Reactant Contains Three Or More Carboxylic Acid Groups Or Is Derivative Thereof Patents (Class 528/188)
  • Patent number: 6498224
    Abstract: A new method for the synthesis of poly(etherimide)s comprises transimidation of bis(imide) (IV) in the presence of a substituted phthalic anhydride or 4-substituted tetrahydrophthalic anhydride to yield dianhydride (V) which may then be reacted with a diamine to produce poly(etherimide)s. By-product substituted N-alkylphthalimide or 4-substituted N-alkyltetrahydrophthalic anhydride may be recycled or converted to 4-substituted N-alkylphthalimide for use in the formation bisimide (IV), obviating the need for a nitration step.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: December 24, 2002
    Assignee: General Electric Company
    Inventors: Roy Ray Odle, Thomas Link Guggenheim, William James Swatos, Michael J. Vollmer
  • Patent number: 6498226
    Abstract: This invention provides cycloaliphatic polyimide having the following formula (I): wherein 1 and n are integers from 4 to 7; m is an integer from 0 to 2; p is an integer from 1 to 8; polycyclic aliphatic compound R reprents C1-8 cycloalkyl, cycloalkenyl, cycloalkynyl, norbornenyl, decalinyl, adamantanyl, or cubanyl. That cycloaliphatic polyimide can be a through transparent film, their thermal stability is over 430° C. and dielectric constant is about 2.7.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: December 24, 2002
    Assignee: Industrial Technology Research Institute
    Inventors: Kung-Lung Cheng, Shu-Chen Lin, Wen-Ling Lui, Chih-Hsiang Lin, Wei-Ling Lin, Woan-Shiow Tzeng
  • Publication number: 20020188090
    Abstract: Disclosed are a polyamic acid having repeating units represented by the formula (1): 1
    Type: Application
    Filed: March 20, 2002
    Publication date: December 12, 2002
    Inventors: Wataru Yamashita, Katsuji Watanabe, Hideaki Oikawa, Hisato Ito
  • Patent number: 6489436
    Abstract: Novel polyimide copolymer, which is a copolymer of isopropylidene-bis-(4-phenyleneoxy-4-phthalic acid)dianhydride and 6-amino-2-(p-aminophenyl)benzimidazole or a copolymer of two kinds of tetracarboxylic acid dianhydrides consisting of isopropylidene-bis-(4-phenyleneoxy-4-phthalic acid)dianhydride and 3,3′,4,4′-benxophenonetetracarboxylic acid dianhydride and 6-amino-2-(p-aminophenyl)benzimidazole, can form a metal laminate by direct lamination with metallic foils. The metal laminate can fully satisfy the peel strength.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: December 3, 2002
    Assignee: Nippon Mektron, Limited
    Inventors: Jenq-Tain Lin, Hiroyuki Sekine, Alexandre L'vovich Rusanov, Lyubov Borisovna Elchina, Calina Valentinovna Kazakova, Yakov Semionovich Vygodskii
  • Patent number: 6489431
    Abstract: A polyimide precursor having a repeating unit represented by the following general formula (1), wherein R1 contains a bivalent organic group constituting a diamine having a hexafluoropropylidene group in its molecule represented by the following general formula (2), and the reduced viscosity is from 0.05 to 5.0 dl/g (in N-methylpyrrolidone at a temperature of 30° C., concentration: 0.5 g/dl), and a polyimide obtained by imidizing said precursor: (wherein R1 is a bivalent organic group constituting a diamine, A is a hydrogen atom, a linear alkyl group including a methyl group, or a trifluoromethyl group, and n is the number of a substituent on an aromatic ring and an integer of from 1 to 4).
