Polymerizing In The Presence Of A Specified Material Other Than A Reactant And Other Than Group Ia Or Group Iia Material As Sole Metal Atom Patents (Class 528/179)
  • Patent number: 6887580
    Abstract: An adhesive polyimide resin which comprises a siloxane polyimide resin obtained from (A) an aromatic tetracarboxylic dianhydride and (B) a diamine ingredient comprising (B1) a diamine having a phenolic hydroxyl group, carboxyl group, or vinyl group as a crosslinkable reactive group and (B2) a siloxanediamine and has a glass transition temperature of 50 to 250?C and a Young's modulus (storage modulus) at 250?C of 105 Pa or higher; and a laminate which comprises a substrate comprising a conductor layer and an insulating supporting layer having at least one polyimide resin layer and, disposed on a surface of the substrate, an adhesive layer comprising a layer of the adhesive polyimide resin. The adhesive polyimide resin and the laminate have satisfactory adhesion strength even after exposure to a high temperature of up to 270?C and further have excellent heat resistance in reflow ovens. They are hence suitable for use in the bonding of electronic parts.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: May 3, 2005
    Assignee: Nippon Steel Chemical Co., Ltd.
    Inventors: Kiwamu Tokuhisa, Akira Tokumitsu, Kazuaki Kaneko
  • Patent number: 6887967
    Abstract: A thermosetting polyimide resin composition is provided which comprises a polyimide resin and an epoxy resin, which has excellent heat resistance, low dielectric constant and low dielectric loss tangent and also yields a cured article having good mechanical properties such as tensile strength and tensile elongation. Also, a process for producing a polyimide resin used in the polyimide resin composition is provided. The thermosetting polyimide resin composition comprises a polyimide resin (X), which has a carboxyl group and a linear hydrocarbon structure having a number-average molecular weight of 300 to 6,000, and an epoxy resin (Y).
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: May 3, 2005
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Eiju Ichinose, Yohzoh Yamashina, Hidenobu Ishikawa
  • Patent number: 6881815
    Abstract: A method for the synthesis of poly(etherimide)s comprises the reaction of 4-halotetrahydrophthalic anhydride with an activating primary amine to yield an activated 4-halotetrahydrophthalimide. Activated 4-halotetrahydrophthalimide may then be aromatized and treated with the disodium salt of a bis(phenol) to yield an activated bisimide. The activated bisimide may then be directly treated with a diamine to yield poly(etherimide)s.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: April 19, 2005
    Assignee: General Electric Company
    Inventors: Roy Ray Odle, Thomas Link Guggenheim
  • Patent number: 6852828
    Abstract: A poly amic acid precursor containing a combination of tetrahydrofuran and N-methylpyrrolidinone as cosolvents is described. Utilizing the combination of tetrahydrofuran and N-methylpyrrolidinone allows for the removal of significant portions of the solvent during the formation of the polyimide. The removal of tetrahydrofuran and N-methylpyrrolidinone can be done without the use of preheating zones so as to allow for the large scale production of polyimide articles.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: February 8, 2005
    Assignee: Medtronic, Inc.
    Inventor: Lisa Scott
  • Patent number: 6852826
    Abstract: In a step of polymerizing polyamic acid by mixing tetracarboxylic acid dianhydride and diamine and polycondensating the tetracarboxylic acid dianhydride and diamine under the presence of a polymerization-use solvent, a tetracarboxylic acid dianhydride slurry in which a tetracarboxylic acid dianhydride is dispersed in a dispersion medium is used. According to this, it is possible to directly manufacture a polyamic acid solution having a high concentration of polyamic acid more than or equal to 10% by weight. Especially, even if a tetracarboxylic acid dianhydride having low solubility in the polymerization-use solvent, it is possible to effectively manufacture a polyamic acid solution having high solids content, by a simple process and in a short time.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: February 8, 2005
    Assignee: Kanera Corporation
    Inventors: Kan Fujihara, Kazuhiro Ono, Kiyokazu Akahori
  • Patent number: 6849706
    Abstract: Copolyetherimides comprise phthalimide structural units comprising both 3- and 4-linkages, wherein the designations 3-linkage and 4-linkage refer to the isomeric positions on the phthalimide ring in the totality of phthalimide-comprising structural units in the copolymer. The products have excellent properties, including high glass transition and heat distortion temperatures, high ductility and good melt flow properties, and low polydispersity.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: February 1, 2005
    Assignee: General Electric Company
    Inventors: Daniel Joseph Brunelle, Havva Yagci Acar, Farid Fouad Khouri, William David Richards
  • Patent number: 6824642
    Abstract: The following invention relates to phenyl-linked polybenzoxazoles having terminal, aryl- or heteroaryl-attached cyanate groups which can be used for adhesive bonding and as dielectrics, especially for electronic components, and to a process for preparing them.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: November 30, 2004
    Assignee: Infineon Technologies AG
    Inventors: Andreas Walter, Recai Sezi
  • Patent number: 6797344
    Abstract: New aromatic diamine derivatives and the preparation thereof are disclosed. The diamine derivatives of the present invention can be added to conventional polymerization reactions of tetracarboxylic acids or dianhydrides thereof and diamines to form new polyamic acids. After high-temperature baking, the polyamic acids are cyclized to form polyimides. These polyimides can be used as alignment film materials for liquid crystal display cell and have good alignment property and stability, and are effective in promoting pre-tilt angles.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: September 28, 2004
    Assignee: Eternal Chemical Co., Ltd.
