-O-M2R22Cp??(I), wherein Cp is independently a cyclopentadienyl, indenyl or fluorenyl ligand which can be substituted, or a ligand isolobal to cyclopentadienyl, R1, R2 independently are halide, linear or branched or cyclic alkyl, aryl, amido, phosphido, alkoxy or aryloxy groups, which can be substituted, M1 is Zr, Ti or Hf, and M2 is Ti, Zn, Zr or a rare earth metal. The complex can be useful as a polymerization catalyst.
    Type: Application
    Filed: September 10, 2010
    Publication date: January 20, 2011
    Inventors: Herbert W. Roesky, Prabhuodeyara M. Gurubasavaraj
  • Patent number: 7863210
    Abstract: The present invention provides polymerization catalyst compositions employing novel dinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 4, 2011
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin
  • Publication number: 20100324236
    Abstract: The present invention provides polymerization catalyst compositions employing novel heterodinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins are also provided.
    Type: Application
    Filed: June 23, 2009
    Publication date: December 23, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: REX E. MURRAY, KUMUDINI C. JAYARATNE, QING YANG, JOEL L. MARTIN, GARY L. GLASS
  • Patent number: 7842763
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 30, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Publication number: 20100292418
    Abstract: A process for producing an olefin-based polymer, said process comprising polymerizing at least one monomer, in the gas phase, or in a slurry process, in the presence of at least the following components: A) at least one catalyst; B) at least one cocatalyst; C) a composition comprising at least one compound selected from formula (I), and/or at least one compound selected from formula (II): (R1CO2)2AlOH ??(I), (R2)xN(R3OH)y ??(II); wherein R1 is a hydrocarbon radical containing from 13 to 25 carbons; R2 is a hydrocarbon radical containing from 14 to 26 carbons; R3 is a hydrocarbon radical containing from 1 to 4 carbons; and x+y=3, and x has a value of 1 or 2.
    Type: Application
    Filed: December 19, 2008
    Publication date: November 18, 2010
    Applicant: Dow Global Technologies Inc.
    Inventors: Robert J. Jorgensen, Burkhard E. Wagner, Michael D. Turner
  • Patent number: 7816478
    Abstract: A thick film and process to prepare polyethylene useful for the film are disclosed. Ethylene is polymerized in two reaction zones with a C6-C10 ?-olefin in the presence of a catalyst system comprising an activator, a supported bridged zirconium complex, and a supported non-bridged zirconium complex. The process yields medium density to linear low density polyethylene having a melt index from 0.20 to 1.0 dg/min. Thick films from the polyethylene have a superior combination of high impact strength and high modulus.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 19, 2010
    Assignee: Equistar Chemicals, LP
    Inventors: Bradley P. Etherton, Stephen M. Imfeld, Mohan Sasthav
  • Patent number: 7807762
    Abstract: The present invention relates to a catalyst composition comprising a novel structure of a Group 4 transition metal compound, to a method for preparing the same, and to a method for preparing a polyolefin using the catalyst composition. The method for preparing a polyolefin according to the present invention can be used for preparing a polyolefin having a high molecular weight and high copolymerizability with a high activity even at a high polymerization temperature and for preparing a polyolefin having a double composition distribution.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: October 5, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Choong-Hoon Lee, Eun-Jung Lee, Seung-Whan Jung, Jung-A Lee, Bo-Ram Lee, Bun-Yeoul Lee
  • Patent number: 7776978
    Abstract: A process for producing a 1-butene polymer comprising the step of polymerizing 1-butene in the presence of a catalyst system obtainable by contacting: b) at least a metallocene compound of formula (Ia) in the meso or meso-like form: wherein M is an atom of a transition metal p is an integer from 0 to 3, X, same or different, is a hydrogen atom, a halogen atom, or a hydrocarbon group.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: August 17, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Maria Silvia Tonti, Luigi Resconi
  • Patent number: 7767771
    Abstract: A process is disclosed for the preparation of zinc alkyl chain growth products via a catalysed chain growth reaction of an alpha-olefin on a zinc alkyl, wherein the chain growth catalyst system employs a group 3-10 transition metal, or a group 3 main group metal, or a lanthanide or actinide complex, and optionally a suitable activator. The products can be further converted into alpha-olefins by olefin displacement of the grown alkyls as alpha-olefins from the zinc alkyl chain growth product, or into primary alcohols, by oxidation of the resulting zinc alkyl chain growth product to form alkoxide compounds, followed by hydrolysis of the alkoxides.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: August 3, 2010
    Assignee: Ineos Europe Limited
    Inventors: George Johan Peter Britovsek, Steven Alan Cohen, Vernon Charles Gibson
  • Publication number: 20100168349
    Abstract: A production process of an ?-olefin polymerization catalyst, comprising the steps of (1) reducing a titanium compound represented by a defined formula with an organomagnesium compound in the presence of an Si—O bond-containing silicon compound, (2) contacting the resultant solid catalyst component precursor, a halogenating compound and an internal electron donor with one another, and (3) contacting the resultant solid catalyst component, an organoaluminum compound and a Si-containing external electron donor represented by a defined formula with one another; and a production process of an olefin polymer using the above catalyst.