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: December 3, 2002
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Kazuhisa Ishii, Takayasu Nihira, Hiroyoshi Fukuro
  • Patent number: 6486292
    Abstract: The present invention provides an optical polyimide compound defined by the following formula in an optical high polymer material: wherein X is Cl, Br, oxo-halide, or fully halogenated alkyl; A is a divalent aromatic or halogenated aromatic moiety; and Z is a tetravalent moiety which may be a partly or fully fluorinated aromatic ring, a partly or fully chlorinated aromatic ring, a partly or fully fluorinated cycloaliphatic group, a partly or fully chlorinated aliphatic group, or combinations thereof connected via hetero atoms.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: November 26, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Hee You, Kwan-Soo Han, Tae-Hyung Rhee, Eun-Ji Kim, Jung-Hee Kim, Woo-Hyeuk Jang
  • Patent number: 6479615
    Abstract: The polyamic acid of the invention can be obtained by the reaction of an acid anhydride component comprising pyromellitic anhydride and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane with 2,2′-di-substituted-4,4′-diaminobiphenyls as a first aromatic diamine and any aromatic diamine component, as a second aromatic diamine, of 2,2-bis(4-aminophenoxyphenyl)propanes, 1,1-bis(4-(4-aminophenoxy)-3-t-butyl-6-methylphenyl)butane, 2,2-bis(3-amino-4-methylphenyl)hexafluoropropane and &agr;,&agr;′-bis(4-aminophenyl)diisopropylbenzenes in an organic solvent. The polyimide resin of the invention can be obtained by heating such a polyamic acid solution. In the production of a circuit board, by using a photosensitive polyamic acid having a sensitizer incorporated in such a polyamic acid solution, a patterned polyimide resin layer can be provided as an insulation layer on a metal foil.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: November 12, 2002
    Assignee: Nitto Denko Corporation
    Inventors: Takahiro Fukuoka, Amane Mochizuki, Naoki Kurata, Naotaka Kinjo, Toshihiko Omote
  • Patent number: 6476177
    Abstract: Random, melt-processible copolyimides are disclosed herein. These copolyimides are semicrystalline and exhibit recoverable (semi)crystallinity from their melts. Associated processes, which entail either solution polymerization or melt polymerization, for producing and fabricating these copolyimides into useful articles having a predetermined shape are also disclosed.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 5, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Brian C. Auman, William R Corcoran, Jr., John R Dodd, Mark A Guidry, John D. Summers
  • Patent number: 6476182
    Abstract: Random, melt-processible copolyimides are disclosed herein. These copolyimides are semicrystalline and exhibit recoverable (semi)crystallinity from their melts. Associated processes, which entail either solution polymerization or melt polymerization, for producing and fabricating these copolyimides into useful articles having a predetermined shape are also disclosed.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 5, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Brian C Auman, William R Corcoran, Jr., John D Summers
  • Publication number: 20020156231
    Abstract: An electronically active film comprising a compound of the formula: 1
    Type: Application
    Filed: April 20, 2001
    Publication date: October 24, 2002
    Inventors: Geoffrey A. Lindsay, Richard A. Hollins, John D. Stenger-Smith, Peter Zarras
  • Patent number: 6469126
    Abstract: Random, melt-processible copolyimides are disclosed herein. These copolyimides are semicrystalline and exhibit recoverable (semi)crystallinity from their melts. Associated processes, which entail either solution polymerization or melt polymerization, for producing and fabricating these copolyimides into useful articles having a predetermined shape are also disclosed.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: October 22, 2002
    Assignee: E. I. du Pont de Nmeours and Company
    Inventors: Brian C. Auman, William R. Corcoran, Jr., John D. Summers
  • Patent number: 6451956
    Abstract: In a photoconductive element comprising a conductive support, e.g., an electrically conductive film, drum or belt on which a negatively chargeable photoconductive layer is formed, an electrical barrier layer is formed between the support and the photoconductive layer. The barrier layer provides a high energy barrier to the injection of positive charges but transports electrons under an applied electric field. The barrier layer of the invention transports charge by electronic rather than ionic mechanisms and, therefore, is not substantially affected by humidity changes. The barrier layer comprises a polyester-co-imide, polyesterionomer-co-imide or polyamide-co-imide having covalently bonded as repeating units in the polymer chain, aromatic tetracarboxylbisimide groups of the formula: wherein Ar1 and Ar2 represent, respectively, tetravalent and trivalent aromatic groups of 6 to 20 carbon atoms.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: September 17, 2002
    Assignee: Nex Press Solutions LLC
    Inventors: Louis J. Sorriero, Marie B. O'Regan, Michel F. Molaire
  • Patent number: 6441127
    Abstract: An alignment treating agent for a liquid crystal cell, which comprises a polyimide resin of the formula (I): wherein R1 is a tetravalent organic group constituting a tetracarboxylic acid or its derivative, R2 is a bivalent organic group constituting a diamine, and m is a positive integer, provided that at least 10 mol % of R2 is a bivalent organic group selected from the group consisting of: wherein X is H, OH, an alkyl group, an alkoxy group, a carboxyl group, an acyl group or a halogen atom, said polyimide resin being made insoluble in an organic solvent by coating a precursor solution of said polyimide resin on a substrate, followed by heating.