    Inventors: Wen-Chung Chu, Shih-Chieh Yeh, Chia-Wen Chang
  • Patent number: 6784275
    Abstract: Disclosed is an active energy ray-curable polyimide resin composition which comprises a polymerizable polyimide resin (I) having an isocyanurate ring, an alicyclic structure, an imide ring and a (meth)acryloyl group and being capable of patterning with a dilute alkali aqueous solution.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: August 31, 2004
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Eiju Ichinose, Yohzoh Yamashina, Hidenobu Ishikawa
  • Patent number: 6780960
    Abstract: A method of making a solution of a polyimide from a diamine monomer and a dianhydride monomer is disclosed. A solution or slurry of one of the monomers in a solvent that boils at a temperature between about 80° C. and about 160° C. is prepared. The solution or slurry is heated to a temperature between about 80° C. and about 160° C. and the other monomer is slowly added to the solution or slurry. Polyamic acid that is formed quickly imidizes to form the polyimide.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: August 24, 2004
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Michael C. Hausladen, Jin-O Choi
  • Patent number: 6777525
    Abstract: Polyimides having a desired combination of high thermo-oxidative stability, low moisture absorption and excellent chemical and corrosion resistance are prepared by reacting a mixture of compounds including (a) 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), (b) 3,4′-oxydianiline (3,4′-ODA), and (c) 5-norbornene-2,3-dicarboxylic anhydride (NA) in a high boiling, aprotic solvent to give 5 to 35% by weight of polyamic acid solution. The ratio of (a), (b), and (c) is selected to afford a family of polyimides having different molecular weights and properties. The mixture first forms a polyamic acid precursor. Upon heating at or above 300° C., the polyamic acids form polyimides, which are particularly suitable for use as a high temperature coating, adhesive, thin film, or composite matrix resin.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: August 17, 2004
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Ruth H. Pater
  • Patent number: 6774203
    Abstract: The present invention provides a method for producing a liquid crystalline polyester which is produced from an aromatic carboxylic acid, an aromatic hydroxycarboxylic acid, an aromatic diol and/or an aromatic hydroxylamine, including a polymerization step (1) for producing a prepolymer of the liquid crystalline polyester and a solid-state polymerization step (2) for elevating the polymerization degree of the resultant prepolymer, the number of aromatic ring terminal groups of the prepolymer satisfying the following equation (i): [(the number of aromatic ring terminal groups)/[(the number of carboxylic terminal groups)+(the number of aromatic ring terminal groups)]]×100≧7(%) (i). According to the invention, all-aromatic type liquid crystalline polyesters can be produced within a short time and at low cost.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: August 10, 2004
    Assignee: Polyplastics Co., Ltd.
    Inventor: Yasuyuki Fukute
  • Publication number: 20040152863
    Abstract: The present invention relates to methods for the preparation of polyesters, poly(ester amide)s and poly(ester imide)s. The materials obtained by the methods of present invention are useful as fluid separation membranes and as high performance materials.
    Type: Application
    Filed: February 2, 2004
    Publication date: August 5, 2004
    Inventors: Yong Ding, Benjamin Bikson
  • Patent number: 6770733
    Abstract: A film-formable polyimide copolymer, which comprises two kinds of tetracarboxylic acid dianhydride consisting of (A) pyromellitic acid dianhydride and (B) 3,3′,4,4′-benzophenonetetracarboxylic acid dianhydride, and (C) 6-amino-2-(p-aminophenyl)benzimidazole has a heat-resistant dimensional stability without any deterioration of mechanical properties inherent in the polyimide resin when used as a film.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: August 3, 2004
    Assignee: Nippon Mektron, Limited
    Inventors: Min Zuo, Jenq-Tain Lin
  • Patent number: 6750317
    Abstract: Polyhydroxyamides are polymerized to form highly-crosslinked, temperature-stable polymers. The polyhydroxyamides include as their central, parent structure a benzenetricarboxylic acid to which side chains containing a terminal reactive group are attached by an amide bond. By way of this reactive group, highly crosslinked polymers can be formed. In addition, the polyhydroxyamide can be added as an additive to polymers in order to bring about three-dimensional crosslinking.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: June 15, 2004
    Assignee: Infineon Technologies AG
    Inventors: Marcus Halik, Holger Hösch, Sezi Recai, Andreas Walter
  • Patent number: 6740371
    Abstract: An alkyldiamine having excellent polymerization reactivity, a polyimide comprising it as a constituting element, and a liquid crystal alignment film excellent in uniformity of liquid crystal alignment, are presented. Namely, the present invention relates to a diaminobenzene derivative represented by the following general formula (1) and to a polyimide obtained by reacting a diamine containing at least 1 mol % of the diaminobenzene derivative represented by the general formula (1), with at least one compound selected from a tetracarboxylic. dianhydride and its derivatives, to obtain a polyimide. precursor having a reduced viscosity of from 0.05 to 5.0 dl/g (in N-methylpyrrolidone at a temperature of 30° C., concentration: 0.5 g/dl) and ring-closing it, and having a repeating unit represented by the general formula (2). Further, the present invention relates to a liquid crystal alignment film containing at least 1 mol % of the above repeating unit.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: May 25, 2004
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Kazuyoshi Hosaka, Hideyuki Nawata, Takayasu Nihira, Hideyuki Isogai, Hideyuki Endou, Hiroyoshi Fukuro
  • Patent number: 6737503
    Abstract: The aromatic diamine compound of the present invention is represented by the following formula (1), and from the aromatic diamine compound a polyimide having a repeating unit represented by the following formula (4), which has low-temperature adherability, can be obtained. In the formulas (1) and (4), n is an integer of 3 to 7, each R is independently an atom or a group selected from the group consisting of a hydrogen atom, a halogen atom and a hydrocarbon group, the same or different two hetero atoms selected from nitrogen atoms and oxygen atoms bonded to each benzene ring are at the ortho- or meta-positions to each other on at least one benzene ring, and when n is 3, the hetero atoms are at the ortho- or meta-positions to each other on all the benzene rings. In the formula (4), Y is a tetravalent organic group.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: May 18, 2004
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yoichi Kodama, Minehiro Mori, Naoshi Nagai, Masaru Kawaguchi
  • Patent number: 6737502
    Abstract: A solvent-free, catalyst-free and contamination-free method of synthesis of polyimides is disclosed. The method includes polymerizing a diamine with 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) at a pressure of 0.1-760 mm Hg, preferably a reduced pressure at about 36 mm Hg, and a temperature of 90-400° C., preferably 10-240° C.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: May 18, 2004
    Assignee: Chung-Shan Institute of Science & Technology
    Inventor: Shean-Jeng Jong
  • Patent number: 6710160
    Abstract: Disclosed are a polyamic acid having repeating units represented by the formula (1): wherein the norbornane skeleton of comprises four components of and their contents satisfy the following: 1%≦2,5-[diexo]≦90%, 1%≦2,5-[exo,endo]≦90%, 1%≦2,6-[diexo]≦90%, 1% ≦2,6-[exo,endo]≦90%, provided that (2,5-[diexo])+(2,5-[exo,endo])+(2,6-[diexo])+(2,6-[exo,endo])=100%, R represents from 4 to 27 carbon atoms, and represents a tetravalent group selected from the group consisting of an aliphatic group, a monocyclic aliphatic group, a condensed polycyclic aliphatic group, a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aliphatic or aromatic group which is composed of cycloaliphatic or aromatic groups mutually bonded to each other either directly or via a crosslinking member; and a polyimide
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: March 23, 2004
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Wataru Yamashita, Katsuji Watanabe, Hideaki Oikawa, Hisato Ito
  • Patent number: 6642348
    Abstract: The present invention provides PMR-type polyimides that exhibit lower melt viscosities than PMR-type polyimides of the prior art. These PMR-type polyimides are created by incorporating flexible linkages, such as kinked structures and twisted or non-coplanar moietes into the backbone structure of the PMR. Specifically, the present invention provides for the production of PMR-type polyimides having 2,2′-disubstituted biaryls in the polymer backbone.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: November 4, 2003
    Assignee: The University of Akron
    Inventors: Ronald Eby, Michael Meador, Christopher Gariepy
  • Publication number: 20030194789
    Abstract: The invention provides polyhydroxyalkanoate having a bromo group in a unit and being thermally stable and capable of arbitrarily controlling physical properties, and a producing method thereof. According to the invention, there are provided a polyhydroxyalkanoate copolymer including a 3-hydroxy-&ohgr;-bromoalkanoic acid unit represented by a formula —[OCH((CH2)nBr)CH2C(O)]— (n=1 to 8) (1) and a unit represented by a formula —[OCH((CH2)mR)CH2C(O)]— (2) within a same molecule, and a method for producing a polyhydroxyalkanoate copolymer by microorganisms, utilizing a &ohgr;-bromoalkanoic acid represented by a formula Br(CH2)pCH2CH2COOH (p=1 to 8) (20) and a compound represented by a formula R(CH2)qCH2CH2COOH (21) as raw materials.
    Type: Application
    Filed: February 7, 2003
    Publication date: October 16, 2003
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tsutomu Honma, Shinya Kozaki, Takeshi Imamura, Takashi Kenmoku, Tatsuki Fukui, Etsuko Sugawa, Tetsuya Yano
  • Publication number: 20030186398
    Abstract: The invention relates to an enzymatic-chemical method for obtaining polyhydroxyalkanoates (PHA), especially poly-hydroxybutyrate (PHB), or the copolymers thereof, from biomass. The inventive method comprises chemically treating the biomass with a reducing agent that reduces the non-PHA cell components of the biomass. The chemical treatment is carried out before and/or after enzymatic cell disruption. The inventive method allows, unlike other cell disruption techniques, for obtaining polyhydroxyalkanoates from biomass with a relatively low PHA content (for example<60%) without drastically changing or deteriorating the polymer properties or polymer purity.
    Type: Application
    Filed: November 26, 2002
    Publication date: October 2, 2003
    Inventors: Dirk Schumann, Roland Arno Muller
  • Patent number: 6596839
    Abstract: A process for producing a wholly aromatic polyester which is excellent in heat resistance, mechanical properties and yet color and has a high degree of polymerization by melt polymerizing a dicarboxylic acid and a diol directly on an industrial scale at a low cost in a short period of time without esterifying the dicarboxylic acid or diol in advance. To produce the wholly aromatic polyester by reacting and molding an aromatic dicarboxylic acid such as terephthalic acid, an aromatic diol such as 2,2-bis(4-hydroxyphenyl)propane and a diaryl carbonate by heating, a combination of a specific pyridine compound and an alkali metal (bi)carbonate, a combination of a specific pyridine compound and an organic tin compound or a specific titanium compound is existent as a catalyst. Thereby, the wholly aromatic polyester having the above properties is obtained.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: July 22, 2003
    Assignee: Teijin Limited
    Inventors: Takanori Miyoshi, Hiroshi Sakurai, Toyoaki Ishiwata, Shunichi Matsumura
  • Patent number: 6586555
    Abstract: This invention provides processes of the preparation of polyamides, polyimides, and polyamideimides, which are easy to purify after reactions, from polycarboxylic acids and polyamines in high yield without side reactions such as a change of color to black by direct polycondensation reaction with heat, especially processes of preparing aromatic polyamides (aramids), aromatic polyimides, and aromatic polyamideimides, which are difficult to synthesize in direct polycondensation reaction. Polyamides, polymides, and polyamideimides are prepared in high yield by the polycondensation of aromatic dicarboxylic acids, aromatic tetracarboxylic acids or aromatic tricarboxylic acids and aromatic diamines, using arylboric acids such as 3,4,5-trifluorophenylboric acids as polycondensation catalysts, in a mixed solvent of pentamethylbenzene and N-methylpyrrolidinone or a mixed solvent of m-terphenyl and N-butylpyrrolidinone.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: July 1, 2003
    Assignee: Japan Science and Technology Corporation
    Inventors: Kazuaki Ishihara, Hisashi Yamamoto
  • Patent number: 6562935
    Abstract: A thermoplastic aromatic polysulfone resin which is advantageous as a material for use in coating, adhesion, composite material or the like and which has a reduced viscosity (RV) of 0.36 to 0.45 dl/g and a sum total A of the number of phenolic hydroxyl groups and the number of metallic salts thereof contained in 100 repeating units of the polymer of 1.6 or more.