    Type: Application
    Filed: December 4, 2009
    Publication date: July 1, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Yasuki FUJIWARA
  • Patent number: 7741420
    Abstract: This invention relates to a process to polymerize olefins comprising contacting, under supercritical conditions, olefin monomers with a catalyst compound, an activator, optional comonomer, and optional hydrocarbon diluent or solvent.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: June 22, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Patent number: 7718566
    Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 15 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 18, 2010
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Zondra Dee Dixon
  • Patent number: 7671148
    Abstract: Process for producing a catalyst system, which comprises the following steps: A) provision of a mixture of at least two different organic transition metal compounds, at least one hydrolyzed organoaluminum compound and a solvent and impregnation of a dry porous support component with the mixture from step A), with the total volume of the mixture being from 0.6 to 1.5 times the total pore volume of the support component, and also catalyst systems obtainable in this way and their use for olefin polymerization.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: March 2, 2010
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Harald Schmitz
  • Patent number: 7662894
    Abstract: A catalyst composition for polymerizing olefins to polymers having bimodal molecular weight distribution comprises two transition metal-containing metallocene compounds, a magnesium compound, an alcohol, an aluminum containing co-catalyst and a polymeric support. The transition metal in one of the metallocene compounds is zirconium and the transition metal in the second metallocene compound is selected from the group consisting of titanium, vanadium and hafnium. Polyolefin polymers made using the catalyst composition have broad molecular weight distributions and are useful in film and blow molding applications.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: February 16, 2010
    Assignee: Saudi Bosic Industries Corporation
    Inventors: Orass Hamed, Akhlaq Moman, Atieh Abu-Raqabah
  • Patent number: 7638584
    Abstract: A process for polymerizing ethylene is disclosed. The process comprises polymerizing ethylene in the presence of a catalyst system which comprises a bridged indenoindolyl transition metal complex on a support material, an alkylalumoxane, a titanium tetralkoxide, and a branched alkyl aluminum compound. The process provides polyethylenes with low density from ethylene alone.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: December 29, 2009
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie, Ronald J. Clemons
  • Patent number: 7619047
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: November 17, 2009
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Qing Yang, Kumudini C. Jayaratne, Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Matthew G. Thorn, Jerry T. Lanier, Tony R. Crain
  • Patent number: 7601787
    Abstract: A process for polymerizing ethylene is disclosed. The polymerization is performed in the presence of a Ziegler-Natta catalyst system in two slurry reaction zones. Most of the polyethylene (70-95 wt. %) is produced in one of the zones, while a smaller fraction is produced in the other zone. The ratio of the weight average molecular weight of the smaller fraction to that of the larger fraction is greater than 8:1. The resulting polyethylene blend, which should have both high melt strength and high extrudate swell, will be useful for blow-molding applications.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: October 13, 2009
    Assignee: Equistar Chemicals, IP
    Inventors: Harilaos Mavridis, Manivakkam J. Shankernararayanan
  • Patent number: 7566677
    Abstract: A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: July 28, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Kersten Anne Terry, Michael D. Awe, John H. Oskam
  • Patent number: 7517940
    Abstract: Provided is catalyst composition including a transition metal complex precatalyst represented by Formula 1; a first cocatalyst represented by Formula 2 which is an alkylaluminum compound; and a second cocatalyst represented by Formula 3 which is a salt compound comprising a Bronsted acid cation and a noncoordinating, compatible anion. Here, R1, R2, R3, R4, E, Q1, Q2 and M are defined in the specification. Al(R6)3??Formula 2 Here, R6 is defined in the specification. [L-H]+[ZA4]???Formula 3 Here, L, [L-H]+, Z and A are defined in the specification. A catalyst composition including binuclear transition metal complexes, an alkylaluminum compound, and a salt compound including a Bronsted acid cation, and a noncoordinating, compatible anion, and a method of preparing the catalyst composition are provided.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: April 14, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Eunjung Lee, Choong Hoon Lee, Seungwhan Jung, Jung A Lee, Boram Lee
  • Publication number: 20090054606
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Application
    Filed: October 6, 2008
    Publication date: February 26, 2009
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Patent number: 7479529
    Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 14 to Group 16 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: January 20, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Zondra Dee Dixon
  • Publication number: 20080312390
