At Least Six Carbon Atoms Patents (Class 526/348.2)
  • Patent number: 6403747
    Abstract: A process for preparing a butyl polymer having a weight average molecular weight of at least about 400,000. The process comprises the step of contacting a C4 to C8 monoolefin monomers with a C4 to C14 multiolefin monomer at a temperature in the range of from about −100° C. to about +50° C. in the presence of an aliphatic hydrocarbon diluent and a catalyst mixture comprising a major amount of a dialkylalumium halide, a minor amount of a monoalkylaluminum dihalide, and a minute amount of at least one of a member selected from the group comprising water, aluminoxane and mixtures thereof.
    Type: Grant
    Filed: October 21, 1999
    Date of Patent: June 11, 2002
    Assignee: Bayer Inc.
    Inventor: Adam Gronowski
  • Publication number: 20020065384
    Abstract: Elastic fibers and fabrics made from homogeneously branched substantially linear ethylene polymers are disclosed which can be produced on conventional polypropylene or polyethylene fiber or fabric processes. They can be used to produce highly elastic structures that can have recycle compatibility between elastic and non-plastic components. The novel fibers have at least about 50% recovery at 100% strain. The fibers and fabrics are especially useful in making fabricated articles and components thereof (e.g., disposable diapers).
    Type: Application
    Filed: July 16, 2001
    Publication date: May 30, 2002
    Inventors: George W. Knight, Edward N. Knickerbocker, Rexford A. Maugans
  • Patent number: 6395847
    Abstract: The invention is directed to organometallic catalysts prepared by a process comprising a) combining nucleophilic group-containing particulate support material with an arylboron or arylaluminum Lewis acid compound in the presence of a Lewis base compound; b) contacting the product of a) with a trialkylaluminum compound before combining said product with a metal precursor compound capable of activation for olefin polymerization by said product a); and, c) combining the product of b) with said metal precursor compound. These catalyst compositions are suitable for addition reactions of ethylenically and acetylenically unsaturated monomers. The invention includes a polymerization process of combining or contacting olefinically unsaturated monomers with the invention catalyst composition. Use of the invention catalyst to polymerize &agr;-olefins is exemplified.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: May 28, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Main Chang
  • Publication number: 20020061992
    Abstract: A polymer having a backbone repeat unit that includes at least two metal atoms bonded to each other and only one ethylenically unsaturated functional group wherein the backbone unit preferably has a structure of
    Type: Application
    Filed: December 21, 2001
    Publication date: May 23, 2002
    Inventors: Kirk J. Abbey, Fernando J. Gomez, Kenneth B. Wagener
  • Patent number: 6391998
    Abstract: The invention is directed to essentially saturated hydrocarbon polymer composition comprising essentially saturated hydrocarbon polymers having A) a backbone chain, B) a plurality of essentially hydrocarbyl sidechains connected to A), said sidechains each having a number-average molecular weight of from 2500 Daltons to 125,000 Daltons and a MWD by SEC of 1.0-3.5; and having A) a Newtonian limiting viscosity (&eegr;0) at 190° C. at least 50% greater than that of a linear olefinic polymer of the same chemical composition and weight average molecular weight, preferably at least twice as great as that of said linear polymer, B) a ratio of the rubbery plateau modulus at 190° C. to that of a linear polymer of the same chemical composition less than 0.5, preferably <0.3, C) a ratio of the Newtonian limiting viscosity (&eegr;0) to the absolute value of the complex viscosity in oscillatory shear (&eegr;*)at 100 rad/sec at 190° C.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: May 21, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Cesar A. Garcia-Franco, David J. Lohse, Robert A. Mendelson, Lewis J. Fetters, Scott T. Milner, Nikos Hadjichristidis, David W. Mead
  • Patent number: 6391984
    Abstract: A staged method of forming vinyl (e.g.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: May 21, 2002
    Assignee: Solutia Inc.
    Inventors: Marilyn Grolitzer, Jun Lu, Ming Zhao
  • Publication number: 20020058765
    Abstract: The present invention relates to a metal-free cyclopentadienide compound which, in conjunction with a metallocene, is able to form a catalyst system that can be used for the polymerization of olefins. It is thus possible to dispense with the use of methylaluminoxane (MAO) or boron-containing compounds as co-catalyst and nevertheless achieve a high degree of catalytic activity. The invention relates also to a process for the preparation of the metal-free cyclopentadienide compound and to the use thereof as a catalyst component in the preparation of polyolefins.
    Type: Application
    Filed: August 3, 2001
    Publication date: May 16, 2002
    Inventors: Sigurd Becke, Uwe Denninger, Steffen Kahlert, Werner Obrecht, Claudia Schmid, Heike Windisch
  • Patent number: 6388016
    Abstract: A method for the dynamic vulcanization of polymer blends made by solution polymerization in series reactors. The polymer blends are mixed under conditions of heat and shear, and a curing agent is added to at least partially cross-link one of the blend components.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: May 14, 2002
    Assignee: Advanced Elastomer Systems, L.P.
    Inventors: Sabet Abdou-Sabet, Barry M. Rosenbaum
  • Patent number: 6388051
    Abstract: A process for selecting and extruding a copolymer having improved extrusion processability comprising (a) selecting one or more copolymers of ethylene and one or more alpha-olefins having 3 to 12 carbon atoms, each of said copolymers having essentially no long chain branching and having (1) a melt index selected from the range of about 0.1 to about 20 grams per 10 minutes, and (2) a melt flow ratio having at least about a value determined by the following formula: 2.7183 to the power of {(1.477 minus [0.279 times the natural logarithm of the selected melt index]) divided by 0.29} and (b) extruding said copolymer around an electrical conductor.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: May 14, 2002
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jinder Jow, Alfred Mendelsohn
  • Patent number: 6384157
    Abstract: A method is provided to monitor, detect and correct local defluidization and channeling in fluidized-bed reactors for polymerization of olefin and/or diolefin polymers. The detection is preferably conducted by (i) continuously and/or intermittently comparing a signal which is a function of the currently measured fluidization bulk density with a signal which is a function of the time-averaged baselines of fluidized bulk density.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: May 7, 2002
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Ping Cai, Ivan Jeremy Hartley, Kiu Hee Lee, Lance Lyle Jacobsen
  • Patent number: 6372868
    Abstract: This invention relates to a method to introduce multiple catalysts into a gas or slurry phase reactor comprising: (a) introducing one or more olefins and a first catalyst and an activator into the reactor and allowing the olefins to polymerize, (b) obtaining a polyolefin, (c) introducing a second catalyst and an optional activator into the first catalyst/activator composition and thereafter introducing the combination into the reactor and allowing the olefins to polymerize. This invention further relates to a method to introduce multiple catalysts into a gas or slurry phase reactor comprising: (a) introducing one or more olefins, a first catalyst and an activator, and a second catalyst and an optional activator into the reactor, wherein the all the catalysts and activators are combined together prior to being introduced into the reactor.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: April 16, 2002
    Assignee: Univation Technologies, LLC
    Inventors: John F. Szul, Kersten Anne Erickson, Simon Mawson, Paul T. Daniell, Mark G. Goode, Matthew G. McKee
  • Patent number: 6369129
    Abstract: An insulating composition for an electric power cable, and an electric power cable comprising a conductor surrounded by an inner semiconducting layer, an insulating layer, and an outer semiconducting layer, where the insulating layer consists of said insulating composition, are disclosed. The insulating composition comprises a crosslinkable multimodal ethylene copolymer obtained by coordinating catalysed polymerization of ethylene and at least one alpha-olefin, and has a density of 0.890-0.940 g/cm3 and an MFR2 of 0.1-10 g/10 min. The insulating composition is characterized in that the ethylene copolymer has an MWD of 3-12, a melting temperature of at most 125° C., and a viscosity of 2500-7000 Pa.s at 135° C. and a shear rate of 10 s−1, 1000-1800 Pa.s at 135° C. and a shear rate of 100 s−1, and 250-400 Pa.s at 135° C.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: April 9, 2002
    Assignee: Borealis Technology Oy
    Inventors: Hans Mårtensson, Merja Poikela, Anders Nymark
  • Patent number: 6368708
    Abstract: Microspheres comprise a polymer or copolymer including one or more of 1) a plurality of C3 or larger alpha-olefin units wherein the polymer has an average number of branch points less than one per monomer unit, and 2) a plurality of C2 alpha-olefin units wherein the polymer has an average number of branch points greater than 0.01 per monomer unit, the microspheres having an average diameter in the range of 1 to 300 micrometers. Optionally, the polymer of the microspheres can be crosslinked. The microspheres can be prepared by suspension or dispersion polymerization processes using aqueous or organic reaction media.
    Type: Grant
    Filed: June 20, 1996
    Date of Patent: April 9, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Katherine A. Brown, Michael R. Kesti
  • Patent number: 6362291
    Abstract: A process for producing a polymer by polymerizing in a polymerization vessel a monomer having an ethylenic double bond is provided. In this process, the polymerization vessel has a polymer scale preventive coating film on its inner wall surfaces and other surfaces with which the monomer comes into contact during polymerization. The coating film is formed by coating a coating liquid containing (A) a compound selected from the group consisting of an aromatic compound having 5 or more conjugated &pgr; bonds and a heterocyclic compound having 5 or more conjugated &pgr; bonds, and (B) a compound selected from the group consisting of an inorganic colloid, a chelate reagent, a metal compound that produces a metal ion capable of forming a complex having at least two coordination numbers, and an acid; the coating liquid being coated by means of steam as a carrier.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: March 26, 2002
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Toshihide Shimizu, Mikio Watanabe, Genji Noguki
  • Patent number: 6359095
    Abstract: A process for the preparation of an olefin polymer by polymerization or copolymerization of an olefin of the formula Ra—CH═CH—Rb, in which Ra and Rb are identical or different and are a hydrogen atom or a hydrocarbon radical having 1 to 14 carbon atoms, or Ra and Rb, together with the atoms connecting them, can form a ring, at a temperature of from −60 to 200° C., at a pressure of from 0.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: March 19, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Andreas Winter, Martin Antberg, Bernd Bachmann, Volker Dolle, Frank Küber, Jürgen Rohrmann, Walter Spaleck
  • Patent number: 6359050
    Abstract: A novel composition is provided comprising a specified polyethylene component and a filler such that a film formed from the composition is characterized by having increased moisture vapor transmission rate.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: March 19, 2002
    Assignee: Eastman Chemical Company
    Inventors: Kathryn Kobes Dohrer, Wesley Raymond Hale, Irving Daniel Sand, Mark Alan Edmund, Martin Ray Tant, Emmett Dudley Crawford, Edward Philip Savitski, Dennis Brannon Barr
  • Publication number: 20020032287
    Abstract: The present invention relates to a polymerization process in the presence of a bulky ligand metallocene-type catalyst compound having an abstractable fluoride or fluorine containing leaving group.
    Type: Application
    Filed: November 13, 1998
    Publication date: March 14, 2002
    Inventor: LAUGHLIN G. MCCULLOUGH
  • Patent number: 6355741
    Abstract: A process for producing polyolefins having a bimodal molecular weight distribution, the process comprising producing a first polyolefin fraction in the presence of a catalyst in a first loop reactor, and producing a second polyolefin fraction in the presence of the catalyst in a second loop reactor which is serially connected to and downstream of the first loop reactor, the first and second polyolefin fractions being blended in the second loop reactor to form a polyolefin having a bimodal molecular weight distribution, at least the first loop reactor containing a diluent under supercritical conditions which is circulated around the loop of the reactor, and wherein at least the first loop reactor is provided with a fluff concentrating device communicating with the loop and in which polyolefin fluff of the first fraction is concentrated in the supercritical diluent, and polyolefin fluff of the first polyolefin fraction is transferred together with an amount of supercritical diluent from the fluff concentrating
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: March 12, 2002
    Assignee: Fina Research, S.A.
    Inventor: Philippe Marechal
  • Patent number: 6355757
    Abstract: The invention is directed to essentially saturated hydrocarbon polymer composition comprising essentially saturated hydrocarbon polymers having A) a backbone chain, B) a plurality of essentially hydrocarbyl sidechains connected to A), said sidechains each having a number-average molecular weight of from 2500 Daltons to 125,000 Daltons and a MWD by SEC of 1.0-3.5; and having A) a Newtonian limiting viscosity (&eegr;0) at 190° C. at least 50% greater than that of a linear olefinic polymer of the same chemical composition and weight average molecular weight, preferably at least twice as great as that of said linear polymer, B) a ratio of the rubbery plateau modulus at 190° C. to that of a linear polymer of the same chemical composition less than 0.5, preferably <0.3, C) a ratio of the Newtonian limiting viscosity (&eegr;0) to the absolute value of the complex viscosity in oscillatory shear (&eegr;*)at 100 rad/sec at 190° C.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: March 12, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Cesar A. Garcia-Franco, David J. Lohse, Robert A. Mendelson, Lewis J. Fetters, Scott T. Milner, Nikos Hadjichristidis, David W. Mead
  • Publication number: 20020028896
    Abstract: The invention is directed to essentially saturated hydrocarbon polymer composition comprising essentially saturated hydrocarbon polymers having A) a backbone chain; B) a plurality of essentially hydrocarbyl sidechains connected to A), said sidechains each having a number-average molecular weight of from 2500 Daltons to 125,000 Daltons and a MWD by SEC of 1.0-3.5; and having A) a Newtonian kimiting viscosity (&eegr;0) at 190° C. at least 50% greater than that of a linear olefinic polymer of the same chemical composition and weight average molecular weight, preferably at least twice as great as that of said linear polymer, B) a ratio of the rubbery plateau modulus at 190° C. to that of a linear polymer of the same chemical composition less than 0.5, preferably <0.3, C) a ratio of the Newtonian limiting viscosity (&eegr;0) to the absolute value of the complex viscosity in oscillatory shear (&eegr;*)at 100 rad/sec at 190° C.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 7, 2002
    Inventors: Cesar A. Garcia-Franco, David J. Lohse, Robert A. Mendelson, Lewis J. Fetters, Scott T. Milner, Nikos Hadjichristidis, David W. Mead
  • Patent number: 6353063
    Abstract: A process for producing a polyolefin in the presence of a transition metal-containing metallocene catalyst that maintains stable operation for long periods of time without suffering from adhesion of the produced polymer to the wall of a reactor or formation of a sheet-like polymer or a massive polymer. The process utilizes a transition metal-containing metallocene catalyst and an organoaluminum compound represented by formula: R1nAl(OR2)3−n, wherein R1 represents a C1-20 alkyl group, an aryl group, hydrogen or halogen; R2 represents a C1-20 alkyl group or an aryl group; and n is a number selected from 0≦n<3, under conditions such that the temperature of the wall of a polymerization reactor, Tw (° C.), and the polymerization temperature, Tr (° C.), satisfy the relationship: 0.5<Tr−Tw<10.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: March 5, 2002
    Assignee: Japan Polychem Corporation
    Inventors: Masafumi Shimizu, Yoshiyuki Ishihama, Akihira Watanabe
  • Publication number: 20020026017
    Abstract: A polymer obtained from a first olefin having fewer than 4 carbon atoms, and a second olefin having a total number of carbon atoms greater than 5 and having an uneven number of carbon atoms. The molar proportion of the first olefin to the second olefin in the polymer is from 90:10 to 99.9:0.1. A process for producing the polymer is also provided.
    Type: Application
    Filed: May 23, 2001
    Publication date: February 28, 2002
    Applicant: SASOL TECHNOLOGY (PTY) LIMITED
    Inventors: Ioan Tincul, Dawid Johannes Joubert, Ignatius Hendrik Potgieter, Desmond Austin Young
  • Patent number: 6348555
    Abstract: The present invention pertains to a substantially linear olefin polymer which has long chain branches, a high melt flow ratio, a narrow molecular weight distribution and critical shear rate at onset of surface melt fracture of a least 50 percent greater than the critical shear rate at the onset of melt fracture which is substantially higher than that of a linear olefin polymer having about the same molecular weight and molecular weight distribution. The novel polymer is an interpolymer of ethylene with at least one C3-C20 alpha-olefin and at least one unsaturated monomer.
    Type: Grant
    Filed: April 22, 1997
    Date of Patent: February 19, 2002
    Assignee: The Dow Chemical Company
    Inventors: Shih-Yaw Lai, John R. Wilson, George W. Knight, James C. Stevens
  • Publication number: 20020019507
    Abstract: An adhesive blend is described that can include a semi-crystalline copolymer of propylene and at least one comonomer selected from the group consisting of ethylene and at least one C4 to C20 &agr;-olefin, the copolymer having a weight average molecular weight (Mw) from about 15,000 to about 200,000; an melt index (MI) from about 7 dg/min to about 3000 dg/min as measured by ASTM D 1238(B), and a (Mw/Mn) of approximately 2. Various production processes are also described. Also described are adhesive compositions and methods for making adhesive compositions having polymers or polymer blends with melt flow rates (MFRs) equal to and above 250 dg/min. at 230 NC. Certain specific embodiments of the invention involve the use of a free radical initiator, e.g., a peroxide.
    Type: Application
    Filed: December 21, 2000
    Publication date: February 14, 2002
    Inventors: Anthony G. Karandinos, Keith A. Nelson, Jean M. Tancrede, Bruce A. Harrington, David J. Lohse, Olivier J. F. Georjon, Kenneth Lewtas, Sudhin Datta, Charles Cozewith
  • Publication number: 20020016426
    Abstract: Novel catalyst systems which comprise diimine nickel complexes comprising additional ligands selected from the group consisting of acetylacetonate, hexaflourylacetylacetonate, halogens and mixtures thereof can be used with methylaluminoxane in slurry polymerization processes to polymerize mono-1-olefins and, optionally one or more higher mono-1-olefin comonomer(s), to produce high molecular weight polymers.
    Type: Application
    Filed: August 20, 2001
    Publication date: February 7, 2002
    Inventors: Nancy W. Eilerts, Gil R. Hawley
  • Patent number: 6344528
    Abstract: To provide a catalyst for olefin (co)polymerization which shows a high polymerization activity and which can produce olefin (co)polymers having a high molecular weight and a narrow molecular weight distribution; the catalyst for olefin (co)polymerization is rendered a carried type catalyst comprising a transition metal compound represented by general formula (I) or (II) and aluminoxane carried on a fine particulate carrier.
    Type: Grant
    Filed: September 5, 2000
    Date of Patent: February 5, 2002
    Assignee: Chisso Corporation
    Inventors: Tsutomu Ushioda, Jun Saito, Mototake Tsutsui
  • Publication number: 20020013429
    Abstract: The invention relates to a process and a device that are suitable for the preparation of a polymer based on an olefinic monomer and optionally one or more comonomers that are copolymerisable therewith, in a horizontal reactor, divided into at least two zones and fitted with a stirring mechanism, which is operated under subfluidization conditions, the polymer formed being discharged from the reactor separately from other reactor effluent, it being possible to vary the composition of the overall feed to be supplied to a zone between two zones at least and the reactor effluent separated from polymer leaving the reactor as a single stream, at least part of this stream being returned to the reactor as feed after one or more separating steps.
    Type: Application
    Filed: April 12, 2001
    Publication date: January 31, 2002
    Inventors: Leo Smit, Frits P. Moens, Stanislaus M. P. Mutsers
  • Publication number: 20020010278
    Abstract: The invention is directed to essentially saturated hydrocarbon polymer composition comprising essentially saturated hydrocarbon polymers having A) a backbone chain; B) a plurality of essentially hydrocarbyl sidechains connected to A), said sidechains each having a number-average molecular weight of from 2500 Daltons to 125,000 Daltons and a MWD by SEC of 1.0-3.5; and having A) a Newtonian limiting viscosity (&eegr;0) at 190° C. at least 50% greater than that of a linear olefinic polymer of the same chemical composition and weight average molecular weight, preferably at least twice as great as that of said linear polymer, B) a ratio of the rubbery plateau modulus at 190° C. to that of a linear polymer of the same chemical composition less than 0.5, preferably <0.3, C) a ratio of the Newtonian limiting viscosity (&eegr;0) to the absolute value of the complex viscosity in oscillatory shear (&eegr;*)at 100 rad/sec at 190° C.
    Type: Application
    Filed: February 6, 1998
    Publication date: January 24, 2002
    Inventors: CESAR A. GARCIA-FRANCO, DAVID J. LOHSE, ROBERT A. MENDELSON, LEWIS J. FETTERS, SCOTT T. MILNER, NIKOS HADJICHRISTIDIS, DAVID W. MEAD
  • Publication number: 20020010290
    Abstract: A process for producing a polymer of an &agr;-olefin which comprises polymerizing an &agr;-olefin having at least 4 carbon atoms in the presence of a catalyst for producing polymers of olefins which comprises (A) a specific metal compound and (B) at least one compound selected from (b-1) an organoaluminum oxy compound and (b-2) an ionic compound.
    Type: Application
    Filed: May 21, 2001
    Publication date: January 24, 2002
    Applicant: Idemitsu Petrochemical Co., Ltd.
    Inventors: Yutaka Minami, Tatsuya Egawa
  • Patent number: 6340731
    Abstract: A polymer having a backbone repeat unit that includes at least two metal atoms bonded to each other and only one ethylenically unsaturated functional group wherein the backbone unit preferably has a structure of —C(R3)═C(R3)—[C(R3)(R4)]n—[M(R1)(R2)]a—[C(R3)(R4)]p— wherein n is 0 to 4; a is at least 2; p is 0 to 4; R1 and R2 are each independently selected from hydrogen, halogen, lower alkyl having 4 or fewer carbon atoms, alkenyl having 4 or fewer carbon atoms, or aromatic having one ring; R3 and R4 are each independently selected from hydrogen and lower alkyl having 1 to 4 carbon atoms; and M is a metal atom selected from at least one of Sn, Ge, Pb, Hg, Ni, Pd, Pt, Cr, Fe, Co, Cu and Zn. The polymer has at least 20 weight percent metal, preferably at least 50 weight percent metal, based on the weight of the polymer.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: January 22, 2002
    Assignee: Lord Corporation
    Inventors: Kirk J. Abbey, Fernando J. Gomez, Kenneth B. Wagener
  • Publication number: 20020007025
    Abstract: The invention is directed to olefin polymerization processes using bridged hafnocene catalyst complexes comprising highly substituted noncoordinating anions that are surprisingly stable under high temperature olefin polymerization processes such that olefin copolymers having significant amount of incorporated comonomer can be prepared with high molecular weights. More specifically, the invention is a polymerization process for ethylene copolymers having a melt index of about 0.87 to about 0.930 comprising contacting, under homogeneous polymerization conditions at a reaction temperature at or above 140° C. to 225° C.
    Type: Application
    Filed: July 10, 2001
    Publication date: January 17, 2002
    Inventors: Donna J. Crowther, Bernard J. Folie, John F. Walzer, Rinaldo S. Schiffino
  • Publication number: 20020007033
    Abstract: The invention relates to novel adhesive alpha-olefin inter-polymers which are largely amorphous and have a Theological behavior that makes them suitable for adhesive use, both without and with minimzed amounts of tackifying resins. Specifically, the invention poly-alpha olefin inter-polymer may be composed of A) from 60 to 94 % of units derived from one alpha mono-olefin having from 3 to 6 carbon atoms and B) from 6 to 40 mol % of units derived from one or more other mono-olefins having from 4 to 10 carbon atoms and at least one carbon atom more than A); and C) optionally from 0 to 10 mol % of units derived from another copolymerizable unsaturated hydrocarbon, different from A) and B); the diad distribution of component A in the polymer as determined by 13C NMR as described herein showing a ratio of experimentally determined diad distribution over the calculated Bernoullian diad distribution of less than 1.
    Type: Application
    Filed: December 21, 2000
    Publication date: January 17, 2002
    Inventors: Anthony G. Karandinos, David J. Lohse, Olivier J.F. Georjon, Kenneth Lewtas, Keith A. Nelson, Jean M. Tancrede, Bruce Allan Harington
  • Publication number: 20020007024
    Abstract: A novel process for producing homopolymers and copolymers of ethylene which involves contacting ethylene and/or ethylene and at least one or more other olefin(s) under polymerization conditions with a Ziegler-Natta type catalyst. at least one halogenated hydrocarbon, at least one compound of the formula XnER3-n as a co-catalyst and at least one compound containing at least one carbon-oxyen-carbon linkage (C—O—C) of the formula R1—O(—R2—O)n—R3 as an external electron donor. Also provided are films and articles produced therefrom.
    Type: Application
    Filed: July 24, 2001
    Publication date: January 17, 2002
    Inventors: Randal Ray Ford, William Albert Ames, Kenneth Alan Dooley, Jeffrey James Vanderbilt, Alan George Wonders
  • Patent number: 6339112
    Abstract: The present invention relates to radiation curable compositions comprising at least one metallocene polyolefin. The radiation curable compositions are useful for a variety of applications, particularly as coatings and adhesives. The radiation curable composition may comprise a single metallocene polyolefin, or blend thereof. The ultraviolet curable compositions further comprise at least one photoinitiator and/or at least one photoinduced coupling agent. For pressure sensitive adhesive applications, the radiation curable composition also preferably comprises other ingredients such as a tackifying resins and plasticizers.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: January 15, 2002
    Assignee: H.B. Fuller Licensing & Financing Inc.
    Inventors: Thomas F. Kauffman, John P. Baetzold, Margarita Acevedo
  • Publication number: 20020004567
    Abstract: This invention relates to olefin polymers particularly suited to satisfying the dielectric properties required in electrical device use. The olefin polymers can be prepared by contacting polymerizable olefin monomers with catalyst complexes of Group 3-11 metal cations and noncoordinating or weakly coordinating anion compounds bound directly to the surfaces of finely divided substrate particles or to polymer chains capable of effective suspension or solvation in polymerization solvents or diluents under solution polymerization conditions. Thus, the invention includes polyolefin products prepared by the invention processes, particularly ethylene-containing copolymers, having insignificant levels of mobile, negatively charged particles as detectable by Time of Flight SIMS.
    Type: Application
    Filed: December 20, 2000
    Publication date: January 10, 2002
    Inventor: Patrick Brant
  • Patent number: 6337364
    Abstract: Disclosed is a low modulus of elasticity-rubber composition, which is useful for sealing a telecommunication cable closure even in low temperature range, utilizing an ethylene-propylene-diene rubber. Said low modulus of elasticity-rubber composition comprising (1) an ethylene-propylene-diene rubber [Mooney viscosity (100° C.): 90 to 130° C., diene: ethylidenenorbornene, iodine value: not more than 20, ethylene content: not more than 55% based on the total amount of ethylene and propylene] and (2) a softener [pour point: not more than −40° C.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: January 8, 2002
    Assignee: Sumitomo Rubber Industries, Ltd.
    Inventors: Toshiaki Sakaki, Tetsuo Mizoguchi
  • Publication number: 20020002255
    Abstract: Ethylene copolymers with octene and/or ethylene terpolymers with alpha-olefins from 3 to 12 carbon atoms, optionally in the presence of other comonomers containing more than one unsaturation, usable as additives to increase the gas oil properties at low temperatures, obtainable by polymerization of the monomers in the presence of catalysts comprising: a bis-cyclopentadienyl derivative having the general formula:
    Type: Application
    Filed: June 22, 2001
    Publication date: January 3, 2002
    Applicant: SOCIETA' ITALIANA ADDITIVI PERCARBURANTI S.R.L.
    Inventor: Paolo Falchi
  • Patent number: 6335403
    Abstract: A process for producing a polymer by polymerizing in a polymerization vessel a monomer having an ethylenic double bond is provided. In this process, the polymerization vessel has a polymer scale preventive coating film on its inner wall surfaces and other surfaces with which the monomer comes into contact during polymerization. The coating film is formed by coating a first coating liquid containing a compound selected from the group consisting of an aromatic compound having 5 or more conjugated bonds and a heterocyclic compound having 5 or more conjugated bonds and a second coating liquid containing at least one hydrophilic compound selected from the group consisting of a water-soluble polymeric compound, an inorganic colloid, an inorganic salt and an acid; the first coating liquid and the second coating liquid being simultaneously coated by means of steam as a carrier.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: January 1, 2002
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Toshihide Shimizu, Mikio Watanabe, Genji Noguki
  • Patent number: 6335410
    Abstract: The subject invention pertains to a non-pourable homogeneous ultra-low molecular weight ethylene polymer composition and a process for the preparation thereof Such polymer compositions have longer lamella and a greater degree of crystalline organization than corresponding higher molecular weight materials at an equivalent density.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: January 1, 2002
    Assignee: The Dow Chemical Company
    Inventors: Malcolm F. Finlayson, Ralph E. Guerra, Craig C. Garrison, Martin J. Guest, Brian W. S. Kolthammer, Steven M. Ueligger, Deepak R. Parikh
  • Publication number: 20010056161
    Abstract: A gas phase polymerization of ethylene is disclosed. The process uses a single-site catalyst containing at least one heteroatomic ligand selected from boraaryl, azaborolinyl, pyridinyl, pyrrolyl, indolyl, indenoindolyl, carbazolyl, and quinolinyl. The catalysts are immobilized onto a support. The process comprises polymerizing an ethylene that contains from about 5 to about 15 mole % of a C3-C10 &agr;-olefin and gives polyethylene having a reduced viscosity.
    Type: Application
    Filed: April 25, 2001
    Publication date: December 27, 2001
    Inventors: Shaotian Wang, Jia-Chu Liu, Mark P. Mack, Clifford C. Lee
  • Publication number: 20010053837
    Abstract: The copolymerization reaction of one or more olefin monomers, such as propylene, with &agr;,&ohgr;-diene units and the resulting copolymers are provided. More specifically, the copolymer may have from 90 to 99.999 weight percent of olefins and from 0.001 to 2.000 weight percent of &agr;,&ohgr;-dienes. The copolymer may have a weight average molecular weight in the range from 50,000 to 2,000,000, a crystallization temperature (without the use of externally added nucleating agents) in the range from 115° C. to 135° C. and a melt flow rate in the range from 0.1 dg/min to 100 dg/min. These copolymers may be employed in a wide variety of applications, the articles of which include, for example, films, fibers, such as spunbonded and meltblown fibers, fabrics, such as nonwoven fabrics, and molded articles. The copolymer may further include at least two crystalline populations.
    Type: Application
    Filed: February 20, 2001
    Publication date: December 20, 2001
    Inventors: Pawan Kumar Agarwal, Weiqing Weng, Aspy K. Mehta, Armenag H. Dekmezian, Main Chang, Rajan K. Chudgar, Christopher R. Davey, Charlie Y. Lin, Michael C. Chen, Galen C. Richeson
  • Patent number: 6331601
    Abstract: A process for making a supported, single-site catalyst is disclosed. The transition metal of the catalyst is tethered through a bridged, bidentate ligand that is covalently bound to the support. The catalyst is prepared in a two-step process that involves preparation of a supported ligand from an amine-functionalized support, followed by reaction of the supported ligand with a transition metal compound to give the “tethered”catalyst. An olefin polymerization process that uses the supported catalyst is also disclosed.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: December 18, 2001
    Assignee: Equistar Chemicals, LP
    Inventor: Gregory G. Hlatky
  • Publication number: 20010047069
    Abstract: The invention relates to polyolefin copolymers (I) 1
    Type: Application
    Filed: March 19, 2001
    Publication date: November 29, 2001
    Inventors: Tze-Chiang Chung, Jin Yong Dong
  • Publication number: 20010044505
    Abstract: A novel process for producing homopolymers and interpolymers of olefins which involves contacting an olefin and/or an olefin and at least one or more other olefin(s) under polymerization conditions with a metallocene catalyst and dinitrogen monoxide in amounts sufficient to reduce the electrostatic charge in the polymerization medium. Also provided is a process for reducing electrostatic charge in the production of polyolefins by introducing dinitrogen monoxide into the polymerization medium.
    Type: Application
    Filed: May 15, 2001
    Publication date: November 22, 2001
    Inventors: Randal Ray Ford, Jeffrey James Vanderbilt, Roxanna Lea Whitfield, Glenn Edward Moore
  • Publication number: 20010044509
    Abstract: A process for the preparation of polyolefins from one or more olefinic monomers is described in which the olefins are combined with a catalyst complex derived from a catalyst compound having a bis-haloaryl-Group 13 element substituted Group 13-15 atom-containing bridging element, and a co-catalyst activator a tri-n-alkyl aluminum compound or aluminoxy derivative thereof The process is particularly useful with bisarylboron substituted silicon-bridged metallocenes under gas phase, slurry, solution or supercritical high pressure coordination polymerization conditions for polyolefins derived from olefinic monomers selected from the group consisting of ethylene, &agr;-olefins, cyclic olefins, non-conjugated diolefins, vinyl aromatic olefins, and geminally disubstituted olefins.
    Type: Application
    Filed: July 13, 2001
    Publication date: November 22, 2001
    Inventor: Matthew W. Holtcamp
  • Publication number: 20010044506
    Abstract: This invention relates generally to crystalline propylene polymers, to methods for their production and to methods for their use in film applications. Specifically, this invention relates to crystalline propylene polymers comprising both propylene homopolymer and propylene copolymer. The compositions are prepared using metallocene catalyst systems comprising at least two metallocenes in a polymerization process that involves the sequential or parallel polymerization of propylene homopolymer and copolymer using propylene with a small amount of comonomer, preferably ethylene. The polymerization is catalyzed by a dual metallocene catalyst system. The resulting polymers have a broad, bimodal molecular weight distribution. The resulting polymers are excellent for use in the production of biaxially oriented films or non-oriented films.
    Type: Application
    Filed: March 6, 2001
    Publication date: November 22, 2001
    Inventors: Aspy K. Mehta, Michael C. Chen, James J. McAlpin, Anthony N. Speca, Kelly Tormaschy, Chon Y. Lin
  • Patent number: 6319996
    Abstract: A dual shear mixing element for use in a chemical reactor. The device may be used in processes where liquids of different temperatures need to be thoroughly mixed in a short period of time and solute must stay in solution. The present invention is particularly useful in the solution polymerization of polyolefins, especially in the medium pressure process for the preparation of linear low density polyethylene.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: November 20, 2001
    Assignee: Nova Chemical (International) S.A.
    Inventors: Annette Lynn Burke, Edward Christopher Foy, John Iatrou, Umesh Karnik, Darwin Edward Kiel, Vaclav George Zboril
  • Publication number: 20010041780
    Abstract: A process for preparing a butyl polymer having a weight average molecular weight of at least about 400,000. The process comprises the step of contacting a C4 to C8 monoolefin monomers with a C4 to C14 multiolefin monomer at a temperature in the range of from about −100° C. to about +50° C. in the presence of an aliphatic hydrocarbon diluent and a catalyst mixture comprising a major amount of a dialkylalumium halide, a minor amount of a monoalkylaluminum dihalide, and a minute amount of at least one of a member selected from the group comprising water, aluminoxane and mixtures thereof.
    Type: Application
    Filed: October 21, 1999
    Publication date: November 15, 2001
    Inventor: ADAM GRONOWSKI
  • Publication number: 20010041779
    Abstract: The present invention relates to a process for manufacturing polyethylene with a functional end group in the presence of metallocene catalyst and more particularly, to the process for manufacturing polyethylene with a functional end group in such a manner that a highly reactive functional group of alkyl-aluminum is easily introduced to the end of polymer via a selective chain transfer reaction in the presence of (1) metallocene catalyst represented by the following formula 1 and (2) a cocatalyst containing alkyl-aluminum compound as active ingredient.
    Type: Application
    Filed: June 28, 1999
    Publication date: November 15, 2001
    Inventors: DONG GEUN SHIN, DOO JIN BYUN, SANG YOUL KIM
  • Patent number: 6316553
    Abstract: A process of using a catalyst composition to polymerize at least one monomer to produce a polymer. The process comprising contacting the catalyst composition, at least one monomer in a polymerization zone under polymerization conditions to produce the polymer. The catalyst composition is produced by a process comprising contacting at least one organometal compound, at least one treated solid oxide compound, and at least one organoaluminum compound.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: November 13, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Marvin M. Johnson, James L. Smith, Elizabeth A. Benham, Gil R. Hawley, Christopher E. Wittner, Michael D. Jensen