    Type: Grant
    Filed: January 19, 1994
    Date of Patent: August 27, 2002
    Assignee: Nissan Chemical Industries Ltd.
    Inventors: Kiyoshi Sawahata, Toyohiko Abe, Yoshihiro Tsuruoka, Hiroyoshi Fukuro
  • Publication number: 20020099166
    Abstract: An acid dianhydride, together with a diamine, is heated in an organic polar solvent in the presence of &ggr;-caprolactone or &bgr;-butyrolactone as an acid catalyst to prepare a polyimide having an average molecular weight of 10,000 to 300,000. This production process can realize the production of a polyimide which is soluble in a solvent and has high processability and stability.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 25, 2002
    Applicant: HITACHI CABLE,LTD.
    Inventors: Katsumoto Hosokawa, Yuuki Honda, Seiji Kamimura, Yoshiyuki Ando, Kenji Asano
  • Publication number: 20020052463
    Abstract: A process for production of polyimide powder, which comprises reacting an aromatic diamine with a partial ester of a biphenyltetracarboxylic dianhydride, which is a partial ester of a biphenyltetracarboxylic dianhydride with a primary alcohol of 1-5 carbon atoms of which at least 30 mole percent is a 2,3,3′,4′-biphenyltetracarboxylic acid component, in the presence of the primary alcohol, separating out and collecting the resulting solid polyimide precursor and heating for dehydrating ring closure, polyimide powder obtained thereby, molded bodies of the polyimide powder, and a process for production of the molded bodies.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 2, 2002
    Applicant: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Publication number: 20020052464
    Abstract: A process for production of polyimide powder, which comprises reacting a biphenyltetracarboxlic dianhydride and an aromatic diamine in an amide-based solvent optionally containing a water-soluble ketone, in the presence of an imidazole at 1-100 equivalent percent based on the carboxylic acid content of the polyimide precursor, separating and collecting the produced polyimide precursor powder from a water-soluble ketone solvent containing 3-30 wt % of an amide-based solvent, and heating the polyimide precursor powder to an imidation rate of 90% or greater, as well as polyimide powder obtained thereby, molded bodies of the polyimide powder, and a process for production of the molded bodies.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 2, 2002
    Applicant: Ube Industries, Ltd.
    Inventors: Hiroaki Yamaguchi, Fumio Aoki
  • Publication number: 20020037991
    Abstract: A 6,6′-dialkyl-3,3′,4,4′-biphenyltetracarboxylic dianhydride is prepared by brominating a 4-alkylphthalic anhydride at its 5-position, and coupling the bromination product in the presence of a nickel catalyst; A photosensitive resin composition containing a polyimide precursor having repetitive units of general formula (7) is applied onto a substrate, exposed to 1-line, developed and heated to form a polyimide relief pattern.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 28, 2002
    Applicant: Hitachi Chemical DuPont MicroSystems Ltd.