    Abstract: A process for preparing polypropylene compositions having high impact strength at low temperatures is disclosed in which the reaction is catalyzed by Ziegler-Natta/metallocene hybrid catalysts by the in-situ polymerization of one or more olefins of the formula CH2?CHR, in which R is hydrogen or an alkyl, cycloalkyl or aryl group having from 1 to 10 carbon atoms, and more specifically comprises preparing an olefin polymer by Ziegler-Natta catalyst components of the titanium or vanadium/metallocene hybrid catalysts while the metallocene components are inactivated beforehand by catalyst inactivators; and polymerizing one or more olefins in the presence of the above olefin polymer, followed by a reactivation of the metallocene components.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 18, 2008
    Inventors: Jinyong Dong, Bochao Zhu, Zhichao Han, Changjun Zhang, Hui Niu, Shaoyi Wei, Jiguang Liu, Peihong Yao, Hongying Wang, Xiaojun Li, Dujin Wang, Pingsheng Zhang, Yajie Zhu, Junji Jia, Chunbo Huang
  • Publication number: 20080287617
    Abstract: This invention relates to a catalyst system comprising: an activator, such as an aluminum alkyl, alumoxane or combinations thereof, a first catalyst precursor prepared by contacting compound (I) represented by the formula: with an optionally substituted alkyl or optionally substituted aryl alcohol; wherein Z-O is a support material, where O is oxygen and Z is Si, Ti, Al, Sn, Fe, Ga, Zr, B, Mg or Cr; each X is, independently, nitrogen, oxygen phosphorous, or sulfur, provided that both X's are not each oxygen; each n is, independently, 1 or 2, provided the total of n=3; each R is, independently, an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group, provided at least one R group is an aryl or substituted aryl group; and a second catalyst precursor, wherein the second catalyst precursor is a metallocene compound. This invention also relates to the use of the above catalyst system to polymerize olefins and other monomers.
    Type: Application
    Filed: April 9, 2008
    Publication date: November 20, 2008
    Inventor: Matthew William Holtcamp
  • Patent number: 7439312
    Abstract: Branched crystalline polypropylene compositions and methods for the preparation of branched crystalline polypropylene compositions are provided. For example, described herein is a process of preparing a branched crystalline polypropylene composition that includes combining two or more different metallocene catalyst compounds with a polymerization medium that includes propylene, for a time sufficient to provide branched crystalline polypropylene that has from 0.0 wt % to 2.0 wt % ethylene and a heat of fusion of 70 J/g or more.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: October 21, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Palanisamy Arjunan, Thottinal A. Mathew, Patrick Brant, James C. Vizzini
  • Patent number: 7410926
    Abstract: The present invention relates to a supported, treated catalyst system and its use in a process for polymerizing olefin(s). More particularly, it provides a supported, treated catalyst system produced by a process comprising the steps of: (a) forming a supported bimetallic catalyst system comprising a first catalyst component and a metallocene catalyst compound; and (b) contacting the supported bimetallic catalyst system of (a) with at least one methylalumoxane-activatable compound.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: August 12, 2008
    Assignee: Univation Technologies, LLC
    Inventor: Sun-Chueh Kao
  • Patent number: 7365137
    Abstract: A multistep process for the polymerization of one or more olefins comprising a first step of polymerizing one or more of said olefins in the presence of a catalyst of the Ziegler-Natta type, a step wherein the polymer obtained in the first step is contacted with a catalyst system comprising an half-sandwich metallocene compound, followed by a second polymerization step. The amount of homo- or copolymer of olefins produced in the first polymerization step is between 10% to 90% by weight of the total amount of polymer produced.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: April 29, 2008
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Giovanni Baruzzi
  • Patent number: 7323524
    Abstract: The invention provides a process for polymerising olefins to branched polyolefins in the presence of a polymerisation catalyst and a cocatalyst, wherein the cocatalyst produces 1-octene in a selectivity greater than 30%.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: January 29, 2008
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Kevin Blann, Deon De Wet-Roos, John Thomas Dixon
  • Patent number: 7312283
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. Methods for preparing and using such catalysts to produce polyolefins are also provided. The compositions and methods disclosed herein provide ethylene polymers having a HLMI of from about 0.5 to about 25, a polymer density of from about 0.920 to about 0.965, and a polydispersity of from about 3.0 to about 30.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: December 25, 2007
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel L. Martin, Matthew G. Thorn, Max P. McDaniel, Michael D. Jensen, Qing Yang, Paul J. DesLauriers, Mark E. Kertok
  • Patent number: 7294681
    Abstract: This invention relates to a polymer of one or more C3 to C40 olefins, optionally one or more diolefins, and less than 15 mole % of ethylene, and polymerization processes for producing the same.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 13, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Patent number: 7294600
    Abstract: The present invention relates to a supported metallocene catalyst used for preparing polyolefin whose physical properties and molecular weight distribution can be easily controlled, a method for preparing the same, and a method for preparing polyolefin using the same, more particularly to a support metallocene catalyst wherein at least two kinds of metallocenic transition compounds are supported on a metal oxide such as silica, a method for preparing the same, and a method for preparing polyolefin using the same.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: November 13, 2007
    Assignee: LG Chem, Ltd.