    Type: Grant
    Filed: September 22, 1999
    Date of Patent: May 13, 2003
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Hiroshi Harada
  • Patent number: 6555238
    Abstract: A polyimide film is manufactured from a random copolymeric, block copolymeric or interpenetrating polymer network-type polyamic acid prepared from pyromellitic dianhydride in combination with 22 to 78 mol % of 4,4′-oxydianiline and 22 to 78 mol % of 3,4′-oxydianiline, based on the overall diamine. The polyimide film, when used as a metal interconnect board substrate in flexible circuits, chip scale packages (CSP), ball grid arrays (BGA) or tape-automated bonding (TAB) tape by providing metal interconnects on the surface thereof, achieves a good balance between a high elastic modulus, a low thermal expansion coefficient, alkali etchability and film formability.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: April 29, 2003
    Assignee: DuPont-Toray Co. Ltd.
    Inventors: Kenji Uhara, Naofumi Yasuda, Kouichi Sawasaki
  • Patent number: 6538097
    Abstract: A process for production of polyimide powder, which comprises reacting a biphenyltetracarboxylic dianhydride and an aromatic diamine in an amide-based solvent optionally containing a water-soluble ketone, in the presence of an imidazole at 1-100 equivalent percent based on the carboxylic acid content of the polyimide precursor, separating and collecting the produced polyimide precursor powder from a water-soluble ketone solvent containing 3-30 wt % of an amide-based solvent, and heating the polyimide precursor powder to an imidation rate of 90% or greater, as well as polyimide powder obtained thereby, molded bodies of the polyimide powder, and a process for production of the molded bodies.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: March 25, 2003
    Assignee: UBE Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Patent number: 6534622
    Abstract: A process for production of polyimide powder, which comprises reacting an aromatic diamine with a partial ester of a biphenyltetracarboxylic dianhydride, which is a partial ester of a biphenyltetracarboxylic dianhydride with a primary alcohol of 1-5 carbon atoms of which at least 30 mole percent is a 2,3,3′,4′-biphenyltetracarboxylic acid component, in the presence of the primary alcohol, separating out and collecting the resulting solid polyimide precursor and heating for dehydrating ring closure, polyimide powder obtained thereby, molded bodies of the polyimide powder, and a process for production of the molded bodies.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: March 18, 2003
    Assignee: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Patent number: 6518392
    Abstract: A novel dielectric composition is provided that is useful in the manufacture of integrated circuit devices and integrated circuit packaging devices. The dielectric composition is prepared by imidizing and curing an oligomeric precursor compound comprised of a central polybenzoxazole, polybenzothiazole, polyamic acid or polyamic acid ester segment end-capped at each terminus with an aryl-substituted acetylene moiety such as an ortho-bis(arylethynyl)aryl group, e.g., 3,4-bis(phenylethynyl)phenyl. Integrated circuit devices, integrated circuit packaging devices, and methods of synthesis and manufacture are provided as well.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: February 11, 2003
    Assignee: International Business Machines Corporation
    Inventors: Kenneth R. Carter, James L. Hedrick, Victor Yee-Way Lee, Dale C. McHerron, Robert D. Miller
  • Patent number: 6503538
    Abstract: The present invention provides elastomeric copolyester amides, elastomeric copolyester urethanes, and methods for making the same. The polymers that are based on &agr;-amino acids and possess suitable physical, chemical and biodegradation properties. The polymers are useful as carriers of drugs or other bioactive substances.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: January 7, 2003
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Chih-Chang Chu, Ramaz Katsarava
  • Patent number: 6500913
    Abstract: The present invention relates to a novel polyimide of the general formula (1) and a process for the preparation thereof.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: December 31, 2002
    Assignees: Council of Scientific and Industrial Research, Laboratoire des Materiaux Organiques a Proprietes Speciques
    Inventors: Jinu Suju Mathew, Subhash Pundlik Vernekar, Reges Mercier, Rachid Kerboua
  • Publication number: 20020198358
    Abstract: The present invention provides a polymer in which coumarin, a photo-reactive molecule, is grafted onto a polyimide for preparing liquid crystal alignment layer which has a superior alignment property and an excellent thermal stability in photo-alignment, a process for preparing the said grafted polymer, a process for preparing liquid crystal alignment layer by employing the said grafted polymer, and a liquid crystal alignment layer prepared by the process. The polymer of the invention is prepared by mixing a coumarin compound with a polyimide, dissolving the mixture in an organic solvent, adding a catalyst, and stirring under an environment of N2 gas. The polymer of the invention is superior in terms of the thermal stability, which makes possible its universal application for the development of a novel liquid crystal display(LCD).
