Silicon Present In Organic Non-metal Compound Patents (Class 526/128)
  • Patent number: 4663403
    Abstract: A first reactant selected from arylsilanol, hydrocarbyl amine, hydrocarbylphosphine oxide, and hydrocarbyloxyphosphite is combined with a second reactant selected from halogenated transition metal compound and an organometal compound to form a product which is catalytically active for olefin polymerization after optionally first having been deposited on a particulate diluent.
    Type: Grant
    Filed: September 19, 1984
    Date of Patent: May 5, 1987
    Assignee: Phillips Petroleum Company
    Inventor: Max P. McDaniel
  • Patent number: 4659792
    Abstract: A process for producing a polymer or copolymer of 4-methyl-1-pentene, which comprises polymerizing 4-methyl-1-pentene or copolymerizing 4-methyl-1-pentene with up to about 20 mole % of an olefin having 2 to 20 carbon atoms in the presence of a catalyst comprising(A) a solid highly active titanium catalyst component composed of magnesium, titanium, halogen and a diester of a dicarboxylic acid,(B) an organoaluminum compound, and(C) an organosilicon compound represented by the following formulaR.sup.1.sub.3 Si(OR.sup.2)wherein each of R.sup.1 and R.sup.2 represents a hydrocarbon group with 1 to 5 carbon atoms, and the three R.sup.
    Type: Grant
    Filed: December 23, 1985
    Date of Patent: April 21, 1987
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Norio Kashiwa, Kunisuke Fukui
  • Patent number: 4657996
    Abstract: A process for producing polyethylene comprises polymerizing ethylene or copolymerizing ethylene with other .alpha.-olefin in the presence of a catalyst system obtained by bringing the following components (I) to (III) in contact with one another:(I) a reaction product (B) obtained by reacting an intermediate reaction product (A) obtained by a reaction of a hydropolysiloxane with a Grignard reagent, with at least one nucleophilic reagent selected from an aldehyde, a ketone and an alcohol,(II) a transition metal compound, and(III) at least one organic aluminum compound.
    Type: Grant
    Filed: February 27, 1986
    Date of Patent: April 14, 1987
    Assignee: Nissan Chemical Industries Ltd.
    Inventors: Takeshi Iwabuchi, Masao Kawahara, Sakae Kamiyama, Terumi Sato
  • Patent number: 4657883
    Abstract: An olefin polymerization catalyst component comprises an organoaluminum-reduced titanium trihalide on which a pretreatment amount of olefin polymer has been placed complexed with an alkyl aliphatic carboxylic acid ester containing 7 to 22 carbon atoms having a structure:R--CO.sub.2 R'wherein R' is an alkyl group containing 3 to about 8 carbon atoms and R is an alkyl group containing 3 to 17 carbon atoms, and treated with a Lewis acid, a chlorocarbon or an haloalkylchlorosilane.
    Type: Grant
    Filed: October 7, 1985
    Date of Patent: April 14, 1987
    Assignee: Amoco Corporation
    Inventors: Gregory G. Arzoumanidis, Sam S. Lee, Thomas E. Wolff, Linda Ornellas
  • Patent number: 4656151
    Abstract: An intermetallic compound is disclosed formed by(a) mixing a compound having the structural formula R(R')Mg where R and R' are the same or different and are hydrocarbyl of 1 to 10 carbon atoms with a compound having the structural formula R.sup.1.sub.m Si(OR.sup.2).sub.n X.sub.4-(m+n) where R.sup.1 and R.sup.
    Type: Grant
    Filed: July 15, 1985
    Date of Patent: April 7, 1987
    Assignee: National Distillers and Chemical Corporation
    Inventors: Javan Shelly, Louis J. Rekers
  • Patent number: 4643986
    Abstract: A process for preparing a catalyst for polymerization or copolymerization of ethylene, which comprises reacting a silicone compound (I) of the formula R.sup.4.sub.a H.sub.b SiO.sub.(4-a-b)/2 or R.sup.5.sub.n Si(OH).sub.4-n or a condensate thereof and an organomagnesium compound (II) of the formula (MgR.sup.6.sub.2).sub.p.(R.sup.6 MgX).sub.q to obtain a product (A), reacting the product (A) with a titanium compound (III) of the formula Ti(OR.sup.2).sub.m X.sub.4-m and a silicone halide compound (IV) of the formula R.sup.1.sub.L SiX.sub.4-L to obtain a product (B), reacting the product (B) with an organoaluminum halide compound (V) of the formula R.sup.3.sub.c AlX.sub.3-c to obtain a solid component (C), and bringing the solid component (C) in contact with an organoaluminum compound (VI) of the formula R.sub.d AlY.sub.3-d.
    Type: Grant
    Filed: April 3, 1986
    Date of Patent: February 17, 1987
    Assignee: Nissan Chemical Industries Ltd.
    Inventors: Hiroshi Morinaga, Sakae Kamiyama, Yuzo Sato
  • Patent number: 4634748
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, optionally an oxygen containing compound, titanium tetrachloride and a Group IIIa metal hydrocarbyl dihalide.
    Type: Grant
    Filed: September 18, 1985
    Date of Patent: January 6, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4634746
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a treated titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, a halogen, interhalogen compound or halosilane and titanium tetrachloride.
    Type: Grant
    Filed: September 18, 1985
    Date of Patent: January 6, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventors: Bradley P. Etherton, Malcolm J. Kaus
  • Patent number: 4632967
    Abstract: Nonhygroscopic, anionic pentacoordinate silicate, for example, ##STR1## soluble in commonly used organic solvents, and useful as a source of fluoride, cyanide or azide anion and as a catalyst or cocatalyst in polymerization systems, for example, the polymerization of methyl methacrylate.
    Type: Grant
    Filed: January 16, 1984
    Date of Patent: December 30, 1986
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: William B. Farnham
  • Patent number: 4629714
    Abstract: An intermetallic compound is disclosed. The compound is formed by reacting a first reaction product, the first reaction product being the product of reaction of a polymeric transition metal oxide alkoxide with a reducing metal having a higher oxidation potential than the transition metal, the polymeric transition metal oxide alkoxide being the product of the controlled partial hydrolysis of a transition metal alkoxide, with a first halide activator to produce a second reaction product. The second reaction product, in turn, is reacted with a second halide activator to form the intermetallic compound. The intermetallic compound is useful as a catalyst component in a catalyst system for the polymerization of alpha-olefins. The catalyst system includes, in addition to the intermetallic compound, a cocatalyst, an organic compound which includes an element selected from the group consisting of aluminum and boron.
    Type: Grant
    Filed: October 25, 1985
    Date of Patent: December 16, 1986
    Assignee: National Distillers and Chemical Corporation
    Inventor: Javan Shelly
  • Patent number: 4619981
    Abstract: Provided is an olefin polymerization catalyst comprising the combination of:[I] a solid catalyst component comprising a solid material obtained by contacting the following components (1) to (4) and a titanium compound (5) supported on said solid material:(1) a magnesium halide,(2) a compound represented by the general formula ##STR1## wherein R.sup.1, R.sup.2 and R.sup.3 are each a hydrocarbon radical having 1 to 24 carbon atoms, alkoxy, hydrogen, or halogen, R.sup.4 is a hydrocarbon radical having 1 to 24 carbon atoms and n is 1.ltoreq.n.ltoreq.30,(3) a compound represented by the general formula ##STR2## wherein R.sup.5 is hydrogen, halogen, or a hydrocarbon radical having 1 to 24 carbon atoms, R6 is a hydrocarbon radical having 1 to 24 carbon atoms, and r, p and q are integers selected from the following ranges: 1.ltoreq.r.ltoreq.3, 0.ltoreq.p<6, 0.ltoreq.q<6, provided 1.ltoreq.r+p+q<6, and(4) a compound represented by the general formula R.sup.7 -O-R.sup.8 wherein R.sup.7 and R.sup.
    Type: Grant
    Filed: August 12, 1985
    Date of Patent: October 28, 1986
    Assignee: Nippon Oil Company, Limited
    Inventors: Yoshio Tajima, Yoshiharu Iwasaki, Kiyoshi Kawabe, Wataru Uchida, Shoji Sugita, Kazuo Matsuura, Mituji Miyoshi
  • Patent number: 4618596
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting in the presence of a porous particulate material, a halogen, an organic magnesium compound, an oxygen-containing compound, titanium tetrachloride and treating the solids with an organometallic compound of a Group IIa, IIb or IIIa metal.
    Type: Grant
    Filed: July 26, 1985
    Date of Patent: October 21, 1986
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Agapios K. Agapiou, Michael E. Muhle, Myron B. Kurtzman
  • Patent number: 4607019
    Abstract: A vanadium containing catalyst component useful for polymerizing olefins to polyolefins having a high molecular weight and broad molecular weight distribution comprising polymerizing the olefins in the presence of a catalyst comprising (a) a vanadium containing catalyst component obtained by contacting an inert support material with an organoaluminum compound, a halogenating agent and a vanadium compound, and (b) an aluminum alkyl cocatalyst.
    Type: Grant
    Filed: December 12, 1984
    Date of Patent: August 19, 1986
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4595735
    Abstract: A catalyst component for the polymerization of olefins and particularly ethylene which is prepared by contacting a contact product of a magnesium alkoxide, a halogenated hydrocarbon, a halogenated silane with a titanium compound. The catalyst component in combination with a organoaluminium cocatalyst is useful for the polymerization of ethylene having a high melt index.
    Type: Grant
    Filed: September 23, 1985
    Date of Patent: June 17, 1986
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Takeshi Nomura, Kouji Maruyama, Hiroshi Ueno, Naomi Inaba
  • Patent number: 4585839
    Abstract: A catalyst for the polymerization of ethylene comprising at least one halogenated compound of a transition metal of Groups IV to VI of the Periodic System and at least one aromatic silicon compound having the formula .phi..sub.n Si(OH).sub.4-n, in which .phi. is a substituted or unsubstituted aromatic or polyaromatic ring compound having from 6 to 15 carbon atoms and 1.ltoreq.n.ltoreq.3, said silicon compound being present in a molar ratio of between 0.2 and 2 inclusive with respect to said transition metal. Polymerization of ethylene may be carried out under a pressure of between 200 to 2500 bars and at a temperature of between 170.degree. and 300.degree. C. with the catalyst of this invention.
    Type: Grant
    Filed: June 12, 1985
    Date of Patent: April 29, 1986
    Assignee: Societe Chimique des Charbonnages S.A.
    Inventors: Karel Bujadoux, Jean-Marie Neyer
  • Patent number: 4581426
    Abstract: Stereospecific polymerization of .alpha.-olefins is carried out with use of a catalyst comprising an activated titanium component obtained by treating copulverized products of magnesium halide, an organosilicon compound having at least one alkoxyl group and a halogenated hydrocarbon with titanium halide, an organoaluminum compound and an electron donative compound.
    Type: Grant
    Filed: April 12, 1985
    Date of Patent: April 8, 1986
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Tadashi Asanuma, Tetsunosuke Shiomura
  • Patent number: 4578440
    Abstract: A catalyst and method in which the catalyst is used with an aluminum cocatalyst in the polymerization and copolymerization of 1-olefins and is prepared by reacting a monofunctional organic silicon compound with silica, alumina, or the like followed by reacting the product of this reaction with a Group IIA organometallic compound or complex, then reacting this product with a halide or alkoxide of a metal of Group IVB or Group VB or mixtures thereof. If desired, the halide or alkoxide may be first reacted with the silicon compound reaction product before the reacting with the organometallic compound or complex.
    Type: Grant
    Filed: August 21, 1980
    Date of Patent: March 25, 1986
    Assignee: Norchem, Inc.
    Inventors: Thomas J. Pullukat, Raymond E. Hoff
  • Patent number: 4567243
    Abstract: A catalyst and method in which the catalyst is active with a cocatalyst in the polymerization and copolymerization of 1-olefins and is prepared by reacting together one or more of a specific class of organic silicon compounds, a porous support or a silicon compound treated porous support, a Group IIA organometallic compound, and a Group IVB, VB transition metal compound or mixture thereof.
    Type: Grant
    Filed: October 29, 1984
    Date of Patent: January 28, 1986
    Assignee: Chemplex Company
    Inventors: Thomas J. Pullukat, Yu-Tang Hwang, Robert A. Dombro
  • Patent number: 4565796
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, a halogen, interhalogen compound or halosilane and titanium tetrachloride.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: January 21, 1986
    Assignee: Exxon Research & Engineering Co.
    Inventor: Bradley P. Etherton
  • Patent number: 4565795
    Abstract: Polymerization of olefins in the presence of a catalyst system comprising a titanium-containing component A associated with a chemically treated silica-containing composition and a dihydrocarbylmagnesium compound and a cocatalyst component B comprising metal hydride or organometal compound derived from an element of Groups IA-IIIA of the Periodic Table.
    Type: Grant
    Filed: December 7, 1979
    Date of Patent: January 21, 1986
    Assignee: Phillips Petroleum Company
    Inventors: James N. Short, Max P. McDaniel
  • Patent number: 4565797
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a treated titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, a halogen, interhalogen compound or halosilane and titanium tetrachloride.
    Type: Grant
    Filed: August 3, 1984
    Date of Patent: January 21, 1986
    Assignee: Exxon Research & Engineering Co.
    Inventors: Bradley P. Etherton, Malcolm J. Kaus
  • Patent number: 4563437
    Abstract: A process for preparation of a component of a catalyst for polymerization of .alpha.-olefins is disclosed. The process comprises the steps of heating a titanium containing component during and/or after milling operation thereof. The titanium-containing catalyst component thus produced makes it possible to produce polymers having a high stereoregularity in high specific yield.
    Type: Grant
    Filed: August 30, 1984
    Date of Patent: January 7, 1986
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Yoshirou Shigetomi, Toshi Suzuki, Katsnori Fukui, Masuo Inoue, Motoaki Nomura, Katuyoshi Miyoshi
  • Patent number: 4558024
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, optionally an oxygen containing compound, titanium tetrachloride and a Group IIIa metal hydrocarbyl dihalide.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: December 10, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4558025
    Abstract: Ethylene and alpha-olefins are homopolymerized or copolymerized with another olefin monomer in the presence of a catalyst system comprising an organo metal cocatalyst and a titanium-containing catalyst component, said titanium-containing catalyst component being obtained by reacting together a porous particulate material, an organic magnesium compound, an oxygen containing compound, an acyl halide and titanium tetrachloride and a Group IIIa hydrocarbyl metal dihalide.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: December 10, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventor: Steven A. Best
  • Patent number: 4556648
    Abstract: A solid catalyst component for olefin polymerization which is produced by reacting (A) a silicon compound with (B) a compound of transition metal of Groups IVa, Va and VIa of the periodic table to obtain a reaction mixture (I), reacting the reaction mixture (I) with (C) an organomagnesium compound selected from organomagnesium compounds or hydrocarbon-soluble complexes between an organomagnesium compound and an organometal compound capable of allowing said organomagnesium compound to be soluble in hydrocarbons to obtain an intermediate product (II), and contacting the intermediate product (II) with (D) an organoaluminum halide compound represented by the general formula R.sub.c.sup.1 AlX.sub.3-c (wherein R.sup.1 is an organic group containing 1 to 20 carbon atoms, X is a halogen and c is a number defined by 0<c<3) and (E) an oxidative compound.
    Type: Grant
    Filed: August 10, 1984
    Date of Patent: December 3, 1985
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kiyoshi Kawai, Toshiyuki Kokubo, Yoshihiro Miyoshi
  • Patent number: 4552937
    Abstract: Novel silicon-aluminum compounds having at least two aryl-silicon bonds useful as cocatalysts for a catalyst system for polymerizing olefins.
    Type: Grant
    Filed: May 1, 1984
    Date of Patent: November 12, 1985
    Assignee: Phillips Petroleum Company
    Inventor: Max P. McDaniel
  • Patent number: 4552859
    Abstract: Isotactic index improvement is achieved for C.sub.3 and higher alpha olefins in systems containing a catalyst component comprising titanium supported on a magnesium halide support. The titanium component is formed by copulverizing the magnesium halide with one or more electron donors followed by treatment with liquid titanium halide. The improvement is achieved by using a dialkylaluminoxane component with the trialkylaluminum co-catalyst normally used. In slurry polymerizations, the isotactic index of the polymer has been improved.
    Type: Grant
    Filed: August 6, 1984
    Date of Patent: November 12, 1985
    Assignee: Stauffer Chemical Company
    Inventors: Elliot I. Band, Michael J. Breen
  • Patent number: 4550094
    Abstract: A solid catalyst component for olefin polymerization comprising a hydrocarbon-insoluble product(III) obtained by reacting(A) a silicon compound selected from the group consisting of(1) silicon compounds represented by the general formula R.sup.1.sub.a R.sup.2.sub.b R.sup.3.sub.c Si, wherein R.sup.1, R.sup.2 and R.sup.3 are each an alkyl, cycloalkyl, aralkyl, aryl, alkoxy, aryloxy, or hydroxyl group or a halogen or hydrogen atom; and a, b and c are numbers defined by the formulas 0.ltoreq.a,b,c,.ltoreq.
    Type: Grant
    Filed: February 9, 1983
    Date of Patent: October 29, 1985
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Katsumi Hanji, Kiyoshi Kawai
  • Patent number: 4544648
    Abstract: A catalyst component for the polymerization of olefins and particularly ethylene which is prepared by contacting a contact product of a magnesium alkoxide, a halogenated hydrocarbon, a halogenated silane with a titanium compound. The catalyst component in combination with a organoaluminum cocatalyst is useful for the polymerization of ethylene having a high melt index.
    Type: Grant
    Filed: May 29, 1984
    Date of Patent: October 1, 1985
    Assignee: Toa Nenryo Kogyo Kabushiki Kaisha
    Inventors: Takeshi Nomura, Kouji Maruyama, Hiroshi Ueno, Naomi Inaba
  • Patent number: 4540757
    Abstract: Polymerization of olefins in the presence of a catalyst system comprising titanium-containing component (A) associated with a milled blend of at least two different silica-containing materials having different MI (polymer melt index) potentials in which at least one of the silicas has been treated with a chemical agent which reacts with OH groups on the surface of the silica and a dihydrocarbylmagnesium compound, and a cocatalyst component (B) comprising an organoaluminum compound. Ethylene polymers having broad molecular weight distribution are obtained using the catalysts defined herein.
    Type: Grant
    Filed: October 1, 1984
    Date of Patent: September 10, 1985
    Assignee: Phillips Petroleum Company
    Inventor: Max P. McDaniel
  • Patent number: 4537938
    Abstract: Provided is an olefin-polymerization catalyst comprising the combination of the following components [I] and [II]:[I] a solid component obtained by intercontacting and reacting the following components (1) through (4):(1) a compound obtained by treating an oxide of an element of Groups II-IV in the Periodic Table with a compound represented by the general formula R.sup.1.sub.m Si(OR.sup.2).sub.n.sup.X.sub.4-m-n wherein R.sup.1 and R.sup.2 are each a hydrocarbon radical having 1 to 24 carbon atoms, a hydrocarbon radical containing oxygen, sulfur or nitrogen, or hydrogen, X is a halogen atom, m is 0.ltoreq.m<4 and n is 0.ltoreq.n.ltoreq.4, provided 0.ltoreq.m+n.ltoreq.4,(2) a reaction product obtained by the reaction of a magnesium halide and a compound represented by the general formula Me(OR.sup.3).sub.n.sup.X.sub.z-n wherein Me is an element of Groups I-VIII in the Periodic Table, with the limitation that silicon, titanium and vanadium are excluded, R.sup.
    Type: Grant
    Filed: March 21, 1984
    Date of Patent: August 27, 1985
    Assignee: Nippon Oil Company, Limited
    Inventors: Kazuo Matsuura, Yutaka Shikatani, Hirofumi Kamiishi, Nobuyuki Kuroda, Mituji Miyoshi
  • Patent number: 4537868
    Abstract: A catalyst for the polymerization of ethylene comprising at least one halogenated compound of a transition metal of Groups IV to VI of the Periodic System and at least one aromatic silicon compound having the formula .phi..sub.n Si(OH).sub.4-n, in which .phi. is a substituted or unsubstituted aromatic or polyaromatic ring compound having from 6 to 15 carbon atoms and 1.ltoreq.n.ltoreq.3, said silicon compound being present in a molar ratio of between 0.2 and 2 inclusive with respect to said transition metal. Polymerization of ethylene may be carried out under a pressure of between 200 to 2500 bars and at a temperature of between 170.degree. and 300.degree. C. with the catalyst of this invention.
    Type: Grant
    Filed: March 28, 1984
    Date of Patent: August 27, 1985
    Assignee: Societe Chimique des Charbonnages S.A.
    Inventors: Karel Bujadoux, Jean-Marie Neyer
  • Patent number: 4530912
    Abstract: A catalyst and method in which the catalyst is used in association with an aluminum cocatalyst in the polymerization and copolymerization of 1-olefins. The catalyst is prepared by reacting certain multifunctional organic silicon compounds (silanes) with silica, alumina or the like having surface hydroxyl groups, or a mixture thereof, in which the silicon compound reacts with these surface hydroxyl groups, followed by reacting the product of this with a halide or alkoxide of a Group IVB or VB transition metal such as titanium, vanadium, zirconium or mixtures of these and finally reacting this product with a Group IIA organometallic compound or compounds such as magnesium and calcium. The Group IIA organometallic compound can also be added before these transition metal compounds.
    Type: Grant
    Filed: June 4, 1981
    Date of Patent: July 23, 1985
    Assignee: Chemplex Company
    Inventors: Thomas J. Pullukat, Raymond E. Hoff
  • Patent number: 4530913
    Abstract: A catalyst and method in which the catalyst is used with an aluminum cocatalyst in the polymerization and copolymerization of 1-olefins and is prepared by reacting a monofunctional organic silicon compound with silica, alumina, or the like followed by reacting the product of this reaction with a Group IIA organometallic compound or complex, then reacting this product with a halide or alkoxide of a metal of Group IVB or Group VB or mixtures thereof. If desired, the halide or alkoxide may be first reacted with the silicon compound reaction product before the reacting with the organometallic compound or complex.
    Type: Grant
    Filed: January 16, 1980
    Date of Patent: July 23, 1985
    Assignee: Chemplex Company
    Inventors: Thomas J. Pullukat, Raymond E. Hoff
  • Patent number: 4528389
    Abstract: Pentacoordinate silyl enolate and the use thereof as an initiator, without a co-catalyst, in the polymerization of methacrylic monomers, such as methacrylate esters.
    Type: Grant
    Filed: June 12, 1984
    Date of Patent: July 9, 1985
    Assignee: E. I. Du Pont de Nemours And Company
    Inventor: William B. Farnham
  • Patent number: 4526941
    Abstract: A process for polymerizing an .alpha.-olefin which comprises contacting the .alpha.-olefin at a temperature of about 10.degree. C. to about 100.degree. C. with a catalyst comprising a slurry component (A) and an organometallic component (B), the component (A) being obtained, without intermediate or final solids separation, by reacting (1) a slurry reaction mixture produced by reacting one mol of (i) a hydrocarbon-soluble organomagnesium component of the general formulaM.alpha.Mg.beta.R.sub.p.sup.1 R.sub.q.sup.2 X.sub.r Y.sub.sor of the reaction product of M.alpha.Mg.beta.R.sub.p.sup.1 R.sub.q.sup.2 X.sub.r Y.sub.s with at least one electron donor selected from the group consisting of ethers, thioethers, ketones, aldehydes, carboxylic acids or derivatives thereof, alcohols, thioalcohols and amines, with 0.1 to 10 mols of (ii) a chlorosilane compound of the formulaH.sub.a SiCl.sub.b R.sub.4-(a+b).sup.10at a temperature of about 20.degree. C. to about 150.degree. C.
    Type: Grant
    Filed: September 23, 1983
    Date of Patent: July 2, 1985
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hisaya Sakurai, Tadashi Ikegami, Masayoshi Miya, Katsuhiko Takaya
  • Patent number: 4525557
    Abstract: A process for the polymerization of ethylene using as the catalyst a novel solid catalytic complex comprising Mg, Si, and either Ti or V. An organoaluminum co-catalyst is also employed. The novel catalytic complex is prepared by a process which comprises:(a) reacting a silanol having the formula ##STR1## where R, R' and R" can be the same or different and are selected from the group consisting of aliphatic hydrocarbons having from 2 to 12 carbon atoms or phenyl or substituted phenyl where such substituents have from one to three alkyl groups, and alkyl group having from one to four carbon atoms and where R" can additionally be selected from --OH, with a magnesium dialkyl where each alkyl group can have from one to 12 carbon atoms to form a first reaction product;(b) reacting said first reaction product with trichlorosilane to form a second reaction product; and(c) reacting said second reaction product with a metal compound having the formula:MeX.sub.
    Type: Grant
    Filed: February 27, 1984
    Date of Patent: June 25, 1985
    Assignee: Gulf Oil Corporation
    Inventors: William J. Heilman, Richard A. Kemp
  • Patent number: 4525552
    Abstract: A process for the homopolymerization or copolymerization of olefins is disclosed, which is carried out in the presence of a catalyst system comprising the combination of at least one organometallic compound with a transition metal compound supported on a solid carrier, said solid carrier being obtained by the reaction of (a) a magnesium halide, (b) a compound represented by the formula: Al(OR).sub.n X.sub.3-n, where R is a hydrocarbon residual group having 1 to 24 carbon atoms, X is a hydrogen atom, and n is 0<n.ltoreq.3, and (c) a compound represented by the formula: Si(OR').sub.m X.sub.4-m, where R' is a hydrocarbon residual group having 1 to 20 carbon atoms, X is a halogen atom, and m is 0.ltoreq.m.ltoreq.4. The resulting polymers are characterized by a large bulk density and a narrow range of molecular weight distribution.
    Type: Grant
    Filed: February 8, 1984
    Date of Patent: June 25, 1985
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Nobuyuki Kuroda, Toru Nakamura, Yutaka Shikatani, Kazuo Matsuura, Mitsuji Miyoshi
  • Patent number: 4525555
    Abstract: Provided is a process for preparing a polyolefin, characterized by polymerizing at least one .alpha.-olefin in the presence of a catalyst which comprises the combination of:[I] a solid catalyst component comprising a solid substance obtained by contacting the following components (1) through (3) with one another and (4) a titanium compound supported on said solid substance:(1) a magnesium halide,(2) a compound represented by the general formula ##STR1## wherein R.sup.1, R.sup.2 and R.sup.3 are each a hydrocarbon radical having 1 to 24 carbon atoms, an alkoxy group, hydrogen, or a halogen atom, R.sup.4 is a hydrocarbon radical having 1 to 24 carbon atoms and n is 1.ltoreq.n.ltoreq.30, and(3) at least one compound selected from the group consisting of:(a) compounds represented by the general formula ##STR2## wherein R is hydrogen, a halogen atom, or a hydrocarbon radical having 1 to 24 carbon atoms, and r, p and q are integers satisfying the following conditions:1.ltoreq.r.ltoreq.3, 0.ltoreq.p<6, 0.ltoreq.
    Type: Grant
    Filed: December 15, 1983
    Date of Patent: June 25, 1985
    Assignee: Nippon Oil Company, Limited
    Inventors: Yoshio Tajima, Mituji Miyoshi, Shoji Sugita, Kiyoshi Kawabe, Kazuo Matsuura
  • Patent number: 4524141
    Abstract: A catalyst and method in which the catalyst is active with a cocatalyst in the polymerization and copolymerization of 1-olefins and is prepared by reacting together one or more of a specific class of organic silicon compounds, a porous support or a silicon compound treated porous support, a Group IIA organometallic compound, and a Group IVB, VB transition metal compound or mixture thereof.
    Type: Grant
    Filed: April 21, 1983
    Date of Patent: June 18, 1985
    Assignee: Chemplex Company
    Inventors: Thomas J. Pullukat, Yu-Tang Hwang, Robert A. Dombro
  • Patent number: 4513095
    Abstract: Polymeric transition metal oxide alkoxides are converted by reaction with a reducing metal having a higher oxidation potential then the transition metal to a catalyst precursor, activated with a halide to form a catalyst component for olefin polymerization. Particularly exemplified are the reaction products of partially hydrolyzed titanium alkoxides with Mg.degree., used as a catalyst component for slurry polymerizations to produce polyethylene resins.
    Type: Grant
    Filed: April 7, 1983
    Date of Patent: April 23, 1985
    Assignee: National Distillers and Chemical Corporation
    Inventor: Anthony N. Speca
  • Patent number: 4507450
    Abstract: In a process for preparing polyolefin by polymerizing an olefin in the presence of a catalyst system combining an organo-aluminum compound and a titanium containing solid catalytic component prepared by mixing (a) a silanol compound (b) a Grignard reagent and (c) a titanium tetrahalide, the components (a) (b) or (c) or the reaction mixture of two or three components thereof is contacted with (d) one or more electron donor selected from the group consisting of amines, carboxylic acid amides, phosphines, phosphine oxides, phosphoric esters, phosphorous esters, phosphoric acid amides, ketones and carboxylic esters. The polyolefin having high isotactic index can be obtained.
    Type: Grant
    Filed: July 25, 1977
    Date of Patent: March 26, 1985
    Assignee: Mitsubishi Chemical Industries Limited
    Inventors: Genjiro Kakogawa, Masayoshi Hasuo, Yoshinori Suga, Kazuhisa Kojima
  • Patent number: 4507448
    Abstract: A process for the homopolymerization or copolymerization of olefins is disclosed, which is carried out in the presence of a catalyst system comprising the combination of at least one organometallic compound with a component resulting from the reaction of (a) a magnesium halide, (b) a compound represented by the formula, Al(OR).sub.n X.sub.3-n, where R is a hydrocarbon residual group having 1 to 20 carbon atoms, X is a hydrogen atom, and n is 0.ltoreq.n.ltoreq.3, (c) a compound represented by the formula, Si(OR').sub.m X.sub.4-m, where R' is a hydrocarbon residual group having 1 to 20 carbon atoms, X is a halogen atom, and m is 0.ltoreq.m.ltoreq.4, and (d) a titanium compound and/or a vanadium compound. The resulting polymers have a large bulk density and a narrow range of molecular weight distribution.
    Type: Grant
    Filed: May 4, 1982
    Date of Patent: March 26, 1985
    Assignee: Nippon Oil Co., Ltd.
    Inventors: Nobuyuki Kuroda, Toru Nakamura, Yutaka Shikatani, Kazuo Matsuura, Mitsuji Miyoshi
  • Patent number: 4497906
    Abstract: A solid catalyst component for olefin polymerization comprising a hydrocarbon-insoluble product (III) obtained by reacting(A) a silicon compound selected from the group consisting of(1) halogen-containing silicon compounds,(2) silicon compounds having a monomeric unit ##STR1## (wherein R.sup.1 and R.sup.2 may be the same or different, R.sup.1 represents an alkyl, aryl, cycloalkyl, alkoxy, or aryloxy group, or a hydrogen atom, and R.sup.2 represents an alkyl, aryl, or cycloalkyl group or a hydrogen or halogen atom) and a polymerization degree of 2 to 10,000,(3) silanols of the general formula R.sub.l.sup.3 Si(OH).sub.4-l (wherein R.sup.3 represents an alkyl, aryl, or cycloalkyl group or a hydrogen atom, and l is 1, 2 or 3) or condensation products thereof,(4) silicon compounds represented by the general formula R.sub.m.sup.4 Si(OR.sup.5).sub.4-m (wherein R.sup.4 represents n alkyl, aryl, cycloalkyl, or alkenyl group or a hydrogen atom, R.sup.
    Type: Grant
    Filed: February 10, 1983
    Date of Patent: February 5, 1985
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Katsumi Hanji, Kiyoshi Kawai
  • Patent number: 4490513
    Abstract: A process for producing a polymer or copolymer of an olefin containing at least 3 carbon atoms which comprises polymerizing or copolymerizing at least one olefin containing at least 3 carbon atoms, or copolymerizing the olefin with to 10 mole % of ethylene and/or a diolefin in the presence of a catalyst composed of (A) a magnesium-containing solid titanium catalyst component and (B) an organometallic compound of a metal of Groups I to III of the periodic table; wherein the solid titanium catalyst component (A) is a composition formed by contacting(i) a reaction product of an organic magnesium compound containing magnesium directly bonded to at least one carbon atom with an organic silicon-containing compound selected from the group consisting of organic silanols containing at least one hydroxyl group directly bonded to silicon and organopolysiloxanes,(ii) an organic acid ester, and(iii) a titanium compound.
    Type: Grant
    Filed: September 23, 1977
    Date of Patent: December 25, 1984
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Syuji Minami, Akinori Toyota, Norio Kashiwa
  • Patent number: 4485035
    Abstract: A process for producing .alpha.-olefin polymers of a high stereoregularity which comprises homopolymerizing an .alpha.-olefin having 3 to 10 carbon atoms or copolymerizing said .alpha.-olefin with other olefins of the same group or with ethylene using a catalyst system comprising three components (A), (B) and (C):(A) a solid catalyst produced by reaction among a solid product described below, a compound group (III) comprising at least one compound having an O--C.dbd.O linkage and at least one compound having at least one member selected from C--O--H, C--O--C, C--N, C.tbd.N, N--O--C, P--O--C, P--N--C, C--S--H, C--S--C, S--O--C and P--S--C linkages, and a titanium compound having at least one titanium-halogen linkage, said solid product being prduced by reacting an organo-magnesium compound with at least one of the following halogen-containing compounds (I) and (II),(I) a halogeno-silicon compound of the formula, R.sub.n SiX.sub.
    Type: Grant
    Filed: August 22, 1980
    Date of Patent: November 27, 1984
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Akinobu Shiga, Yoshiharu Fukui, Toshio Sasaki, Masahisa Okawa, Hideaki Matsuura
  • Patent number: 4478988
    Abstract: A catalyst and method in which the catalyst is used in association with an aluminum cocatalyst in the polymerization and copolymerization of 1-olefins. The catalyst is prepared by reacting certain organic silicon compounds with silica, alumina or the like having surface hydroxyl groups, or a mixture thereof, in which the silicon compound reacts with these surface hydroxyl groups, followed by reacting the product of this with an organomagnesium compound and further reacting this product with an alcohol or reacting the product with an alcohol and then with an organomagnesium compound and then with a halide or alkoxide of titanium, vanadium, zirconium or mixtures of these.
    Type: Grant
    Filed: May 24, 1982
    Date of Patent: October 23, 1984
    Assignee: Chemplex Company
    Inventors: Thomas J. Pullukat, Raymond E. Hoff
  • Patent number: 4477586
    Abstract: A first reactant selected from arylsilanol, hydrocarbyl amine, hydrocarbylphosphine oxide, and hydrocarbyloxyphosphite is combined with a second reactant selected from halogenated transition metal compound and an organometal compound to form a product which is catalytically active for olefin polymerization after optionally first having been deposited on a particulate diluent.
    Type: Grant
    Filed: February 4, 1983
    Date of Patent: October 16, 1984
    Assignee: Phillips Petroleum Company
    Inventor: Max P. McDaniel
  • Patent number: 4468477
    Abstract: A catalyst component is a transition metal composition which is obtained by reacting together an inert particulate material, an organic magnesium compound, a halogen-containing compound such as carbon tetrachloride or silicon tetrachloride and a specified transition metal compound. The catalyst component obtained can be used, together with an organic metal compound, to give an olefin polymerization catalyst. The catalyst can be used to effect the polymerization of olefin monomers, for example, the copolymerization of ethylene with an alpha-olefin monomer such as butene-1 in a fluidized bed reactor.
    Type: Grant
    Filed: July 1, 1980
    Date of Patent: August 28, 1984
    Assignee: Imperial Chemical Industries PLC
    Inventors: Anthony D. Caunt, Paul D. Gavens, John McMeeking
  • Patent number: 4464518
    Abstract: Polymerization of ethylene or copolymerization of ethylene with other .alpha.-olefin is carried out in the presence of a specific catalyst system. The catalyst system is obtained by preparing a reaction product (A) of an organic aluminum compound (I) represented by the formula AlR.sub.n.sup.1 X.sub.3-n where R.sup.
    Type: Grant
    Filed: June 4, 1982
    Date of Patent: August 7, 1984
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Takeshi Iwabuchi, Hiroshi Morinaga, Masao Kawahara, Sakae Kamiyama, Terumi Sato, Muneto Yokota