    Inventors: Ki-Soo Lee, Hyo-Sun Lee, Eun-Jung Lee, Sang-Woo Lee, Choong-Hoon Lee
  • Patent number: 7276566
    Abstract: A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: October 2, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Kersten Anne Terry, Michael D. Awe, John H. Oskam
  • Patent number: 7229943
    Abstract: A polymerisation catalyst comprising (1) a transition metal compound of Formula A, and optionally (2) an activating quantity of a Lewis acid activator. Z is a five-membered heterocyclic group containing at least one carbon atom, at least one nitrogen atom and at least one other hetero atom selected from nitrogen, sulphur and oxygen, the remaining atoms in the ring being nitrogen or carbon; M is a metal from Group 3 to 11 of the Periodic Table or a lanthanide metal; E1 and E2 are divalent groups from (i) aliphatic hydrocarbon, (ii) alicyclic hydrocarbon, (iii) aromatic hydrocarbon, (iv) alkyl substituted aromatic hydrocarbon (v) heterocyclic groups and (vi) heterosubstituted derivatives of groups (i) to (v); D1 and D2 are donor groups; X is an anionic group, L is a neutral donor group; n=m=zero or 1; y and z are zero or integers. The catalysts are useful for polymerising or oligomerising 1-olefins.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: June 12, 2007
    Assignee: Innovene Europe Limited
    Inventors: Vernon Charles Gibson, Atanas Kostadinov Tomov
  • Patent number: 7223824
    Abstract: A multinuclear transition metal compound which has two or more catalytic active sites, and is useful in preparing the olefin polymer and copolymer, is disclosed. The multinuclear transition metal compound for olefin polymerization includes two or more metals, and at least one ligand having a cyclopentadienyl moiety, which connects the two or more metals. The preferable multinuclear transition metal catalyst for olefin polymerization includes the first transition metal, the first ? ligand having a cyclopentadienyl moiety, which is coordinated to the first transition metal, and the second transition metal to which the second ? ligand having a cyclopentadienyl moiety is coordinated, wherein the second transition metal is bonded to the first ?-ligand via a sigma (?) bond.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: May 29, 2007
    Assignee: Daelim Industrial Co., Ltd.