    Inventors: Noriyoshi Arai, Makoto Kaji, Akihiro Sasaki, Toshiki Hagiwara
  • Publication number: 20020035196
    Abstract: A polyimide resin composition comprising a polyimide resin (A) and at least one 1H-tetrazole (B) selected from the group consisting of 1H-tetrazole, 5,5′-bis-1H-tetrazole, and derivatives thereof, and having an excellent rust preventing effect on copper and copper alloys.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 21, 2002
    Inventors: Akira Tanaka, Satoshi Tazaki, Yasuhiro Yoneda, Kishio Yokouchi
  • Patent number: 6359107
    Abstract: A composition of and method for making high performance imide resins that are processable by resin transfer molding (RTM) and resin infusion (RI) techniques were developed. Materials with a combination of properties, making them particularly useful for the fabrication of composite parts via RTM and/or RI processes, were prepared, characterized and fabricated into moldings and carbon fiber reinforced composites and their mechanical properties were determined. These materials are particularly useful for the fabrication of structural composite components for aerospace applications. The method for making high performance resins for RTM and RI processes is a multi-faceted approach. It involves the preparation of a mixture of products from a combination of aromatic diamines and aromatic dianhydrides at relatively low calculated molecular weights (i.e. high stoichiometric offsets) and endcapping with latent reactive groups.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: March 19, 2002
    Assignee: The United States of America as represented by the Administrator, National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Paul M. Hergenrother
  • Publication number: 20020032273
    Abstract: A polyimide resin composition comprising a polyimide resin (A) and at least one 1H-tetrazole (B) selected from the group consisting of 1H-tetrazole, 5,5′-bis-1H-tetrazole, and derivatives thereof, and having an excellent rust preventing effect on copper and copper alloys.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 14, 2002
    Inventors: Akira Tanaka, Satoshi Tazaki, Yasuhiro Yoneda, Kishio Yokouchi
  • Patent number: 6355357
    Abstract: A flexible printed board, in which a polyimide resulting from the imidation of a polyamic acid obtained by the addition polymerization of diamines and acid dianhydrides is formed as an insulating layer on a metal foil, is characterized in that the diamines include specific imidazolyl-diaminoazines represented by the formula 1; (where A is an imidazolyl group; R1 is an alkylene group; m is 0 or 1; R2 is an alkyl group; n is 0, 1, or 2; R3 and R4 are alkylene groups; p and q are each 0 or 1; and B is an azine residue, diazine residue, or triazine residue).
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: March 12, 2002
    Assignee: Sony Chemicals Corp.
    Inventors: Satoshi Takahashi, Hidetsugu Namiki
  • Patent number: 6350845
    Abstract: Novel polyimides substituted by a substituent having an alkyl or fluoroalkyl group and having reduced water absorption; a process for producing these novel polyimides; and novel acid dianhydrides to be used in the production thereof. A polyimide containing a structure represented by the following general formula (I): wherein X1 represents a tetravalent organic group having a substituent —R1AR2 (wherein A represents a divalent linkage group; R1 represents a single bond or a C1-3 alkylene group; and R2 represents a C1-25 alkyl group or a fluoroalkyl group); and Y represents a divalent organic group.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: February 26, 2002
    Assignee: Kaneka Corporation
    Inventors: Koji Okada, Shoji Hara, Hitoshi Nojiri
  • Patent number: 6350817
    Abstract: Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: February 26, 2002
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 6350844
    Abstract: A polyimide film having sufficiently excellent characteristics such as a sufficiently high elastic modulus, a low water absorption, a small coefficient of moisture-absorption expansion, a small coefficient of linear expansion and a high dimensional stability; and various electric/electronic equipment bases with the use of the polyimide film. A polyimide film having a tensile elastic modulus of 700 kg/mm2 or less and a coefficient of moisture-absorption expansion of 20 ppm or less and containing a specific repeating unit as an essential repeating unit is synthesized. Then various electric/electronic equipment bases such as a laminate for flexible print connection boards are produced by using the polyimide film.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: February 26, 2002
    Assignee: Kaneka Corporation
    Inventors: Kazuhiro Ono, Kiyokazu Akahori, Hidehito Nishimura
  • Patent number: 6335416
    Abstract: A polyimide film, which is produced from polyamide acid prepared through the reaction of p-phenylenebis(trimellitic acid monoester anhydride), oxydiphthalic acid dianhydride, p-phenylenediamine, and 4,4′-diaminodiphenylether in an organic solvent, and which has a high elastic modulus, a high elongation, a low coefficient of linear expansion which is not quite different from that of copper, and a low coefficient of hygroscopic expansion.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: January 1, 2002
    Assignee: Kaneka Corporation
    Inventors: Hitoshi Nojiri, Koichiro Tanaka
  • Patent number: 6335418
    Abstract: A primary object of the invention is to provide a production technology for functional polyamic acid microfine particles and functional polyimide microfine particles by which the particle shape, size and size distribution can be freely controlled. The invention is concerned with a process for synthesizing polyamic acid particles having functional groups at least on the surface from a tetracarboxylic anhydride and a diamine compound characterized by its comprising (a) a first step which comprises providing a tetracarboxylic anhydride and a diamine compound at least one of which has functional groups and preparing a first solution containing the tetracarboxylic anhydride and a second solution containing the diamine compound and (b) a second step which comprises mixing the first and second solutions under ultrasonic agitation to thereby precipitate polyamic acid microfine particles from the mixed solution.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 1, 2002
    Assignees: Osaka Prefectural Government, Sumitomo Bakelite Co., Ltd.