    Type: Application
    Filed: March 8, 2002
    Publication date: December 26, 2002
    Inventors: Jung-Ki Park, Shi-joon Sung, Jong-Woo Lee
  • Patent number: 6498224
    Abstract: A new method for the synthesis of poly(etherimide)s comprises transimidation of bis(imide) (IV) in the presence of a substituted phthalic anhydride or 4-substituted tetrahydrophthalic anhydride to yield dianhydride (V) which may then be reacted with a diamine to produce poly(etherimide)s. By-product substituted N-alkylphthalimide or 4-substituted N-alkyltetrahydrophthalic anhydride may be recycled or converted to 4-substituted N-alkylphthalimide for use in the formation bisimide (IV), obviating the need for a nitration step.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: December 24, 2002
    Assignee: General Electric Company
    Inventors: Roy Ray Odle, Thomas Link Guggenheim, William James Swatos, Michael J. Vollmer
  • Patent number: 6489436
    Abstract: Novel polyimide copolymer, which is a copolymer of isopropylidene-bis-(4-phenyleneoxy-4-phthalic acid)dianhydride and 6-amino-2-(p-aminophenyl)benzimidazole or a copolymer of two kinds of tetracarboxylic acid dianhydrides consisting of isopropylidene-bis-(4-phenyleneoxy-4-phthalic acid)dianhydride and 3,3′,4,4′-benxophenonetetracarboxylic acid dianhydride and 6-amino-2-(p-aminophenyl)benzimidazole, can form a metal laminate by direct lamination with metallic foils. The metal laminate can fully satisfy the peel strength.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: December 3, 2002
    Assignee: Nippon Mektron, Limited
    Inventors: Jenq-Tain Lin, Hiroyuki Sekine, Alexandre L'vovich Rusanov, Lyubov Borisovna Elchina, Calina Valentinovna Kazakova, Yakov Semionovich Vygodskii
  • Patent number: 6489431
    Abstract: A polyimide precursor having a repeating unit represented by the following general formula (1), wherein R1 contains a bivalent organic group constituting a diamine having a hexafluoropropylidene group in its molecule represented by the following general formula (2), and the reduced viscosity is from 0.05 to 5.0 dl/g (in N-methylpyrrolidone at a temperature of 30° C., concentration: 0.5 g/dl), and a polyimide obtained by imidizing said precursor: (wherein R1 is a bivalent organic group constituting a diamine, A is a hydrogen atom, a linear alkyl group including a methyl group, or a trifluoromethyl group, and n is the number of a substituent on an aromatic ring and an integer of from 1 to 4).
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: December 3, 2002
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Kazuhisa Ishii, Takayasu Nihira, Hiroyoshi Fukuro
  • Patent number: 6486292
    Abstract: The present invention provides an optical polyimide compound defined by the following formula in an optical high polymer material: wherein X is Cl, Br, oxo-halide, or fully halogenated alkyl; A is a divalent aromatic or halogenated aromatic moiety; and Z is a tetravalent moiety which may be a partly or fully fluorinated aromatic ring, a partly or fully chlorinated aromatic ring, a partly or fully fluorinated cycloaliphatic group, a partly or fully chlorinated aliphatic group, or combinations thereof connected via hetero atoms.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: November 26, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Hee You, Kwan-Soo Han, Tae-Hyung Rhee, Eun-Ji Kim, Jung-Hee Kim, Woo-Hyeuk Jang
  • Patent number: 6482915
    Abstract: The invention provides a method for producing a thermotropic liquid crystalline polymer of high quality at high yield and in short polymerization time, which method includes polymerizing staring monomers I, II, III, and IV, i.e., (I) an aromatic hydroxycarboxylic acid, etc.; (II) an aromatic dicarboxylic acid and an alicyclic dicarboxylic acid; (III) an aromatic diol, an alicyclic diol, an aliphatic diol, etc.; and (IV) an aromatic hydroxylamine, an aromatic diamine, etc. in the presence of an acylating agent, wherein the starting materials are charged so as to satisfy the following equations (1) to (4): 0.0015≦((A)−(B))/((A)+(B))≦0.006  (1); 1.01≦(D)/(C)≦1.08  (2); 0≦(E)≦40  (3); and (D)/(C)≧−0.002 ×(E)+1.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: November 19, 2002
    Assignee: Polyplastics Co., Ltd.