    Inventors: Sah-Mun Hong, Sung-Woo Kang, Young-Jae Jun, Jin-Sook Oh, Hyun-Ki Yoon
  • Patent number: 7223822
    Abstract: Disclosed is a process for producing branched polymers including at least 50 mol % C3–C40 olefins. The process may include: (1) feeding a first catalyst, an activator, and one or more C2–C40 olefins into a first reaction zone at a temperature of greater than 70° C. and a residence time of 120 minutes or less to produce a product; (2) feeding the product a second catalyst, and an activator into a second reaction zone at a temperature of greater than 70° C., and a residence time of 120 minutes or less. One of the catalysts should be chosen to produce a polymer having a weight average molecular weight of 100,000 or less and a crystallinity of 20% or less. The other catalyst should be chosen to producing a polymer having a weight average molecular weight of 100,000 or less and a crystallinity of 20% or more.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: May 29, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ramin Abhari, Charles Lewis Sims, Peijun Jiang, David Raymond Johnsrud, Jo Ann Marie Canich
  • Patent number: 7220805
    Abstract: There are provided (1) a process for producing a contact product, which comprises the step of contacting at least a phthalocyanine complex, a porphyrin complex, or their combination with a surfactant; (2) a catalyst component for addition polymerization, which comprises said contact product; (3) a process for producing a catalyst for addition polymerization, which comprises the step of contacting said catalyst component, a compound of a metal atom of Groups 3 to 12 or the lanthanide series, and an optional organoaluminum compound with one another; and (4) a process for producing an addition polymer, which comprises the step of polymerizing an addition polymerizable monomer in the presence of said catalyst.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: May 22, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Kazuo Takaoki
  • Patent number: 7199073
    Abstract: Catalyst compositions comprising a first metallocene compound, a second metallocene compound, a third metallocene compound, a chemically-treated solid oxide, and an organoaluminum compound are provided. Methods for preparing and using the catalyst and polyolefins are also provided. The compositions and methods disclosed herein provide ethylene polymers having decreased haze while minimizing impact on other properties, such as dart impact.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: April 3, 2007
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Joel L. Martin, Elizabeth A. Benham, Mark E. Kertok, Michael D. Jensen, Max P. McDaniel, Gil R. Hawley, Qing Yang, Matthew G. Thorn, Ashish M. Sukhadia
  • Patent number: 7199072
    Abstract: A process for preparing a mixed catalyst compound used in the polymerization of polyolefins to produce bimodal polyethylenes is disclosed. In an embodiment, a process of preparing the mixed catalyst system includes: mixing a first catalyst and an activator in a first liquid medium to form a first mixture, combining a support with the first mixture to form a first support slurry, drying the first support slurry in an extent sufficient to provide a dried supported first catalyst, mixing the dried supported first catalyst in a second liquid medium to form a second support slurry, and combining one or more additional catalysts with the second support slurry to provide the mixed catalyst compound.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: April 3, 2007
    Assignee: Univation Technologies, LLC
    Inventors: Donna Jean Crowther, John Francis Szul
  • Patent number: 7196147
    Abstract: Ethylene and optional comonomers are polymerized in the presence of an organozinc compound and a catalyst system to produce an ethylene polymer. The catalyst system comprises a bridged indenoindolyl Group 3-10 transition metal complex and an activator. The organozinc compound is used in an amount effective to increase the polymer bulk density compared with that observed in the absence of the organozinc compound. The organozinc compound can also narrow the particle size distribution of the polymer and the wt. % of polyolefin chunks produced. The operability of processes utilizing bridged indenoindolyl metal complexes is enhanced while maintaining desirably high polyolefin molecular weights.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: March 27, 2007
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Kenneth J. Klug
  • Patent number: 7148305
    Abstract: Olefin polymers having a comb-like structure with at least 0.3 long-chain branches per 1000 carbon atoms are disclosed. Some compositions have a melt strength of about 5 cN at 190° C., and when made into a film have a CD shrink of at least 20%. Some compositions described herein include a high molecular weight fraction and a low molecular weight fraction wherein the ratio of the molecular weight of the high molecular weight fraction to the molecular weight of the low molecular weight fraction is greater than about 1.3.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: December 12, 2006
    Assignee: Dow Global Technologies Inc.
    Inventors: James C. Stevens, Daniel D. VanderLende
  • Patent number: 7144964
    Abstract: A high-temperature solution process for polymerizing ethylene is disclosed. The polymerization is performed in the presence of a preassembled bimetallic Ziegler-Natta catalyst and an aluminum compound. Molecular modeling calculations predict that the bimetallic Ziegler-Natta catalyst will have good activity and improved stability versus traditional Ziegler-Natta catalysts. This makes the catalyst especially suitable for solution polymerization processes, which require a thermally robust catalyst.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: December 5, 2006
    Assignee: Equistar Chemicals, L.P.