    Inventors: Katsuya Asao, Hitoshi Morita, Hitoshi Onishi, Masaki Kimoto, Yayoi Yoshioka, Hidenori Saito
  • Patent number: 6333391
    Abstract: A process for the preparation of an oligomeric polyimide comprises: mixing a tetracarboxylic acid, a dianhydride, a partially hydrolysed dianhydride or a mixture thereof with a diamine in a reaction medium comprising greater than 80% by weight water, and heating mixture in said reaction medium at a temperature above 100° C. for a time sufficient to form said oligomeric polyimide.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: December 25, 2001
    Assignees: Commonwealth Scientific and Industrial Research Organisation, The Boeing Company
    Inventors: Bronwyn Glenice Laycock, David Geoffrey Hawthorne, Jonathan Howard Hodgkin, Trevor Charles Morton
  • Patent number: 6333392
    Abstract: An object of the invention is to provide thermosetting amic acid microfine particles, thermosetting imide microfine particles and crosslinked imide microfine particles of controlled particle shape and size distribution. The invention provides a production technology which comprises mixing a first solution containing a tetracarboxylic anhydride and a C═C bond-containing acid anhydride with a second solution containing a diamine compound, causing precipitation of thermosetting amic acid microfine particles from the resulting mixture, and further producing thermosetting imide microfine particles and crosslinked imide microfine particles from the thermosetting amic acid microfine particles.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: December 25, 2001
    Assignees: Sumitomo Bakelite and Co. Ltd., Osaka Prefectual Government
    Inventors: Katsuya Asao, Hidenori Saito
  • Publication number: 20010051705
    Abstract: The invention relates to a fluorine-containing polybenzoxazole including a structural unit represented by the general formula (1): 1
    Type: Application
    Filed: July 16, 2001
    Publication date: December 13, 2001
    Applicant: Central Glass Company, Limited
    Inventors: Kazuhiko Maeda, Yoshihiro Moroi, Michio Ishida, Kentaro Tsutsumi
  • Patent number: 6320019
    Abstract: A method for preparing polyamic acid and polyimide of three-dimensional molecular structure such that these polymers are superior in adhesive strength and high-temperature stability while maintaining their inherent thermal resistance and mechanical properties, and thus can be effectively used as an adhesive material for high temperature adhesive tapes suitable for semiconductor assembly.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: November 20, 2001
    Assignee: Saehan Industries Incorporation
    Inventors: Kyung Rok Lee, Soon Sik Kim, Kyeong Ho Chang, Jeong Min Kweon
  • Patent number: 6316574
    Abstract: The present invention provides a liquid crystal display element having an adequate pre-tilt angle for preventing the reverse domain, as well as excellent electrical properties by preparation of the polyamic acid composition for the liquid crystal display element which comprises a polyamic acid A that excels in electrical properties and a polyamic acid B that has side chains, mixed in the ratio A/B of 50/50 to 95/5 (by weight).
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: November 13, 2001
    Assignee: Chisso Corporation
    Inventors: Satoshi Tanioka, Shizuo Murata, Itsuo Shimizu, Kazumi Ito
  • Patent number: 6316589
    Abstract: A polyimide for optical communications, which is expressed by the formula (1) where R1 and R2 are independently selected from the group consisting of CF3, CCl3, unsubstituted aromatic ring group and halogenerated aromatic ring group; R3 and R4 are independently selected from the group consisting of Cl, F, I, Br, CF3, CCl3, unsubstituted aromatic ring group and halogenated aromatic ring group; and n is an integer from 1 to 39. The polyimides have a superior heat resistance, and can avoid the increase in optical absorption loss due to a refractive index increase and deterioration of adhesive and coating properties due to weak surface tension of a polyimide film. In addition, use of the polyimides as a material for a core layer of optical waveguides can expand the selection range of material for the cladding layer of the optical waveguide.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: November 13, 2001
    Assignee: SamSung Electronics Co., Ltd
    Inventors: Kyung-Hee You, Kwan-Soo Han, Tae-Hyung Rhee
  • Patent number: 6310135
    Abstract: A polyimide resin composition comprising a polyimide resin (A) and at least one 1H-tetrazole (B) selected from the group consisting of 1H-tetrazole, 5,5′-bis-1H-tetrazole, and derivatives thereof, and having an excellent rust preventing effect on copper and copper alloys.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: October 30, 2001
    Assignee: Nippon Zeon Co., Ltd.
    Inventors: Akira Tanaka, Satoshi Tazaki, Yasuhiro Yoneda, Kishio Yokouchi
  • Patent number: 6307008
    Abstract: A polymide useful as an adhesive for semiconductor assemblies having excellent thermal resistance and adhesive strength at high temperatures.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: October 23, 2001
    Assignee: Saehan Industries Corporation
    Inventors: Kyung Rok Lee, Soon Sik Kim, Kyeong Ho Chang, Jeong Min Kweon
  • Patent number: 6303744
    Abstract: Polyimides and the process for preparing polyimides having improved thermal-oxidative stability derived from the polymerization of effective amounts of one or more of the polyamines such as the aromatic diamines, one or more of the tetracarboxylic dianhydrides and a novel dicarboxylic endcap having a formula selected from the group consisting of: wherein R1 is either a radical where R is either hydrogen or an alkyl radical of 1 to 4 carbons, R2 is either OH, NH2, F, or Cl radical, R3 is either H, OH, NH2, F, Cl or an alkylene radical, R4 is either an alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical, and R5 is either H, alkyl, aryl, alkoxy, aryloxy, nitro, F, or Cl radical. The polyimides are useful particularly in the preparation of prepregs and PMR composites.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: October 16, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mary Ann B. Meador, Aryeh A. Frimer
  • Patent number: 6303743
    Abstract: A polyimide for optical communications, which is expressed by the formula (1), a method of preparing the same, and a method of forming multiple polyimide films using the polyimide, wherein the formula (1) is given by X1, X2, X3, A1, A2, B1, B2, B3, D1, D2, E1, E2, Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8, are independently selected from the group consisting of hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, aryl group and halogenated aryl group; Z is a simple chemical bond or selected from the group consisting of —O—, —CO—, —SO3—, —S—, —(T)m—, —(OT)m— and —(OTO)m—, wherein T is alkylene or arylene group substituted by at least one of halogen atom and halogenated alkyl group and m is an integer from 1 to 10; and n is an integer from 1 to 39.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: October 16, 2001
    Assignee: SamSung Electronics Co., Ltd.
    Inventors: Kyung-hee You, Kwan-soo Han, Tae-hyung Rhee
  • Patent number: 6294639
    Abstract: The present invention relates to a treating agent for liquid crystal alignment, which comprises a polyamic acid compound having a reduced viscosity of from 0.05 to 5.0 dl/g (in N-methylpyrrolidone at a temperature of 30° C. at a concentration of 0.5 g/dl) and containing repeating units represented by the general formula [I]: (wherein R1 is a tetravalent organic group constituting a tetracarboxylic acid which has an alicyclic structure having from 2 to 5 rings condensed and wherein all the carbonyl groups are directly bonded to the alicyclic structure and said carbonyl groups are not bonded to adjacent carbon atoms in the alicyclic structure, and R2 is a bivalent organic group constituting a diamine), or a polyimide resin obtained by imidizing said polyamic acid compound, and a liquid crystal alignment film and a liquid crystal device employing it.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: September 25, 2001
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Kiyoshi Sawahata, Hideyuki Nawata, Takayasu Nihira, Yoshikazu Ohtsuka, Yasuyuki Nakajima
  • Patent number: 6288209
    Abstract: Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of reactive endcapper. The reactive endcappers studied include but should not be limited to 4-phenylethynyl phthalic anhydride (PEPA), 3-aminophenoxy-4′-phenylethynylbenzophenone (3-APEB), maleic anhydride (MA) and nadic anhydride (5-norbornene-2,3-dicarboxylic anhydride, NA). Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. By simply changing the ratio of APB to the other diamine in the polyimide backbone, a material with a unique combination of solubility, Tg, Tm, melt viscosity, toughness and elevated temperature mechanical properties can be prepared.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: September 11, 2001
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Brian J. Jensen
  • Patent number: 6281323
    Abstract: Terminal-modified imide oligomers with an inherent viscosity of 0.05-1 obtained by reacting 2,3,3′,4′-biphenyltetracarboxylic dianhydride, an aromatic diamine compound and 4-(2-phenylethynyl)phthalic anhydride, and their cured products. There are provided highly practical terminal-modified imide oligomers and their cured products, which cured products have satisfactory heat resistance and mechanical properties.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: August 28, 2001
    Assignee: Ube Industries, Ltd.
    Inventors: Rikio Yokota, Masatoshi Hasegawa, Hiroaki Yamaguchi
  • Patent number: 6277495
    Abstract: A polyimide film of birefringence less than 0.01 is formed by drawing a copolymerized polyimide comprising a block component and a random component which are molecularly bonded, wherein the block component of copolymerized polyimide comprises an aromatic diamine compound having a rigid structure and an aromatic tetracarboxylic acid compound and wherein the random component of copolymerized polyimide comprises an aromatic diamine compound having a flexible structure and at least two aromatic tetracarboxylic acid components. The resulting polyimide film has high elasticity, a low thermal expansion equivalent to that of metal and low water absorbing properties. A method for its manufacture and a metal laminated plate having improved curl properties in which the polyimide is used as the base material are also disclosed.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: August 21, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Koichi Sawasaki, Kenji Uhara, Michihiro Kubo
  • Patent number: 6277950
    Abstract: The present invention provides polyimides and co-polyimides that are organosoluble. The polyimides and co-polyimides are prepared from an aromatic diamine having ortho-linked phenylene and pendant tert-butyl group, i.e., 1,2-bis(4-aminophenoxy)-4-tert-butyl-benzene, or its mixture with other diamines, and a mixture of dianhydrides that containing at least one dianhydride selected from s-BPDA, DSDA, ODPA, 6FDA and other diether-dianhydrides.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: August 21, 2001
    Assignee: National Science Council
    Inventors: Chin-Ping Yang, Sheng-Huei Hsiao, Shin-Hung Chen
  • Patent number: 6274695
    Abstract: The present invention relates to a treating agent for liquid crystal alignment, which is an agent for liquid crystal alignment to be used for a method in which polarized ultraviolet rays or electron rays are irradiated on a polymer thin film formed on a substrate in a predetermined direction relative to the substrate plane, and said substrate is used for aligning liquid crystal without rubbing treatment, wherein said agent for liquid crystal alignment contains a polymer compound having photochemically reactive groups in the polymer main chain and a glass transition temperature of at least 200° C.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: August 14, 2001
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Hideyuki Endou, Takayasu Nihira, Hiroyoshi Fukuro
  • Patent number: 6268460
    Abstract: The present invention provides a process for preparing an optical alignment layer for aligning liquid crystals and liquid crystal displays comprising exposing polyimide layers with polarized light. The invention further describes optical alignment layers, liquid crystal displays incorporating optical alignment layers and novel polymer compositions within the class of polyimide, polyamic acids and esters thereof.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: July 31, 2001
    Inventors: Wayne M. Gibbons, Patricia A. Rose, Paul J. Shannon, Hanxing Zheng
  • Patent number: 6268465
    Abstract: An aliphatic polyester amide which is hydrolysis-resistant includes a ternary polycondensation product of monomeric constituents composed of a monomeric constituent A which is at least one diol having a general formula: HO—R1—OH, where R1 is an aliphatic residue having 2-16 carbon atoms; a monomeric constituent B which is at least one dicarboxylic acid having a general formula: HOOC—R2—COOH, where R2 is an aliphatic residue having 1-14 carbon atoms; and a monomeric constituent C which is at least one diamine having a general formula: H2N—R3—NH2, where R3 is an aliphatic residue having 2-16 carbon atoms and is present in an amount of up to about 5% by weight based on total weight of the monomeric constituents, wherein polycondensation proceeds in the presence of a catalyst comprised of constituent D, which is a metal-containing catalyst, in combination with constituent E, which is at least one of an organic phosphorus compound and an inorganic phosphorus compound, and wherei
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: July 31, 2001
    Assignee: BK Giulini Chemie GmbH Co OHG
    Inventors: Gudrun Chomiakow, Hasan Ulubay, Emil Wilding
  • Patent number: 6265521
    Abstract: Polyether polymers such as polyetherimides are prepared by a two-step reaction. The first step is the reaction between an alkali metal salt of a dihydroxy-substituted aromatic hydrocarbon, such as bisphenol A disodium salt, and a substituted aromatic compound such as 1,3-bis[N-(4-chlorophthalimido)]benzene, the alkali metal salt being employed in an amount less than stoichiometric. The intermediate low molecular weight polymer thus produced then undergoes reaction with additional alkali metal salt. By this method, a polyether polymer of closely controlled molecular weight can be conveniently prepared.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: July 24, 2001
    Assignee: General Electric Company
    Inventors: Thomas Joseph Fyvie, Peter David Phelps, Paul Edward Howson, Donald Frank Rohr, Ganesh Kailasam, Elliott West Shanklin
  • Patent number: 6265520
    Abstract: Disclosed is a solvent soluble polyimide and a method for making thereof, which characterizes by producing a solvent soluble polyimide with low electric conductivity through the polymerization of an anhydride and a diamine under the condition with or without catalyst.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: July 24, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Hui-Lung Kuo, Chein-Dhau Lee, Yi-Chun Liu, Shih-Chi Yang
  • Patent number: 6262223
    Abstract: Addition-cured polyimides that contain the reaction product of an aromatic triamine or trianhydride analogue thereof, a reactive end group such as 5-norbornene-2, 3-dicarboxylic acid, ester derivatives of 5-norbornene-2,3-dicarboxylic acid, anhydride derivatives of 5-norbornene-2,3-dicarboxylic acid, or 4-phenylethynylphthalic anhydride, an aromatic diamine, and a dialkyl ester of an aromatic tetracarboxylic acid. The resultant starlike polyimides exhibit lower melt flow viscosity than its linear counterparts, providing for improved processability of the polyimide. Also disclosed are methods for the synthesis of these polyimides as well as composite structures formed using these polyimides.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: July 17, 2001
    Assignee: The United States of America as represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Michael A. Meador, Baochau N. Nguyen, Ronald K. Eby
  • Patent number: 6252033
    Abstract: A method for preparing polyamic acid and polyimide, which is suitable for use in adhesives or adhesive tapes for electronic parts. The polymers have such three-dimensional molecular structures that a significant improvement can be brought about in solvent solubility, thermal resistance, mechanical properties, and adhesive properties onto various substrates. The polyamic acid is prepared by reacting at least one tetracarboxylic dianhydride, at least one aromatic diamine, at least one diamine with a siloxane structure, represented by the following general formula I, and at least one polyamino compound represented by the following general formula II or III. The polyamic acid is converted into polyimide through thermal or chemical imidization.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: June 26, 2001
    Assignee: Saehan Industries Incorporation
    Inventors: Jeong Min Kweon, Soon Sik Kim, Kyeong Ho Chang, Kyung Rok Lee
  • Patent number: 6235866
    Abstract: Bis(halophthalimides) such as, 3-bis[N-(4-chlorophthalimido)]benzene are prepared in slurry in an organic liquid such as o-dichlorobenzene or anisole, by a reaction at a temperature of at least 150° C. between at least one diamino compound, preferably an aromatic diamine such as m- or p-phenylenediamine, and at least one halophthalic anhydride such as 4-chlorophthalic anhydride, in the presence of an imidization catalyst such as sodium phenylphosphinate. The solids content of the reaction mixture is at least about 5% and preferably at least about 12% by weight. The product slurry may be employed directly in the preparation of polyetherimides, and similar slurries may be employed to prepare other polyether polymers.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: May 22, 2001
    Assignee: General Electric Company
    Inventors: Farid Fouad Khouri, Ganesh Kailasam, Joseph John Caringi, Peter David Phelps, Paul Edward Howson
  • Patent number: 6235867
    Abstract: The present invention provides a liquid crystal-aligning agent including, as the resin component, a polyimide precursor containing a chemical structure represented by the following formula (1): The present invention further provides a liquid crystal-aligning agent including, the above polyimide precursor and a polyimide precursor represented by the following general formula (2): (wherein Y is a tetravalent aliphatic group, Z is a bivalent aromatic group, and R is H or an alkyl group).
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: May 22, 2001
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Toshimasa Eguchi, Toshiro Takeda