    Inventor: Toshiaki Yokota
  • Patent number: 6479615
    Abstract: The polyamic acid of the invention can be obtained by the reaction of an acid anhydride component comprising pyromellitic anhydride and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane with 2,2′-di-substituted-4,4′-diaminobiphenyls as a first aromatic diamine and any aromatic diamine component, as a second aromatic diamine, of 2,2-bis(4-aminophenoxyphenyl)propanes, 1,1-bis(4-(4-aminophenoxy)-3-t-butyl-6-methylphenyl)butane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane and &agr;,&agr;′-bis(4-aminophenyl)diisopropylbenzenes in an organic solvent. The polyimide resin of the invention can be obtained by heating such a polyamic acid solution. In the production of a circuit board, by using a photosensitive polyamic acid having a sensitizer incorporated in such a polyamic acid solution, a patterned polyimide resin layer can be provided as an insulation layer on a metal foil.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: November 12, 2002
    Assignee: Nitto Denko Corporation
    Inventors: Takahiro Fukuoka, Amane Mochizuki, Naoki Kurata, Naotaka Kinjo, Toshihiko Omote
  • Publication number: 20020156231
    Abstract: An electronically active film comprising a compound of the formula: 1
    Type: Application
    Filed: April 20, 2001
    Publication date: October 24, 2002
    Inventors: Geoffrey A. Lindsay, Richard A. Hollins, John D. Stenger-Smith, Peter Zarras
  • Patent number: 6451955
    Abstract: A method of making a solution of a polyimide from a diamine monomer and a dianhydride monomer is disclosed. A solution or slurry of one of the monomers in a solvent that boils at a temperature between about 80° C. and about 160° C. is prepared. The solution or slurry is heated to a temperature between about 80° C. and about 160° C. and the other monomer is slowly added to the solution or slurry. Polyamic acid that is formed quickly imidizes to form the polyimide.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: September 17, 2002
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Michael C. Hausladen, Jin-O Choi
  • Patent number: 6420511
    Abstract: This invention relates to a process for the preparation of aromatic polyesters which comprises polymerization of a aromatic dicarboxylic acid substituted with a polar group weight percentage in the range of 20 to 75 with a substituted aromatic diol weight percentage in the range of 25 to 78 by known method herein described.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: July 16, 2002
    Assignee: Council of Scientific and Industrial Research
    Inventors: Ulhas K. Kharul, Sudhir S. Kulkarni
  • Patent number: 6417291
    Abstract: In a process for producing a polyarylate through the polycondensation of an aromatic dihydroxy compound and an aromatic ester bond forming precursor, a salicylic acid ester compound having a specific structure is used as a terminal modifying agent. In a process for producing a polyarylate through the polycondensation of an aromatic dihydroxy compound and an ester bond forming aromatic dicarboxylic acid derivative, a polyarylate of high-molecular weight having excellent color tone and hue stability is obtained.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: July 9, 2002
    Assignee: Teijin Limited
    Inventors: Hiroaki Kaneko, Wataru Funakoshi, Yuichi Kageyama, Katsushi Sasaki
  • Patent number: 6403755
    Abstract: A new phosphazene-based polyester macro-molecule is provided, as is a method for producing the macro-molecule.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: June 11, 2002
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Frederick F. Stewart, Thomas A. Luther, Mason K. Harrup
  • Publication number: 20020052464
    Abstract: A process for production of polyimide powder, which comprises reacting a biphenyltetracarboxlic dianhydride and an aromatic diamine in an amide-based solvent optionally containing a water-soluble ketone, in the presence of an imidazole at 1-100 equivalent percent based on the carboxylic acid content of the polyimide precursor, separating and collecting the produced polyimide precursor powder from a water-soluble ketone solvent containing 3-30 wt % of an amide-based solvent, and heating the polyimide precursor powder to an imidation rate of 90% or greater, as well as polyimide powder obtained thereby, molded bodies of the polyimide powder, and a process for production of the molded bodies.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 2, 2002
    Applicant: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Publication number: 20020052463
    Abstract: A process for production of polyimide powder, which comprises reacting an aromatic diamine with a partial ester of a biphenyltetracarboxylic dianhydride, which is a partial ester of a biphenyltetracarboxylic dianhydride with a primary alcohol of 1-5 carbon atoms of which at least 30 mole percent is a 2,3,3′,4′-biphenyltetracarboxylic acid component, in the presence of the primary alcohol, separating out and collecting the resulting solid polyimide precursor and heating for dehydrating ring closure, polyimide powder obtained thereby, molded bodies of the polyimide powder, and a process for production of the molded bodies.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 2, 2002
    Applicant: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Patent number: 6359102
    Abstract: Improvements are disclosed for biphasic polymerization processes in which an aqueous solution of a first monomer that is hydrolytically unstable below a pH of about six or above a pH of about eight is admixed with a water-immiscible organic solvent and there is added to the admixture a catalyst selected from tertiary amine, quaternary amine and phosphonium catalysts, an acid-forming co-monomer for the first monomer, an acid scavenger, after which the resulting polymer is recovered, wherein the improvement includes providing the aqueous solution at a pH between about si and about eight, and adding to the admixture the acid-forming co-monomer and the acid scavenger at relative rates effective to maintain the pH of the admixture between about six and about eight. The catalyst may be added in a molar ratio to the first monomer effective to provide a predetermined weight-average or number-average molecular weight for the resulting polymer.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: March 19, 2002
    Assignee: Integra LifeSciences I, Ltd.