    Inventors: Sandor Nagy, Mark P. Mack
  • Patent number: 7129302
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component, This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: October 31, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Patent number: 7087686
    Abstract: A process is disclosed for the preparation of zinc alkyl chain growth products via a catalysed chain growth reaction of an alpha-olefin on a zinc alkyl, wherein the chain growth catalyst system employs a group 3-10 transition metal, or a group 3 main group metal, or a lanthanide or actinide complex, and optionally a suitable activator. The products can be further converted into alpha-olefins by olefin displacement of the grown alkyls as alpha-olefins from the zinc alkyl chain growth product, or into primary alcohols, by oxidation of the resulting zinc alkyl chain growth product to form alkoxide compounds, followed by hydrolysis of the alkoxides.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: August 8, 2006
    Assignee: BP Chemicals Limited
    Inventors: George Johan Peter Britovsek, Steven Alan Cohen, Vernon Charles Gibson
  • Patent number: 7084216
    Abstract: The present invention relates to a process for homopolymerization of ethylene or copolymerization of ethylene with alpha-olefins by contacting ethylene or ethylene and alpha-olefin with a catalyst composition comprising: (a) a solid catalyst precursor comprising at least one vanadium compound, at least one magnesium compound and a polymeric material or a solid catalyst precursor comprising at least one vanadium compound, at least one further transition metal compound and/or at least one alcohol, at least one magnesium compound and a polymeric material; and (b) a cocatalyst comprising an aluminum compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 1, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Akhlaq A. Moman, Khalid Al-Bahily, Atieh Abu-Raqabah, John Ledford, Orass M. Hamed, Raju Raghavan, Sameh Rizkallah
  • Patent number: 7041617
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: May 9, 2006
    Assignee: Chevron Phillips Chemical Company, L.P.
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Patent number: 7037990
    Abstract: A method is provided for the polymerization of olefins substituted with a functional group using a transition metal catalyst that, by virtue of one or more stabilizing groups incorporated within the catalyst structure, “fixes” the stereoconfiguration of each olefinic monomer relative to the transition metal complex during each successive reaction in the polymerization process. The invention substantially reduces the likelihood of olefin rearrangement at the active site of the catalyst during polymerization. In one particular embodiment, the functional group is a polar, electron-donating group and the stabilizing group is a Lewis acid substituent; examples of polymers that can be prepared with such a system include poly(vinyl acetate), poly(vinyl alcohol), and poly(vinyl ethers). Novel complexes and catalyst systems useful in the polymerization method are also provided.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: May 2, 2006
    Assignee: Nippon Synthetic Chemical Company
    Inventors: Christopher D. Tagge, Robert B. Wilson, Jr., Hiroyuki Ono
  • Patent number: 7022781
    Abstract: A catalyst system composition comprising a chromium compound supported on a silica-titania support, wherein said catalyst system has been reduced with carbon monoxide, and a cocatalyst selected from the group consisting of i) alkyl lithium compounds, ii) dialkyl aluminum alkoxides in combination with at least one metal alkyl selected from the group consisting of alkyl zinc compounds, alkyl aluminum compounds, alkyl boron compounds, and mixtures thereof and iii) mixtures thereof can be used to polymerize olefins to produce a low density polymer with a decreased melt index and/or high load melt index. This catalyst system also can be used with a Ziegler-Natta catalyst system to polymerize olefins. Polymerization processes using these catalyst system compositions are also provided.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: April 4, 2006
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Joseph S. Shveima, Elizabeth A. Benham, Rolf L. Geerts, James L. Smith
  • Patent number: 7001962
    Abstract: A catalyst system comprises 1) a group 4 organometallic catalyst and 2) an activator comprising a solid zirconium acid component and a metal alkyl. The catalyst system is inexpensive and is highly active for the polymerization of olefins. Preferred organometallic catalysts contain a cyclopentadienyl ligand, a phosphinimine ligand and or a ketimide ligand.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: February 21, 2006
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Jessie Leighton, Matthew Gerald Kowalchuk, P. Scott Chisholm
  • Patent number: 6995219
    Abstract: The invention relates to a process for the preparation of a multimodal A-olefin polymer comprising polymerizing in a polymerization stage at least one A-olefin in the presence of a multisite catalyst and an adjuvant so as to produce a polymer having a relatively lower molecular weight component and a relatively higher molecular weight component, said adjuvant being selected from the group consisting of phosphines, phosphites, acetylenes, dienes, thiophenes and aluminium alkyls and said adjuvant being capable of altering the ratio of the fraction of higher molecular weight component to the fraction of the lower molecular weight component by at least 10%.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: February 7, 2006
    Assignee: Borealis Technology Oy
    Inventors: Arild Follestad, Richard Blom, Ivar Martin Dahl, Erling Rytter
  • Patent number: 6967184
    Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 14 to Group 16 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: November 22, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Zondra Dee Dixon
  • Patent number: 6964937
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component. This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: November 15, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong