Six Carbon Atoms Only Patents (Class 526/348.4)
  • Patent number: 7981992
    Abstract: Copolymers, especially multi-block copolymer containing therein two or more segments or blocks, are prepared by polymerizing propylene, 4-methyl-1-pentene, or another C4-8 ?-olefin in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers having increased incidence of regio-irregular branching compared to the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: July 19, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Daniel J. Arriola, Edmund M. Carnahan, David D. Devore, Phillip D. Hustad, Roger L. Kuhlman, Timothy T. Wenzel
  • Patent number: 7977444
    Abstract: A process for preparing a polymer containing derived units of one or more alpha olefins of formula CH2?CHW wherein W is a C3-C10 hydrocarbon radical and optionally from 0 to 81% by mol of derived units of propylene or 1-butene, comprising contacting under polymerization conditions one or more alpha olefins of formula CH2?CHW and optionally propylene or 1-butene in the presence of a catalyst system obtainable by contacting: a) a metallocene compound of formula (I) wherein M, X, L, T, R1, R2, R7 and R8 are described in the text; and (b) an alumoxane or a compound capable of forming an alkyl metallocene cation.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: July 12, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Eleonora Ciaccia, Friederike Morhard, Giampaolo Pellegatti
  • Publication number: 20110165357
    Abstract: The present invention deals with polymer compositions suitable for making pipes. The compositions comprise a multimodal copolymer of ethylene and one or more alpha-olefins having from 4 to 10 carbon atoms wherein the multimodal ethylene copolymer has a density of from 937 to 950 kg/m3, a melt index MFR5 of from 0.3 to 3.0 g/10 min, a melt index MFR2 of from 0.1 to 2.0 g/10 min and a shear thinning index SHI2.7/210 of from 2 to 30.
    Type: Application
    Filed: May 25, 2009
    Publication date: July 7, 2011
    Applicant: BOREALIS AG
    Inventors: Mats Backman, Carl-Gustaf Ek, Anneli Pakkanen, Magnus Palmlof, Tarja-Tuulikki Turpeinen, John Severn
  • Publication number: 20110160420
    Abstract: The present invention provides a process for the production of a degassed polymer powder, which process comprises a) feeding i) a principal monomer, and ii) one or more comonomers fed in an amount of at least 5000 ppmw relative to the principal monomer feed rate, and iii) optionally one or more added alkanes having 2 to 10 carbon atoms, fed in an amount of at least 1000 ppmw relative to the principal monomer feed rate; into a polymerisation reactor wherein the monomer and comonomers react to form a polymer comprising residual hydrocarbons comprising one or more hydrocarbons having 3 to 10 carbon atoms, and b) passing the polymer to a degassing step wherein it is contacted with a purge gas to remove at least some of the residual hydrocarbons, characterised in that: 1) the G/P ratio in the degassing step is higher than a minimum G/P ratio, G being the purge gas mass flow rate in the degassing step and P being the polymer throughput of the degassing step, and 2) the purge gas has a concentration of critical hydr
    Type: Application
    Filed: September 21, 2009
    Publication date: June 30, 2011
    Inventors: Jean-Louis Chamayou, Daniel Marissal
  • Patent number: 7947797
    Abstract: Embodiments of the present invention relate to operating a gas-phase reactor at or near maximum production rates and to measuring and controlling polymer stickiness in a gas phase reactor polymerization. In particular, embodiments relate to monitoring acoustic emissions in a reactor during gas phase polymerization to determine the onset of reactor stickiness and possibly discontinuity events such as chunking and sheeting resulting from that stickiness. Embodiments also relate to monitoring acoustic emissions to determine the need for effective control of parameters that minimize reactor stickiness and thereby preventing discontinuity events. The emissions are processed by arithmetic averaging.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: May 24, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Michael E. Muhle, Robert O. Hagerty
  • Patent number: 7943716
    Abstract: A process for preparing a polymer containing derived units of one or more alpha olefins of formula CH2?CHW wherein W is a C3-C10 hydrocarbon radical and optionally from 0 to 81% by mol of derived units of propylene or 1-butene, comprising contacting under polymerization conditions one or more alpha olefins of formula CH2?CHW and optionally propylene or 1-butene in the presence of a catalyst system obtainable by contacting: a) a metallocene compound of formula (I) wherein M, X, L, T1, T2, T3 and R1 are described in the text; and (b) an alumoxane or a compound capable of forming an alkyl metallocene cation.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: May 17, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Eleonora Ciaccia, Friederike Morhard, Giampaolo Pellegatti
  • Publication number: 20110108121
    Abstract: The present invention deals with polymer compositions suitable for making pipes. The compositions comprise a multimodal copolymer of ethylene and one or more alpha-olefins having from 4 to 10 carbon atoms wherein the multimodal ethylene copolymer has a density of from 924 to 935 kg/m3, a melt index MFR5 of from 0.5 to 6.0 g/10 min, a melt index MFR2 of from 0.1 to 2.0 g/10 min and a shear thinning index SHI27/210 of from 2 to 50.
    Type: Application
    Filed: May 25, 2009
    Publication date: May 12, 2011
    Applicant: BOREALIS AG
    Inventors: Mats Backman, Carl-Gustaf Ek, Anneli Pakkanen, Magnus Palmlöf
  • Publication number: 20110105710
    Abstract: An optical resin comprises a copolymer of 4-methyl-1-pentene and at least one monomer selected from the group consisting of 3-methyl-1-pentene, 3-methyl-1-butene and 4,4-dimethyl-1-pentene. The content of a constituent unit (a) derived from 4-methyl-1-pentene is equal to or more than 60 mol % and equal to or less than 99 mol %, and the total content of a constituent unit (b) derived from at least one monomer selected from the group consisting of 3-methyl-1-pentene, 3-methyl-1-butene and 4,4-dimethyl-1-pentene is equal to or more than 1 mol % and equal to or less than 40 mol %.
    Type: Application
    Filed: July 13, 2009
    Publication date: May 5, 2011
    Applicants: MITSUI CHEMICALS, INC., Sharp Corporation
    Inventors: Satoshi Kawamoto, Kouichi Kizu, Sunil Krzystof Moorthi, Akira Sakai
  • Publication number: 20110091674
    Abstract: The present invention deals with polymer compositions suitable for making pipes. The compositions comprise a multimodal copolymer of ethylene and one or more alpha-olefins having from 4 to 10 carbon atoms wherein the multimodal ethylene copolymer has a density of from 924 to 960 kg/m3, a melt index MFR5 of from 0.5 to 6.0 g/10 min, a melt index MFR2 of from 0.1 to 2.0 g/10 min and a shear thinning index SHI2.7/210 of from 2 to 50. The compositions further have a level of volatile compounds of at most 100 ppm by weight and/or a homogeneity rating of at most 3.
    Type: Application
    Filed: May 25, 2009
    Publication date: April 21, 2011
    Applicant: BOREALIS AG
    Inventors: Mats Backman, Carl-Gustaf Ek, Anneli Pakkanen, Magnus Palmlof
  • Publication number: 20110034657
    Abstract: A process for the polymerization of olefin's, including: introducing an olefin and a polymerization catalyst into a polymerization reactor to form a polyolefin, the polymerization reactor including: a fluidized bed region having a top and a bottom; and a motive bed region; wherein a first end of the motive bed region is fluidly connected to the top of the fluidized bed region; and wherein a second end of the motive bed region is fluidly connected to the bottom of the fluidized bed region; and wherein a diameter of the fluidized bed region is greater than a diameter of the motive bed region; circulating at least a portion of the olefin, the catalyst, and the polyolefin through the fluidized bed region and the motive bed region; maintaining a dense-phase fluidized bed within the fluidized bed region; recovering polyolefin from the fluidized bed region, is provided. A reactor system directed to the process is also provided.
    Type: Application
    Filed: April 21, 2009
    Publication date: February 10, 2011
    Applicant: UNIVATION TECHNOLOGIES, LLC
    Inventors: Fathi D. Hussein, Ping Cai, Jose F. Cevallos-Candau, Ian D. Burdett, W. Scott Hamilton, Daniel N. Thomas, JR.
  • Publication number: 20110021713
    Abstract: An ethylenic polymer comprising amyl groups from about 0.1 to about 2.0 units per 1000 carbon atoms as determined by Nuclear Magnetic Resonance and both a peak melting temperature, Tm, in ° C., and a heat of fusion, Hf, in J/g, as determined by DSC Crystallinity, where the numerical values of Tm and Hf correspond to the relationship Tm>(0.2143*Hf)+79.643. An ethylenic polymer comprising at least one preparative TREF fraction that elutes at 95° C. or greater using a Preparative Temperature Rising Elution Fractionation method, where at least one preparative TREF fraction that elutes at 95° C. or greater has a gpcBR value greater than 0.05 and less than 5 as determined by gpcBR Branching Index by 3D-GPC, and where at least 5% of the ethylenic polymer elutes at a temperature of 95° C. or greater based upon the total weight of the ethylenic polymer.
    Type: Application
    Filed: March 12, 2009
    Publication date: January 27, 2011
    Inventors: Mehmet Demirors, Teresa P. Karjala, Christopher R. Eddy, Lonnie G. Hazlitt, Pak-Meng Cham, Sarat Munjal, Wallace W. Yau
  • Patent number: 7875690
    Abstract: A process for the production of an ethylene alpha-olefin copolymer is disclosed. The process includes polymerizing ethylene and at least one alpha-olefin by contacting the ethylene and the at least one alpha-olefin with a metallocene catalyst in at least one gas phase reactor at a reactor pressure of from 0.7 to 70 bar and a reactor temperature of from 20° C. to 150° C. to form an ethylene alpha-olefin copolymer. The resulting ethylene alpha-olefin copolymer may have a density of 0.927 g/cc or greater and environmental stress crack resistance (ESCR) of 500 hr or more when measured according to ASTM 1693/B in 10% Igepal.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: January 25, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Blair Alfred Graham, Mark P. Ossowski, James M. Farley, Rainer Kolb
  • Publication number: 20110015363
    Abstract: Embodiments of the invention provide a class of propylene/?-olefin block interpolymers. The propylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.3. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block propylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (‘TREF’), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the propylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.4.
    Type: Application
    Filed: January 30, 2009
    Publication date: January 20, 2011
    Inventors: Gary R. Marchand, Yunwa W. Cheung, Benjamin C. Poon, Jeffrey D. Weinhold, Kim L. Walton, Pankaj Gupta, Colin Lipishan, Phillip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Eddy I. Garcia-Meitin, Patricia L. Roberts
  • Publication number: 20110015354
    Abstract: Embodiments of the invention provide a class of mesophase separated propylene/?-olefin block interpolymers with controlled block sequences. The propylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.4. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block propylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (“TREF”), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the propylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.4.
    Type: Application
    Filed: January 30, 2009
    Publication date: January 20, 2011
    Applicant: Dow Global Technologies Inc.
    Inventors: Gary R. Marchand, Yunwa W. Cheung, Benjamin C. Poon, Jeffrey D. Weinhold, Kim L. Walton, Pankaj Gupta, Colin Lipishan, Phillip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Eddy I. Garcia-Meitin, Patricia L. Roberts
  • Publication number: 20110009580
    Abstract: A copolymer of ethylene and an alpha-olefin, said copolymer having a (a) density>0.930 g/cm3, (b) melt index (g/10 min)>4, (c) molecular weight distribution (MWD)>3.0, and (d) FNCT>250 hours., and is described suitable for use in rotomoulding applications. In particular the novel copolymers result in improved impact strength, improved permeation resistance and improved environmetal stress crack resistance and may suitably be prepared by use of metallocene catalysts.
    Type: Application
    Filed: August 27, 2010
    Publication date: January 13, 2011
    Applicant: Ineos Europe Limited
    Inventor: Choon Kooi Chai
  • Publication number: 20110003940
    Abstract: An ethylene-based polymer composition has been discovered and is characterized by a Comonomer Distribution Constant greater than about 45. The new ethylene-based polymer compositions are useful for making many articles, especially including films. Formulations made into films comprising the new polymers are also disclosed, especially blends with synthetic polymer like LDPE where the % LDPE is less than 50% in which the MD shrink tension is greater than 15 cN, puncture is greater than 75 ft-lb/in3, and haze is less than 20%. The polymers are made using a metal complex of a polyvalent aryloxyether.
    Type: Application
    Filed: June 14, 2010
    Publication date: January 6, 2011
    Applicant: Dow Global Technologies Inc.
    Inventors: Teresa P. Karjala, Rongjuan Cong, Colleen M. Tice, Sarah M. Hayne, Mehmet Demirors, Lori L. Kardos
  • Publication number: 20100324242
    Abstract: Provided are a highly-pure, terminal-unsaturated olefin polymer which is produced through homopolymerization or copolymerization of one or more ?-olefins having from 3 to 28 carbon atoms, or copolymerization of at least one ?-olefin having from 3 to 28 carbon atoms and ethylene, in the presence of a catalyst, and which satisfies the following (1) to (4); and a method of efficiently producing the olefin polymer having a high degree of terminal unsaturation degree and containing little catalyst residue. (1) The content of the transition metal derived from the catalyst is at most 10 ppm by mass, the content of aluminium is at most 300 ppm by mass, and the content of boron is at most 10 ppm by mass; (2) The polymer has from 0.5 to 1.0 vinylidene group/molecule as the terminal unsaturated group; (3) The polymer has an intrinsic viscosity [?], as measured in decalin at 135° C., of from 0.01 to 2.5 dl/g; (4) The polymer has a molecular weight distribution (Mw/Mn) of at most 4.
    Type: Application
    Filed: October 18, 2007
    Publication date: December 23, 2010
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Shuji Machida, Ryo Aburatani, Takenori Fujimura, Takehiro Tsuda, Yutaka Minami
  • Publication number: 20100304052
    Abstract: The present invention relates to fibres, tapes, monofilaments and the like comprising copolymers of ethylene and ?-olefins which exhibit improved tensile properties expressed as a balance between tenacity and elongation at break. The copolymers may preferable be prepared by use of metallocene catalyst systems in particular by use of monocyclopenadienyl catalyst systems. The fibres, tapes, monofilaments of the invention are particularly suitable for end-use applications including artificial grass, woven and nonwoven fabrics, cordages, ropes, netting and flexible intermediate bulk containers.
    Type: Application
    Filed: February 12, 2009
    Publication date: December 2, 2010
    Inventors: Choon Chai, Dominique Jan, Stefan Spitzmesser
  • Patent number: 7842763
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: November 30, 2010
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Elizabeth A. Benham, Randy Muninger, Gary Jerdee, Ashish M. Sukhadia, Qing Yang, Matthew G. Thorn
  • Publication number: 20100298515
    Abstract: Embodiments of the invention provide a class of ethylene/?-olefin block interpolymers. The ethylene/?-olefin interpolymers are characterized by an average block index, ABI, which is greater than zero and up to about 1.0 and a molecular weight distribution, Mw/Mn, greater than about 1.3. Preferably, the block index is from about 0.2 to about 1. In addition or alternatively, the block ethylene/?-olefin interpolymer is characterized by having at least one fraction obtained by Temperature Rising Elution Fractionation (‘TREF’), wherein the fraction has a block index greater than about 0.3 and up to about 1.0 and the ethylene/?-olefin interpolymer has a molecular weight distribution, Mw/Mn, greater than about 1.4.
    Type: Application
    Filed: January 30, 2009
    Publication date: November 25, 2010
    Applicant: Dow Global Technologies Inc.
    Inventors: Gary R. Marchand, Yunwa W. Cheung, Benjamin C. Poon, Jeffrey D. Weinhold, Kim L. Walton, Pankaj Gupta, Colin Lipishan, Philip D. Hustad, Roger L. Kuhlman, Edmund M. Carnahan, Eddy I. Garcia-Meitin, Patricia L. Roberts
  • Publication number: 20100298517
    Abstract: The present invention provides a process for producing an ?-olefin polymer comprising polymerizing or copolymerizing (a) C3 or higher a-olefin(s) in the presence of an olefin polymerization catalyst comprising solid titanium catalyst component (I) containing titanium, magnesium, halogen, and a compound with a specific structure having two or more ether linkages and organometallic catalyst component (II) with high catalytic activity. In this process, particularly even in (co)polymerizing (a) higher olefin(s), demineralization is unnecessary. A 4-methyl-1-pentene-based polymer obtained by polymerization using the catalyst of the present invention is excellent in tacticity, transparency, heat resistance, and releasability, and the polymer is particularly suitable for a release film.
    Type: Application
    Filed: August 6, 2010
    Publication date: November 25, 2010
    Applicant: Mitsui Chemicals, Inc.
    Inventor: Tooru TANAKA
  • Publication number: 20100292424
    Abstract: This invention discloses an improved process which employs mixed alpha-olefins as feed over activated metallocene catalyst systems to provide essentially random liquid polymers particularly useful in lubricant components or as functional fluids.
    Type: Application
    Filed: July 14, 2006
    Publication date: November 18, 2010
    Inventors: Margaret M. Wu, Norman Yang, Phil Surana, Anura Patil, Steven P. Rucker, Kuangnan Qian, Shakeel Tirmizi, Mark P. Hagemeister
  • Publication number: 20100280206
    Abstract: This application relates to an ethylene polymer having a weight average molecular weight of at least 120,000 including 1-50 tertiary double bonds per 10,000 carbon atoms.
    Type: Application
    Filed: October 11, 2007
    Publication date: November 4, 2010
    Applicant: BOREALIS TECHNOLOGY OY
    Inventors: Ariid Follestad, Petar Doshev, Anne Britt Bjaland, Bernt-Ake Sultan, Magnus Palmlof, Morten Lundquist
  • Publication number: 20100273692
    Abstract: Provided are ethylene-based copolymers, methods of preparing the same, lubricating oil compositions including the same, methods for preparing such lubricating oil compositions, and end uses for such ethylene-based copolymers and lubricating oil compositions. The ethylene-based copolymers may include less than about 80 wt. % of units derived from ethylene and one or more alpha-olefin comonomers having 3 to 20 carbon atoms. The ethylene-based copolymers have a melting peak (Tm), as measured by DSC, of 80° C. or less, and a polydispersity index of about 2.8 or less. In some embodiments, the ethylene-based copolymers have an intramolecular composition distribution of about 50 wt. % or less and/or an intermolecular composition distribution of about 50 wt. % or less.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 28, 2010
    Inventors: Rainer Kolb, Sudhin Datta, Liehpao Oscar Farng, Vera Minak-Bernero, Eric B. Sirota, Thomas Tungshi Sun, Mun Fu Tse
  • Publication number: 20100267908
    Abstract: [Task] To provide a catalyst for olefin polymerization having an excellent olefin polymerization performance and capable of producing a polyolefin with excellent properties.
    Type: Application
    Filed: March 18, 2010
    Publication date: October 21, 2010
    Inventors: Kenji Michiue, Mitsuhiko Onda, Shigekazu Matsui, Sadahiko Matsuura, Koji Endo, Makoto Mitani, Terunori Fujita
  • Publication number: 20100255236
    Abstract: Heterophasic propylene copolymer (HECO) comprising wherein the heterophasic propylene copolymer (HECO) is ?-nucleated and the elastomeric phase has an intrinsic viscosity measured in tetraline at 135° C. of equal or below 4.0 dl/g.
    Type: Application
    Filed: October 27, 2008
    Publication date: October 7, 2010
    Applicant: Borealis Technology Oy
    Inventors: Bo Malm, Klaus Bernreitner, Franz Ruemer
  • Publication number: 20100222537
    Abstract: Methods of polymerizing at least one olefin include contacting the olefin with a catalyst comprising chromium and with a cocatalyst comprising a non-transition metal cyclopentadienyl (Cp) compound. The polymerization may be performed in the presence of hydrogen. Using the cocatalyst in conjunction with the catalyst increases several properties, such as the high load melt index (HLMI), the MW, and the MN, of the polymers produced by this polymerization method. Polymer compositions produced by such methods have various unique properties, including a PDI greater than about 30. Additional embodiments include articles of manufacture or end use articles formed from such polymer compositions.
    Type: Application
    Filed: May 13, 2010
    Publication date: September 2, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Max P. McDaniel, Elizabeth A. Benham, Steven J. Secora, Michael D. Jensen, Kathy S. Collins
  • Publication number: 20100168330
    Abstract: An ethylenic polymer comprising amyl groups from about 0.1 to about 2.0 units per 1000 carbon atoms as determined by Nuclear Magnetic Resonance and both a peak melting temperature, Tm, in ° C., and a heat of fusion, Hf, in J/g, as determined by DSC Crystallinity, where the numerical values of Tm and Hf correspond to the relationship Tm?(0.2143*Hf)+79.643. An ethylenic polymer comprising at least one preparative TREF fraction that elutes at 95° C. or greater using a Preparative Temperature Rising Elution Fractionation method, where at least one preparative TREF fraction that elutes at 95° C. or greater has a gpcBR value greater than 0.05 and less than 5 as determined by gpcBR Branching Index by 3D-GPC, and where at least 5% of the ethylenic polymer elutes at a temperature of 95° C. or greater based upon the total weight of the ethylenic polymer.
    Type: Application
    Filed: March 12, 2009
    Publication date: July 1, 2010
    Applicant: Dow Global Technologies Inc.
    Inventors: Mehmet Demoirors, Teresa P. Karjala, Christopher R. Eddy, Lonnie G. Hazlitt, Pak-Meng Cham, Sarat Munjal, Wallace W. Yau
  • Publication number: 20100151172
    Abstract: The present invention concerns a propylene copolymer composition, a molded article comprising the composition and the use of the propylene copolymer composition for preparing molded articles, preferably pipes.
    Type: Application
    Filed: April 10, 2008
    Publication date: June 17, 2010
    Applicant: BOREALIS TECHNOLOGY OY
    Inventors: Juergen Emig, Karl Ebner, Franz Ruemer
  • Publication number: 20100130662
    Abstract: The crosslinked material of the present invention is obtainable by crosslinking a propylene resin composition through irradiation with an ionizing radiation wherein the propylene resin composition comprises 100 parts by mass of a propylene resin comprising 15 to 99% by mass of a propylene polymer (A) having a melting point, as measured by a differential scanning calorimeter (DSC), of 120 to 170° C., and 1 to 85% by mass of propylene polymer (B) having a melting point, as measured by a differential scanning calorimeter (DSC), of below 120° C. or not observed (provided that the total of the components (A) and (B) is 100% by mass), and 0.1 to 5 parts by mass of a crosslinking assistant (C). The production process of the crosslinked material of the present invention comprises a step of molding the propylene resin composition into a molded form, and a step of crosslinking the molded form through irradiation with an ionizing radiation.
    Type: Application
    Filed: April 23, 2008
    Publication date: May 27, 2010
    Inventors: Hiroshi Uehara, Kiminori Noda, Masayoshi Yamaguchi
  • Patent number: 7671149
    Abstract: The present invention provides a process for preparing a catalyst useful in gas phase polymerization of olefins wherein the hydrogen response of the catalyst can be improved by using a ketone as the electron donor in the catalyst. The catalyst consists of compounds of Ti, Mg, Al and a ketone preferably supported on an amorphous support.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 2, 2010
    Assignees: Nova Chemical Corporation, INEOS Europe Limited
    Inventors: Mark Kelly, Brian Stephen Kimberley
  • Publication number: 20100036078
    Abstract: A process for heating a polymer-containing stream being transferred from a polymerisation reactor to a degassing vessel, comprising passing the stream through a heater comprising a transfer line for the stream and means for heating the transfer line, wherein the pressure drop in the heater is between 5% and 50%, preferably between 10 and 35%, of the total pressure drop between the polymerisation reactor and the entry to the degassing vessel.
    Type: Application
    Filed: October 4, 2007
    Publication date: February 11, 2010
    Inventors: Daniel Marissal, Brent R. Walworth
  • Patent number: 7645844
    Abstract: The present invention relates to a transition metal complex and a transition metal catalyst composition comprising the same for the preparation of an ethylene homopolymer or a copolymer of ethylene and ?-olefin. More particularly, it relates to a group IV transition metal catalyst having a cyclopentadiene derivative and at least one aryl oxide ligand in which an oxygen-containing heterocycle is fused at the ortho-position around a group IV transition metal, with no crosslinkage between the ligands, a catalyst composition comprising the transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and a process for preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin using the same.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: January 12, 2010
    Assignee: SK Energy Co., Ltd.
    Inventors: Dong-Cheol Shin, Ho-Seong Lee, Myung-Ahn Ok, Jong-Sok Hahn
  • Publication number: 20090306323
    Abstract: A film of an ethylene polymer.
    Type: Application
    Filed: May 14, 2009
    Publication date: December 10, 2009
    Inventors: Rainer Kolb, Francis C. Rix, R. Eric Pequeno
  • Publication number: 20090291285
    Abstract: The present invention provides a film including, in at least a part thereof, a layer comprising an ethylene-based resin, which is a copolymer of ethylene and an ?-olefin of 4 to 10 carbon atoms, and satisfies the following requirements (1) to (5) at the same time or an ethylene-based resin composition containing the resin; (I) the melt flow rate at 190° C. under a load of 2.16 kg is in the range of 0.1 to 50 g/10 min, (II) the density is in the range of 875 to 970 kg/m3, (III) the ratio of a melt tension at 190° C. to a shear viscosity at 200° C. and an angular velocity of 1.0 rad/sec is in the range of 1.00×10?4 to 9.00×10?4, (IV) the sum of the number of methyl branches and the number of ethyl branches, each number being based on 1000 carbon atoms and measured by 13C-NMR, is not more than 1.8, and (V) the zero shear viscosity [?0(P)] at 200° C. and the weight-average molecular weight (Mw) as measured by a GPC-viscosity detector method (GPC-VISCO) satisfy the following relational formula (Eq-1): 0.
    Type: Application
    Filed: July 31, 2007
    Publication date: November 26, 2009
    Inventors: Masao Suzuki, Yasuo Satoh, Takahiro Akashi, Tsutomi Tasaki, Shinya Matsubara, Hideki Bando
  • Patent number: 7595371
    Abstract: An ethylene-?-olefin copolymer comprising repeating units derived from ethylene and repeating units derived from an ?-olefin having 3 to 20 carbon atoms and having a melt flow rate (MFR) of from 0.01 to 100 g/10 min, a density (d) of from 890 to 970 kg/m3, a flow activation energy (Ea) of 50 kJ/mol or more, a molecular weight distribution (Mw/Mn) of 3 or more measured by gel permeation chromatography, and a hexane extraction rate (C) of 2.8% or less.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: September 29, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasutoyo Kawashima, Katsuhiro Yamada, Yoshinobu Nozue
  • Patent number: 7589162
    Abstract: A polymer composition comprising a density equal to or greater than about 0.947 g/cc, a high load melt index from about 1 g/10 min to about 30 g/10 min, and a tensile natural draw ratio less than about 14167 ?-12958, where ? is the density (g/cc) of the composition. A polymer composition comprising a tensile natural draw ratio less than about 14167?-12958, where ? is the density (g/cc) of the composition and wherein less than about 1 weight percent of the composition comprises non-polymeric additives.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: September 15, 2009
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Rajendra K. Krishnaswamy, Qing Yang, David C. Rohlfing, Max P. McDaniel, Kumudini C. Jayaratne, Jim E. French
  • Patent number: 7560524
    Abstract: The instant invention is a high-density polyethylene composition, and method of making the same. The high-density polyethylene composition of the instant invention includes an ethylene alpha-olefin copolymer having a density in the range of 0.935 to 0.952 g/cm3, a melt index (I2) in the range of 30 to 75 g/10 minutes, an I21/I2 ratio in the range of 13-35, a Mw/Mn ratio in the range of 3.5-8. The high-density polyethylene composition has a brittleness temperature of at least less than ?20° C. The process for producing a high-density polyethylene composition according to instant invention includes the following steps: (1) introducing ethylene, and an alpha-olefin comonomer into a reactor; (2) copolymerizing the ethylene with the alpha-olefin comonomer in the reactor; and (3) thereby producing the high-density polyethylene composition, wherein the high-density polyethylene composition having a density in the range of 0.935 to 0.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: July 14, 2009
    Assignee: Dow Global Technologies, Inc.
    Inventors: William J. Michie, Jr., Debra R. Wilson, Stephanie M. Whited, Michael A. Kinnan
  • Publication number: 20090156729
    Abstract: An adhesive blend is described that can include a semi-crystalline copolymer of propylene and at least one comonomer selected from the group consisting of ethylene and at least one C4 to C20 ?-olefin, the copolymer having a weight average molecular weight (Mw) from about 15,000 to about 200,000; an melt index (MI) from about 7 dg/min to about 3000 dg/min as measured by ASTM D 1238(B), and a (Mw/Mn) of approximately 2. Various production processes are also described. Also described are adhesive compositions and methods for making adhesive compositions having polymers or polymer blends with melt flow rates (MFRs) equal to and above 250 dg/min. at 230 NC. Certain specific embodiments of the invention involve the use of a free radical initiator, e.g., a peroxide.
    Type: Application
    Filed: February 24, 2009
    Publication date: June 18, 2009
    Inventors: Anthony G. Karandinos, Keith A. Nelson, Jean M. Tancrede, Kenneth Lewtas, Sudhin Datta, Charles Cozewith, Bruce A. Harrington, David J. Lohse, Olivier J.F. Georjon
  • Patent number: 7524913
    Abstract: An olefin polymer having greater than 95 percent chain end unsaturation, where greater than 80 percent of said unsaturation comprises a 1,2-disubstituted olefinic unsaturation, especially polymers comprising in polymerized form 4-methyl-1-pentene and more especially highly isotactic polymers, a process of manufacture, methods to functionalize and articles formed therefrom.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: April 28, 2009
    Assignee: Dow Global Technolgies, Inc.
    Inventors: John R. Briggs, Edmund M. Carnahan, Phillip D. Hustad, Tia L. Jackson
  • Patent number: 7514517
    Abstract: Anti-blocking polymer compositions comprise at least one ethylene/?-olefin interpolymer and at least one anti-blocking agent comprising an amide. The ethylene/?-olefin interpolymers are a multi-block copolymer comprising at least one soft block and at least one hard block. The anti-blocking agent can be erucamide or other amides. The anti-blocking polymer composition has a pellet blocking strength of equal to or less than 100 lbs/ft2 (4800 Pa). When the anti-blocking polymer composition is made into a film, the film has a blocking force of less than about 100 grams, measured according to ASTM method D-3354.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: April 7, 2009
    Assignee: Dow Global Technologies Inc.
    Inventors: Stephen M. Hoenig, Yunwa W. Cheung, Daniel G. Moldovan
  • Publication number: 20090082523
    Abstract: The invention relates to a polyethylene resin having excellent slow crack growth property, in particular a resin having excellent durability in a pipe application, which has a specific (a) high-load melt flowrate (HLMFR; HLa), a specific (b) density (Da), and a specific (c) ?-olefin content (Ca) and in which (d) a breaking time (T) measured by notched Lander ESCR, the HLa, and the Ca satisfy log T??2.9×log HLa+5.1×log Ca+6.8. It further relates to a process for producing the resin and to a pipe and a joint each comprising the resin.
    Type: Application
    Filed: May 23, 2006
    Publication date: March 26, 2009
    Applicant: JAPAN POLYETHYLENE CORPORATION
    Inventors: Shigeki Saito, Yoshito Sasaki, Tetsuya Yoshikiyo, Hirofumi Nishibu
  • Publication number: 20090069475
    Abstract: This invention relates to a polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 15 mole % of ethylene, where the polymer has: a) a Dot T-Peel of 1 Newton or more; and b) a branching index (g?) of 0.95 or less measured at the Mz of the polymer; c) an Mw of 100,000 or less. This invention also relates a polymer comprising one or more C3 to C40 olefins where the polymer has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) a branching index (g?) of 0.95 or less measured at the Mz of the polymer; c) a Mw of 10,000 to 100,000; and d) a heat of fusion of 1 to 70 J/g. This invention also relates a polymer comprising one or more C3 to C40 olefins where the polymer has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) a branching index (g?) of 0.98 or less measured at the Mz of the polymer; c) a Mw of 10,000 to 60,000; d) a heat of fusion of 1 to 50 J/g.
    Type: Application
    Filed: August 2, 2007
    Publication date: March 12, 2009
    Inventors: Peijun Jiang, Armenag Hagop Dekmezian, Jo Ann Marie Canich, Charles Lewis Sims, Ramin Abhari, Cesar Alberto Garcia-Franco, David Raymond Johnsrud
  • Publication number: 20090036621
    Abstract: A catalyst system suitable for the polymerisation of olefins, said system comprising (a) a transition metal compound or lanthanide metal compound (b) a cocatalyst and (c) at least one porous support material characterised in that the porous support material has been pretreated with a halogen-containing organometallic compound, in particularly with a fluorine-containing organometallic compound. The catalyst system is particularly suitable for the preparation of polymers having broad molecular weight distributions from the polymerisation of olefins in the presence of a single site catalyst.
    Type: Application
    Filed: December 20, 2006
    Publication date: February 5, 2009
    Inventors: Grant Berent Jacobsen, Sergio Mastroianni
  • Patent number: 7482418
    Abstract: Improved thermoplastic polymer blend compositions comprising an isotactic polypropylene component and an alpha-olefin and propylene copolymer component, said copolymer comprising crystallizable alpha-olefin sequences. In a preferred embodiment, improved thermoplastic polymer blends are provided comprising from about 35% to about 85% isotactic polypropylene and from about 30% to about 70% of an ethylene and propylene copolymer, wherein said copolymer comprises isotactically crystallizable propylene sequences and is predominately propylene. The resultant blends manifest unexpected compatibility characteristics, increased tensile strength, and improved process characteristics, e.g., a single melting point.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 27, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sudhin Datta, Charles Cozewith, Periagaram Ravishankar, Edmund J. Stachowski
  • Publication number: 20090017160
    Abstract: A chewing gum contains a water-insoluble gum base portion containing a polyolefin thermoplastic elastomer; a water-soluble bulk portion; and at least one flavor component, which is cud-forming and chewable at mouth temperature.
    Type: Application
    Filed: September 12, 2008
    Publication date: January 15, 2009
    Applicant: WM. Wrigley Jr. Company
    Inventors: Chungsea Shen, Joo H. Song, Bruno Padovani, David W. Record
  • Patent number: 7456244
    Abstract: The instant invention is a high-density polyethylene composition, and method of making the same. The high-density polyethylene composition of the instant invention includes an ethylene alpha-olefin copolymer having a density in the range of 0.935 to 0.952 g/cm3, a melt index (I2) in the range of 30 to 75 g/10 minutes, an I21/I2 ratio in the range of 13-35, a Mw/Mn ratio in the range of 3.5-8. The high-density polyethylene composition has a brittleness temperature of at least less than ?20° C. The process for producing a high-density polyethylene composition according to instant invention includes the following steps: (1) introducing ethylene, and an alpha-olefin comonomer into a reactor; (2) copolymerizing the ethylene with the alpha-olefin comonomer in the reactor; and (3) thereby producing the high-density polyethylene composition, wherein the high-density polyethylene composition having a density in the range of 0.935 to 0.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: November 25, 2008
    Assignee: Dow Global Technologies
    Inventors: William J. Michie, Jr., Debra R. Wilson, Stephanie M. Whited, Michael A. Kinnan
  • Publication number: 20080281037
    Abstract: An adhesive composition comprises: (i) at least one ethylene/?-olefin interpolymer, (ii) at least one tackifÊer; and (iii) optionally at least one additive, such as a plasticizer, wax and antioxidant. Preferably, the ethylene/?-olefin interpolymer has a Mw/Mn from about 1.7 to about 3.5, at least one melting point, Tm, in degrees Celsius, and a density, d, in grams/cubic centimeter, wherein the numerical values of Tm and d correspond to the relationship: Tm?858.91?1825.3(d)+1112.8(d)2. The composition has relatively higher SAFT temperature and can be used in hot melt adhesives pressure-sensitive adhesives, and thermoplastic marking paints.
    Type: Application
    Filed: March 15, 2006
    Publication date: November 13, 2008
    Inventors: Teresa P. Karjala, Selim Yalvac, Charles F. Diehl, Yunwa W. Cheung, Cynthia L. Rickey
  • Patent number: 7411023
    Abstract: A polymer pipe for hot fluids, usually hot water is described. The pipe is characterised in that it comprises a multimodal polyethylene with a high molecular weight (HMW) fraction and a low molecular weight (LMW) fraction where said HMW fraction has a density of at least 0.920 g/cm3, and that the multimodal polyethylene has a density of 0.921-0.950 g/cm3 and has a time to failure at 95° C. and 3.6 MPa of at least 165 h determined according to DIN 16 833 and a modulus of elasticity of at most 900 MPa determined according to ISO 527-2/1B. Preferably, the multimodal polyethylene is a bimodal polyethylene, the LMW fraction having a density of 0.955-0.975 g/cm3, the HMW fraction having a density of 0.920-0.940 g/cm3, and the weight ratio of the LMW fraction to the HMW fraction being from 30:70 to 55:45.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: August 12, 2008
    Assignee: Borealis Technology Oy
    Inventor: Magnus Palmlof
  • Patent number: 7339019
    Abstract: A copolymer having monomer units derived from ethylene and monomer units derived from an ?-olefin of 3 to 20 carbon atoms, a density of 906 to 970 kg/m3 and an activation energy of flow of 50 kJ/mol or more, and satisfying specific relations among a melt complex viscosity, a melt flow rate and a characteristic relaxation time.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: March 4, 2008
    Assignee: Sumitomo Chemical Company, Ltd.
    Inventors: Yuki Iseki, Katsuhiro Yamada, Tatsuhiro Nagamatsu