    Inventors: John E. Kemnitzer, George L. Brode, Joachim B. Kohn
  • Patent number: 6359107
    Abstract: A composition of and method for making high performance imide resins that are processable by resin transfer molding (RTM) and resin infusion (RI) techniques were developed. Materials with a combination of properties, making them particularly useful for the fabrication of composite parts via RTM and/or RI processes, were prepared, characterized and fabricated into moldings and carbon fiber reinforced composites and their mechanical properties were determined. These materials are particularly useful for the fabrication of structural composite components for aerospace applications. The method for making high performance resins for RTM and RI processes is a multi-faceted approach. It involves the preparation of a mixture of products from a combination of aromatic diamines and aromatic dianhydrides at relatively low calculated molecular weights (i.e. high stoichiometric offsets) and endcapping with latent reactive groups.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: March 19, 2002
    Assignee: The United States of America as represented by the Administrator, National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Paul M. Hergenrother
  • Publication number: 20020028905
    Abstract: The invention provides a method for producing a thermotropic liquid crystalline polymer of high quality at high yield and in short polymerization time, which method includes polymerizing staring monomers I, II, III, and IV, i.e., (I) an aromatic hydroxycarboxylic acid, etc.; (II) an aromatic dicarboxylic acid and an alicyclic dicarboxylic acid; (III) an aromatic diol, an alicyclic diol, an aliphatic diol, etc.; and (IV) an aromatic hydroxylamine, an aromatic diamine, etc.
    Type: Application
    Filed: July 19, 2001
    Publication date: March 7, 2002
    Applicant: POLYPLASTICS CO., LTD.
    Inventor: Toshiaki Yokota
  • Patent number: 6350844
    Abstract: A polyimide film having sufficiently excellent characteristics such as a sufficiently high elastic modulus, a low water absorption, a small coefficient of moisture-absorption expansion, a small coefficient of linear expansion and a high dimensional stability; and various electric/electronic equipment bases with the use of the polyimide film. A polyimide film having a tensile elastic modulus of 700 kg/mm2 or less and a coefficient of moisture-absorption expansion of 20 ppm or less and containing a specific repeating unit as an essential repeating unit is synthesized. Then various electric/electronic equipment bases such as a laminate for flexible print connection boards are produced by using the polyimide film.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: February 26, 2002
    Assignee: Kaneka Corporation
    Inventors: Kazuhiro Ono, Kiyokazu Akahori, Hidehito Nishimura
  • Patent number: 6350845
    Abstract: Novel polyimides substituted by a substituent having an alkyl or fluoroalkyl group and having reduced water absorption; a process for producing these novel polyimides; and novel acid dianhydrides to be used in the production thereof. A polyimide containing a structure represented by the following general formula (I): wherein X1 represents a tetravalent organic group having a substituent —R1AR2 (wherein A represents a divalent linkage group; R1 represents a single bond or a C1-3 alkylene group; and R2 represents a C1-25 alkyl group or a fluoroalkyl group); and Y represents a divalent organic group.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: February 26, 2002
    Assignee: Kaneka Corporation
    Inventors: Koji Okada, Shoji Hara, Hitoshi Nojiri