Transition Metal Compound Contains P, S, Or N Atom Patents (Class 526/161)
  • Patent number: 7001863
    Abstract: Novel catalyst monoamide precursor compositions and the corresponding single site-like catalysts for olefin polymerization.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: February 21, 2006
    Assignee: Univation Technologies, LLC
    Inventor: Rex Eugene Murray
  • Patent number: 6998451
    Abstract: A process for making polyolefins is disclosed. The process comprises polymerizing an olefin in the presence of an activator, an organometallic complex, and an aluminum phosphate support. The complex comprises a Group 3 to 10 transition metal and an indenoindolyl ligand that is bonded to the transition metal. The use of the aluminum phosphate support in combination with the indenoindolyl complex provides an unexpected boost in catalyst activity when compared with other common supports. When a combination of olefins is used, good comonomer incorporation is obtained.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: February 14, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Karen Neal-Hawkins
  • Patent number: 6998363
    Abstract: An olefin polymerization catalyst system is prepared from a catalyst of formula I or II: R1–R7 and R1–R12 in formulae I and II, respectively, are each independently —H, -halo, —NO2, —CN, —(C1–C30)hydrocarbyl, —O(C1–C30)hydrocarbyl, —N((C1–C30)hydrocarbyl)2, —Si((C1–C30)hydrocarbyl)3, —(C1–C30)heterohydrocarbyl, -aryl, or -heteroaryl, each being unsubstituted or substituted with one or more —R8 and —R12 groups, respectively. Two R1–R7 can be joined to form a cyclic group. R8 in formula I is -halo, —(C1–C30)hydrocarbyl, —O(C1–C30)hydrocarbyl, —NO2, —CN, —Si((C1–C30)hydrocarbyl)3, —N((C1–C30)hydrocarbyl)2, —(C1–C30)heterohydrocarbyl, -aryl, or -heteroaryl. T in formula I is —CR9R10— wherein R9 and R10 are defined as for R1 above. R12 is independently -halo, —NO2, —CN, —(C1–C30)hydrocarbyl, —O(C1–C30)hydrocarbyl, —N((C1–C30)hydrocarbyl)2, —Si((C1–C30)hydrocarbyl)3, —(C1–C30)heterohydrocarbyl, -aryl, or -heteroaryl. E, M, m, X, Y, and n in formulae I and II are defined herein.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: February 14, 2006
    Assignee: The University of Hong Kong
    Inventors: Michael Chi-Wang Chan, Chi-Fai Kui
  • Patent number: 6995220
    Abstract: A process for polymerizing ethylene is disclosed. The ethylene is polymerized with a catalyst system which comprises an activator and an indeno[2,1-b]indolyl Group 4-6 transition metal complex having open architecture. The process gives polyethylene having a broad molecular weight distribution for improved processability.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: February 7, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Gregory G. Hlatky
  • Patent number: 6995216
    Abstract: A dual olefin polymerization process is disclosed. The process uses a bridged indenoindolyl ligand-containing Group 4 transition metal complex and an activator. It is carried out in multiple stages or in multiple reactors. The same complex and the same activator are used in all stages or reactors. Different polyolefins are made in different stages or reactors by varying the monomer compositions, hydrogen concentrations, or both. The process of the invention produces polyolefins which have broad molecular weight distributions, composition distributions, or both.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: February 7, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Linda N. Winslow, Sandor Nagy
  • Patent number: 6995218
    Abstract: The new metallocene catalysts according to the present invention are prepared by reacting a metallocene compound with a compound having at least two functional groups. The metallocene compound is a transition metal compound which a transition metal is coordinated with a main ligand such as cycloalkanedienyl group and an ancillary ligand. The functional groups of the compound having at least two functional groups are selected from the group consisting of a hydroxy group, a thiol group, a primary amine group, a secondary amine group, etc. The metallocene catalysts according to the present invention have a structure which an ancillary ligand of a metallocene compound is bonded with functional groups. A structure of the metallocene catalysts can be varied according to the metallocene compounds, the compound having at least two functional groups, and the molar ratio of each reactant. The metallocene catalyst is employed with a co-catalyst for styrene and olefin polymerization.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: February 7, 2006
    Assignee: Samsung General Chemicals Co. Ltd.
    Inventors: Yi-Yeol Lyu, Jin-Heong Yim
  • Patent number: 6992153
    Abstract: Multi-stage process for the polymerization of olefins CH2?CHR, where R is hydrogen or a C1–C10 alkyl, cycloalkyl or aryl radical, comprising: (I) a first polymerization stage carried out in the presence of a catalyst comprising the product of the reaction between an alkyl-Al compound and a solid component comprising at least one compound of transition metal M1 not containing M1-? bonds, thus obtaining a porous polymer, (II) a treatment stage, wherein said porous polymer is contacted with a compound capable of deactivating the catalyst used in stage (I) and with a late transition metal complex; and (III) a second stage of polymerization, carried out in the presence of the product obtained from treatment stage (II).
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: January 31, 2006
    Assignees: Basell Polyolefine GmbH, E.I. du Pont de Nemours and Company
    Inventors: Gianni Collina, Edward Bryan Coughlin, Giuliano Cecchin, Giovanni Baruzzi, Anna Fait
  • Patent number: 6987154
    Abstract: This invention relates generally to synthetic procedures that include the step of ring-opening metathesis of cyclic olefins and reaction with an acyclic diene co-reactant to produce regularly repeating A,B-alternating olefin polymers. The A,B-alternating polymers are produced by varying reaction conditions and/or reactant proportions and using only two types of olefin metathesis (ring-opening and cross) to provide regularly repeating ABAB . . . etc. polymers via ring-opening metathesis polymerization (ROMP). More particularly, the invention pertains to synthesis of A,B-alternating olefin polymers via olefin metathesis reactions using a Group 8 transition metal complex as the metathesis catalyst. Polymers provided herein have utility in a variety of fields, including not only polymer chemistry per se, but also in the pharmaceutical, biomedical, and packaging industries where the structure and properties of polymers need to be tightly controlled.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: January 17, 2006
    Assignee: California Institute of Technology
    Inventors: Tae-Lim Choi, Choon Woo Lee, Isaac M. Rutenberg, Robert H. Grubbs
  • Patent number: 6984722
    Abstract: A cationic Group 3 or Lanthanide metal complex for coordination polymerization of olefins is disclosed. The precursor metal complex is stabilized by a monoanionic bidentate ancillary ligand and two monoanionic ligands. The ancillary ligand and the transition metal form a metallocycle having at least five primary atoms, counting any ?-bound cyclopentadienyl group in the metallocycle as two primary atoms. Olefin polymerization is exemplified.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: January 10, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Joseph N Christopher, Kevin R. Squire, Jo Ann M. Canich, Timothy D. Shaffer
  • Patent number: 6982305
    Abstract: A process for polymerizing olefins is disclosed. The process polymerizes an olefin in the presence of a dehydrogenation catalyst and an olefin polymerization catalyst. The dehydrogenation catalyst enables in-situ generation of alkenes from oligomers or solvent. The alkenes are then incorporated into the polyolefin. The polyolefin should have increased long-chain branching and lower density without the use of expensive comonomers.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: January 3, 2006
    Assignee: Equistar Chemicals, LP
    Inventor: Sandor Nagy
  • Patent number: 6969748
    Abstract: Complexes of the formula I where M?Ni, Pd; process for preparing the metal complexes and the use of the complexes obtainable in this way for the polymerization and copolymerization of olefins, for example in suspension polymerization processes, gas-phase polymerization processes and bulk polymerization processes.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: November 29, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Peter Preishuber-Pflügl, Benno Bildstein, Alexander Krajete
  • Patent number: 6967231
    Abstract: A process for polymerizing ethylene is disclosed. A magnesium chloride-alcohol is used to support an organometallic complex comprising a Group 3 to 10 transition metal and an indenoindolyl ligand. The supported organometallic complex is mixed with an activator and ethylene and the ethylene is polymerized. Use of magnesium chloride containing an alcohol as the support provides an unexpected boost in catalyst activity and improves polymer rheological properties.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: November 22, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Douglas D. Klendworth, Mark K. Reinking
  • Patent number: 6967184
    Abstract: A catalyst composition and method for olefin polymerization are provided. In one aspect, the catalyst composition is represented by the formula ?a?b?gMXn wherein M is a metal; X is a halogenated aryloxy group; ? and ? are groups that each comprise at least one Group 14 to Group 16 atom; ? is a linking moiety that forms a chemical bond to each of ? and ?; and a, b, g, and n are each integers from 1 to 4.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: November 22, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Zondra Dee Dixon
  • Patent number: 6962890
    Abstract: An olefin polymerization catalyst having a high polymerization activity at high temperatures and a process for olefin polymerization using the catalyst are disclosed. The olefin polymerization catalyst comprises a transition metal compound which is represented by the following formula (I) and in which the net charge parameter of the central metal is not more than 2.00: wherein M is a transition metal atom of Group 4 to Group 5 of the periodic table, m is an integer of 1 to 5, Q is —N? or —C(R2)?, A is —O—, —S—, —Se— or —N(R5)—, R1 is an aliphatic hydrocarbon group or an alicyclic hydrocarbon group, R2 to R5 are each a hydrogen atom, a hydrocarbon group, an oxygen-containing group or the like, n is a number satisfying a valence of M, and X is a hydrogen atom, a halogen atom, a hydrocarbon group or the like.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: November 8, 2005
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Naoto Matsukawa, Kazutaka Tsuru, Masatoshi Nitabaru, Junji Saito, Tetsuhiro Matsumoto
  • Patent number: 6960635
    Abstract: Unique copolymers comprising propylene, ethylene and/or one or more unsaturated comonomers are characterized as having: at least one, preferably more than one, of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about ?1.20, (iv) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer in the copolymer is increased, and (v) an X-ray diffraction pattern that reports more gamma-form crystals than a comparable copolymer prepared with a Ziegler-Natta catalyst. These polypropylene polymers are made using a nonmetallocene, metal-centered, heteroaryl ligand catalyst. These polymers can be blended with other polymers, and are useful in the manufacture of films, sheets, foams, fibers and molded articles.
    Type: Grant
    Filed: May 5, 2002
    Date of Patent: November 1, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: James C. Stevens, Daniel D. Vanderlende
  • Patent number: 6958375
    Abstract: The present invention is directed to a novel one-step method for forming a supported catalyst complex of high activity by substantially simultaneously contacting a bidentate or tridentate ligand forming compound, a transition metal compound and a chromium immobilized Lewis acid support-agglomerate. The catalyst can be formed prior to polymerization of olefins or within the polymerization reaction zone.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: October 25, 2005
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: Keng-Yu Shih, Dean Alexander Denton, Rimantas Glemza
  • Patent number: 6956089
    Abstract: The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: October 18, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Simon Mawson, Sun-Chueh Kao, Tae Hoon Kwalk, Timothy Roger Lynn, David H. McConville, Matthew Gary McKee, John Francis Szul, Kersten Anne Terry, Timothy T. Wenzel, Mark Gregory Goode, John Henry Oskam, Robert J. Jorgensen, Robert Harold Vogel
  • Patent number: 6953829
    Abstract: A catalyst system comprising at least one metallocene, at least one cocatalyst, at least one support material and, if desired, further organometallic compounds is described. The catalyst system can advantageously be used for the polymerization of olefins and displays a high catalyst activity and gives a good polymer morphology without it being necessary to use aluminoxanes such as methylaluminoxane (MAO), which usually has to be used in high excess, as cocatalyst.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: October 11, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Roland Kratzer, Cornelia Fritze, Jörg Schottek
  • Patent number: 6949614
    Abstract: A catalyst system comprising a metallocene, a cocatalyst, a support material and optionally a further organometallic compound is described. The catalyst system can advantageously be used for the polymerization of olefins. Here, the use of aluminoxanes such as methylaluminoxane (MAO) as cocatalyst is dispensed with and a high catalyst activity and good polymer morphology are nevertheless achieved.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: September 27, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Jörg Schottek, Patricia Becker
  • Patent number: 6949613
    Abstract: The application discloses supported initiators for transition metal mediated living free radical and/or atom transfer polymerisation comprising an initiator moiety attached to a support via a selectively cleavable link, and their use to produce polymers.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: September 27, 2005
    Assignee: University of Warwick
    Inventor: David Mark Haddleton
  • Patent number: 6946568
    Abstract: Complexes of the formulae Ia and Ib where M=Ti, Zr, Hf, V, Nb or Ta, can be used for the polymerization and copolymerization of olefins, for example in suspension polymerization processes, gas-phase polymerization processes and bulk polymerization processes.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: September 20, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Marc Oliver Kristen, Benno Bildstein, Alexander Krajete
  • Patent number: 6946532
    Abstract: Catalyst compositions useful for the polymerization of olefins are disclosed. These compositions comprise a Group 8-10 metal complex comprising a bidentate or variable denticity ligand comprising one or two nitrogen donor atom or atoms independently substituted by an aromatic or heteroaromatic ring(s), wherein the ortho positions of said ring(s) are substituted by aryl or heteroaryl groups. Also disclosed are processes for the polymerization of olefins using the catalyst compositions.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: September 20, 2005
    Assignee: Eastman Chemical Company
    Inventors: Leslie Shane Moody, Peter Borden Mackenzie, Christopher Moore Killian, Gino Georges Lavoie, James Allen Ponasik, Jr., Thomas William Smith, Jason Clay Pearson, Anthony Gerard Martin Barrett
  • Patent number: 6946420
    Abstract: The present invention is directed to a coordinating catalyst system comprising at least one pre-catalyst selected from late transition metal bidentate or tridentate ligand containing compounds, at least one support-agglomerate having chromium immobilized thereto (e.g., spray dried silica/clay agglomerate), and optionally at least one organometallic compound in controlled amounts, and methods for preparing the same. The resulting catalyst system exhibits enhanced activity for polymerizing olefins and yields polymer products having very good morphology.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: September 20, 2005
    Assignee: W. R. Grace & Co.-Conn
    Inventors: Keng-Yu Shih, Dean Alexander Denton, Rimantas Glemza
  • Patent number: 6946531
    Abstract: Low molecular weight olefin polymers are prepared by a polymerization process employing titanium complexes comprising a 3-aryl-substituted cyclopentadienyl ring or substituted derivatives thereof as polymerization catalysts.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: September 20, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: David D. Graf, Jerzy Klosin, Timothy A. Herzog, Peter N. Nickias, Carlos G. Ortiz, Jorge Soto, Ravi B. Shankar, Daniel D. VanderLende
  • Patent number: 6943133
    Abstract: The present invention relates to functionalized catalyst supports that are useful in the formation of supported polymerization catalysts, supported catalysts derived from such functionalized catalyst supports, methods for preparing such functionalized catalyst supports and supported catalysts, and polymerization processes utilizing such supported catalysts. The functionalized catalyst supports comprise a particulated, solid support material having chemically bonded thereto a plurality of conjugated or non-conjugated diene or alkyne functionalized ligand groups, said composition being capable of reacting with and tethering a catalytically activatable Group 3-10 or Lanthanide metal complex thereto.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: September 13, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Alexander Vogel
  • Patent number: 6939930
    Abstract: A process for polymerizing olefins is disclosed. The process uses a hydrosilane in a polymerization catalyzed by an open architecture, bridged indenoindolyl organometallic complex and an activator. Polyolefins from the process have increased molecular weight.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: September 6, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Mark K. Reinking, Gregory G. Hlatky
  • Patent number: 6936563
    Abstract: The invention relates to coordination compounds of the general formulae (Ia) to (Ib), wherein M=Ti, Zr, Hf, V, Nb or Ta. The invention also relates to a method for producing the metal complexes and to the use of the complexes so obtained for the polymerization and copolymerization of olefins.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: August 30, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Benno Bildstein, Alexander Krajete
  • Patent number: 6933353
    Abstract: A method for preparing a supported organometallic complex is disclosed. An organometallic complex is combined with a support material that has been treated with an organozinc compound. The organometallic complex comprises a Group 3 to 10 transition metal and an indenoindolyl ligand that is bonded to the transition metal. Also disclosed is a process for polymerizing an olefin using the supported complex. Organozinc treatment of the support unexpectedly boosts catalyst activity and polyolefin molecular weight.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Shaotian Wang
  • Patent number: 6933354
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 23, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Patent number: 6933355
    Abstract: Metal-ligand complexes that are useful as precursors to catalysts for the polymerization of olefins are provided. Certain of the catalysts are particularly effective at polymerizing ethylene and styrene into copolymers having novel properties, including a low molecular weight and close comparison between vinyl and methyl end groups.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: August 23, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Oliver Brümmer, Gary M. Diamond, Christopher Goh, Anne M. LaPointe, Margarete K. Leclerc, James Longmire, James A. W. Shoemaker
  • Patent number: 6933359
    Abstract: Ethylene, dienes and optionally ?-olefins are copolymerized by selected iron complexes of 2,6-pyridinecarbox-aldehydebis(imines) and 2,6-diacylpyridinebis(imines). The resulting copolymers contain residual olefinic unsaturation from the diene monomers, and some of these copolymers contain cyclic units in the main chain.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: August 23, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Alison Margaret Anne Bennett, Elizabeth Forrester McCord
  • Patent number: 6933400
    Abstract: Complexes of the formulae I a to d, where M is an element of groups 6 to 10 of the Periodic Table of the Elements, preferably Ni, can be used for the polymerization and copolymerization of olefins, for example in suspension polymerization processes, gas-phase polymerization processes, bulk polymerization processes and emulsion polymerization processes.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: August 23, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Oliver Kristen, Benno Bildstein, Alexander Krajete
  • Patent number: 6930157
    Abstract: A catalyst composition for preparing olefin polymers. The catalyst composition includes a metallocene compound and an activating cocatalyst. In the metallocene compound, two cyclopentadienyl groups are bridged by X (carbon, silicon, germanium or tin) in a ring structure. The bite angle ? formed by the two cyclopentadienyl rings and X is equal to or greater than 100 degrees. The obtained olefin polymer has high cycloolefin conversion and a high glass transition temperature. In addition, the catalyst composition can still maintain relatively high activity at high temperature reaction conditions.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: August 16, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cherng Tsai, Ming-Yuan Wu, Tung-Ying Hsieh, Yuh-Yuan Wei, Chao-Ying Yu
  • Patent number: 6930156
    Abstract: A single-site catalyst is disclosed. The catalyst comprises a transition metal complex, an activator, and an allylic alcohol-containing polymer. The catalyst has high activity and great capability to incorporate higher ?-olefins into polyethylene. The polyethylene produced has high molecular weight and low density.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: August 16, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Shao-Hua Guo
  • Patent number: 6927263
    Abstract: Catalyst precursor compounds having both (i) a polydentate ligand which comprises a cyclic moiety as well as a heteroatom and (ii) a protected hydride/hydrocarbyl ligand bonded to a metal atom, as well as olefin polymerization catalyst systems based thereupon, polymerization processes using such catalyst systems and polymers produced thereby.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: August 9, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Thomas H. Peterson
  • Patent number: 6927261
    Abstract: The present invention is directed to a novel one-step method for forming a supported catalyst complex of high activity by substantially simultaneously contacting a bidentate or tridentate ligand forming compound, a transition metal compound and a Lewis acid support-activator agglomerate. The catalyst can be formed prior to polymerization of olefins or within the polymerization reaction zone.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: August 9, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventor: Keng-Yu Shih
  • Patent number: 6927264
    Abstract: A metal complex useful as a component of a catalyst composition for addition polymerizations comprising an anionic, polycyclic, fused ring ligand system containing at least 4 fused rings, at least one such ring comprising at least one heteroatom, said ligand being bonded to M by means of delocalized ?-electrons and an addition polymerization process using the same.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: August 9, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: Shaoguang Feng, Ravi B. Shankar, Francis J. Timmers
  • Patent number: 6927313
    Abstract: Process for the selective oligomerization of ethylene to give ?-olefins essentially consisting of C4 to C8, characterized in that it is carried out in the presence of a catalytic system comprising the complex having general formula (II): (L)M(Y)n wherein L represents the ligand having general formula (I) M represents a transition metal; Y is selected from groups of an anionic nature bound to the metal as anion in ionic couple or with a covalent bond of the “?” type.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: August 9, 2005
    Assignee: Polimeri Europa S.p.A.
    Inventors: Claudio Bianchini, Anna Sommazzi, Giuseppe Mantovani, Roberto Santi, Francesco Masi
  • Patent number: 6927262
    Abstract: The invention relates to novel bridged biphosphole ligands according to the general formula: where R2, R3, R4 are chosen from hydrogen, alkyl, aryl or silyl, R1 is chosen from hydrogen, alkyl, aryl or halogen, R1 possibly being replaced with a direct bond between the two phosphorus atoms and T is a divalent group. The invention also relates to metallocenes obtained from these ligands. These metallocenes are useful as catalytic components for the polymerization of olefins.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: August 9, 2005
    Assignee: Atofina
    Inventors: Francois-Xavier Buzin, Francois Nief, Francois Mathey, Jean Malinge, Eliane Deschamps, Bernard Deschamps
  • Patent number: 6924342
    Abstract: A polymerization process comprises contacting one or more olefinic comonomers in the presence of at least a high molecular weight catalyst and at least a low molecular weight catalyst in a single reactor, and effectuating the polymerization of the olefinic comonomers in the reactor to obtain an olefin polymer. Preferably, both catalysts have the ability to incorporate a substantially similar amount of comonomers in the olefin polymer. The polymers produced by the process may have a relatively higher level of long chain branching while maintaining a relatively narrow molecular weight distribution, i.e., MWD less than about 6. These interpolymers may exhibit processability similar to or better than LDPE but have physical properties similar to metallocene catalyzed polymers.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 2, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: James C. Stevens, Daniel D. VanderLende
  • Patent number: 6919414
    Abstract: Novel copolymers comprise ethylene and alpha olefins having from 3 to 10 carbon atoms and which have (a) a density in the range 0.900 to 0.940 (b) Mw/Mn of 2-3.4 (c) I21/I2 from 16 to 24 (d) activation energy of flow from 28 to 45 kJ/mol (e) a ratio Ea(HMW)/Ea(LMW)>1.1, and (f) a ratio g?(HMW)/g?(LMW) from 0.85 to 0.95 The copolymers are particularly useful in film applications showing an excellent balance of processing, optical and mechanical properties. The novel polymers may suitably be prepared in the gas phase in the presence of metallocene complexes.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: July 19, 2005
    Assignee: BP Chemicals Limited
    Inventors: Choon Kooi Chai, Christopher James Frye
  • Patent number: 6916760
    Abstract: A spray drying process for preparing a solid catalyst and composition for use therein comprising a catalyst compound, an activator for the catalyst compound, and at least one compound selected from among siloxanes, polyalkylene glycols, C1-4 alkyl or phenyl ether or diether derivatives of polyalkylene glycols, and crown ethers, and optionally a filler or support.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: July 12, 2005
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Jessica A. Cook
  • Patent number: 6916893
    Abstract: Transition metal complexes having bulky ligand systems and the formula (I) where R2, R4 are C4-C16-heteroaryl or C6-C16-aryl bearing C4-C16-heteroaryl or C6-C16-aryl substituents in the two vicinal positions relative to the point of linkage to Na or Nb and M is a metal of group VIIIB of the Periodic Table of the Elements, are described.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: July 12, 2005
    Assignee: Ser. V. GmbH
    Inventors: Bernhard Rieger, Markus Schmid, Robert Eberhardt, Michael Geprägs, Joachim Queisser
  • Patent number: 6911507
    Abstract: A cyclic olefin having a specific polar group is polymerized by addition polymerization in a hydrocarbon solvent, using a polymerization catalyst component containing (i) a specific transition metal compound, (ii) a Lewis acid compound and (iii) an alkyl aluminoxane, or the cyclic olefin is polymerized by addition polymerization in the hydrocarbon solvent, using the polymerization catalyst component, by further adding at least one aromatic vinyl compound and at least one cyclic nonconjugated polyene compound, or either one of them as a molecular weight modifier, thereby obtaining a cyclic olefinic addition polymer.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: June 28, 2005
    Assignee: JSR Corporation
    Inventors: Kenzo Ohkita, Noboru Oshima, Takashi Imamura, Takashi Tsubouchi
  • Patent number: 6911505
    Abstract: Processes for the production of alpha-olefins, including dimerization and isomerization of olefins using a cobalt catalyst complex are provided herein. The olefins so produced are useful as monomers in further polymerization reactions and are useful as chemical intermediates.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: June 28, 2005
    Assignee: Chevron Phillips Chemical Company, LP
    Inventor: Brooke L. Small
  • Patent number: 6911506
    Abstract: Novel metal complexes, particularly chromium complexes, which contain at least one tridentate ligand are disclosed and prepared. Olefins, particularly ethylene, can be reacted to form butene and/or other homo- or co-oligomers and/or polymers with high ?-olefin concentrations by contacting a metal catalyst which contains a transition metal, particularly chromium, complexes having per metal atom at least one tridentate ligand with N, O, or N and O coordinating sites.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: June 28, 2005
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Angel Jose Marcucci
  • Patent number: 6908973
    Abstract: A method for making single-site catalysts useful for olefin polymerization is disclosed. A nitrogen-functional heterocycle is first deprotonated with an alkyllithium compound, followed by reaction of this anionic ligand precursor with about 0.5 equivalents of a Group 4 transition metal tetrahalide in a hydrocarbon solvent at a temperature greater than about 10° C. to give an organometallic complex-containing mixture. When combined with exceptionally low levels of an activator (e.g., methyl alumoxane), the mixture actively polymerizes olefins to give polymers with a favorable balance of physical properties, including low density and narrow molecular weight distribution.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: June 21, 2005
    Assignee: Equistar Chemicals, LP
    Inventor: Jia-Chu Liu
  • Patent number: 6908877
    Abstract: Support within the disclosure of the present application can only be found for the treatment of the dehydrated silica catalyst carrier with a silazane compound and not with a silane compound.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: June 21, 2005
    Assignee: LG Chem. Ltd.
    Inventors: Sang-Young Shin, Choong-Hoon Lee, Eun-Jung Lee, Jae-Seung Oh
  • Patent number: 6908968
    Abstract: A polymer composition comprises at least two polymer components, the first component having an ATREF peak temperature, Tpeak1, and a viscosity average molecular weight, Mv1, and the second component having an ATREF peak temperature, Tpeak2, and a viscosity average molecular weight, Mv2, wherein the temperature differential between Tpeak2 and Tpeak1 decreases with increased composition density and Mv1/Mv2 is less than or equal to 1.2. the composition is further characterized as having a Mw/Mn of less than or equal to 3.3, an I10/I2>6.6, and a composition density less than 0.945 gram/cubic centimeter.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: June 21, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: Pradeep Jain, Lonnie G. Hazlitt, Jacquelyn A. deGroot, Kenneth W. Anderson
  • Patent number: 6906112
    Abstract: A radiation-curable composition which includes a cyanoacrylate component or a cyanoacrylate-containing formulation; a metallocene component; and a polymerizingly effective amount of a photoinitiator to accelerate the rate of cure is provided.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: June 14, 2005
    Assignee: Henkel Corporation
    Inventors: Stan Wojciak, Shabbir Attarwala