Polymerizing In The Presence Of A Specified Material Other Than Reactant Patents (Class 528/274)
  • Patent number: 8691934
    Abstract: Disclosed are formaldehyde-free, thermally-curable, alkaline, aqueous binder compositions, curable to formaldehyde-free, water-insoluble thermoset polyester resins, and uses thereof as binders for non-woven fibers and fiber materials.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: April 8, 2014
    Assignee: Knauf Insulation GmbH
    Inventors: Mary Hession, James Helbing
  • Patent number: 8680227
    Abstract: A method to produce a purified dihydroxy aromatic compound from a polycarbonate-containing composition is provided. The method includes depolymerizing the polycarbonate by alcoholysis using a titanium-based catalyst producing a dihydroxy aromatic compound and a dialkyl carbonate, recovering the dihydroxy aromatic compound as a crude dihydroxy aromatic compound; and contacting the recovered crude dihydroxyl aromatic compound with an acid in the presence of a solvent at an elevated temperature. Alternatively, the method comprises dissolving the recovered crude dihydroxyl aromatic compound in a solvent; contacting the dissolved crude dihydroxy aromatic compound with a base; and neutralizing the combination of the dissolved crude dihydroxy aromatic compound and the base with an acid.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 25, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Philip Wesley Bell, Alexander Stanislaus, Venkata Ramanarayana Ganapathy Bhotla, Tukaram Gunale, Darshan Jayanna
  • Patent number: 8680229
    Abstract: The present invention is aimed to provide a method for producing a polyester with reduced CD content and elution amount, in which even after the production method, a reduction in physical properties of the polyester is small, and furthermore, a polyester having good moldability can be produced, and the present invention is concerned with a method for producing a polyester including an esterification reaction step of allowing an aliphatic diol and an aliphatic dicarboxylic acid to react with each other; a step of pelletizing a polyester obtained through the esterification reaction step; and a contact treatment step of bringing the obtained polyester pellets into contact with a mixed solution containing ethanol and water, wherein the mixed solution contains water in an amount of 10% by mass or more and not more than 99% by mass relative to the whole of the mixed solution.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: March 25, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Naoya Maeda, Shinichiro Matsuzono, Takayuki Suzuki, Hiromichi Matsui
  • Patent number: 8637610
    Abstract: Novel, crosslinked polymers using biomass derived materials, such as aldaric acids and derivatives, are provided. The polymers can be used as hydrogels and in antimicrobial compositions.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: January 28, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Allen Andrews, Garret D Figuly, Henry Keith Chenault
  • Patent number: 8637632
    Abstract: A method for producing a binder resin comprises polycondensing a polycondensable monomer by using a polycondensation catalyst that comprises: at least one of compounds of formula (I) or (II); and at least one of compounds represented of formula (III) or (IV), wherein weight ratio of total amount of the compounds of formula (I) or (II) to total amount of the compounds of formula (III) or (IV) is from 5:95 to 95:5: wherein R1 represents a C8-C20 straight-chain alkyl group; R2 represents a monovalent organic group; and number n of substituents R2 represents an integer of from 0 to 4; R3—SO3H??(II) wherein R3 represents a C8-C20 straight-chain alkyl group; wherein R4 represents a C8-C20 branched alkyl group; R5 represents a monovalent organic group; and number m of substituents R5 represents an integer of from 0 to 4; and R6—SO3H??(IV) wherein R6 represents a C8-C20 branched alkyl group.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: January 28, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yuki Sasaki, Satoshi Hiraoka, Fumiaki Mera, Hirotaka Matsuoka, Yasuo Matsumura
  • Publication number: 20140011931
    Abstract: The present invention relates to a copolyester from between 30 and 50 mol % of a first monomer being an isohexide; between 40 and 60 mol % of a second monomer being an aromatic dicarboxylic acid or a cycloaliphatic dicarboxylic acid; and between 1 and 20 mol % of a third monomer being an aliphatic diol, the copolyester having an acid number of between 10 and 50. The invention also relates to a process for preparing such copolyesters, a latex composition comprising such a copolyester, a method for preparing such a latex composition and the use of a particular latex as an (ink-jet) ink.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 9, 2014
    Applicant: OCE-TECHNOLOGIES B.V.
    Inventors: Ronald HOFSTRA, Roy W. N. EVERS
  • Patent number: 8618245
    Abstract: The present invention relates to an obtainment process of biodegradable polymers from a citric residue resulting from the processing of orange juice. The polymers obtained are polyesters classified as polyhydroxyalkanoates including, among them the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). The biodegradable polymer is obtained from the batch culture process or fed batch culture process with or without recirculation of the cells, using as a carbon source the pre-treated pressing liquor and/or the citric molasses. The polyhydroxyalkanoates, herein described, can be used as substitutes of the synthetic polyesters in different areas, including the food, pharmaceutical, medical, agricultural and other areas.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: December 31, 2013
    Assignees: Citrosuco S/A Agroindustria, Universidade Federal de Santa Catarina
    Inventors: Glaucia Maria Falcão de Aragão, Willibaldo Schimidell Netto, Jaciane Lutz Ienczak, Mônica Lady Fiorese, Francieli Dalcaton, Franciny Schmidt, Ricardo Deucher, Cinthia Vecchi, Rafael Costa Rodrigues
  • Patent number: 8586701
    Abstract: Disclosed is a process for the preparation of high molecular weight, thermoplastic copolyesters by reacting a diester composition comprising a dialkyl ester of terephthalic acid with a diol composition comprising a first diol component comprising 2,2,4,4-tetramethyl-1,3-cyclobutanediol and a second diol component comprising 1,4-cyclohexanedimethanol. The diester composition can be reacted with the first diol component to produce a polyester oligomer that can be reacted further with the second diol component to produce a modified polyester oligomer. The modified polyester oligomer can then be heated to form a copolyester. The process reduces the precipitation of poly(1,4-cyclohexylene dimethylene) terephthalate in the reaction mixture.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: November 19, 2013
    Assignee: Eastman Chemical Company
    Inventors: Benjamin Fredrick Barton, Damon Bryan Shackelford
  • Publication number: 20130296450
    Abstract: The present invention relates to a process for the preparation of polyether carbonate polyols with primary hydroxyl end groups, comprising the steps of reaction of a starter compound containing active hydrogen atoms with an epoxide and carbon dioxide under double metal cyanide catalysis, reaction of the product obtained with a cyclic carboxylic acid anhydride and reaction of this product obtained with ethylene oxide in the presence of a catalyst which contains at least one nitrogen atom per molecule, excluding non-cyclic tertiary amines with identical substituents. The invention furthermore relates to polyether carbonate polyols obtainable by this process, compositions comprising these polyether carbonate polyols and polyurethane polymers based on these polyether carbonate polyols.
    Type: Application
    Filed: December 12, 2011
    Publication date: November 7, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Jörg Hofmann, Christoph Gürtler, Hartmut Nefzger, Norbert Hahn, Klaus Lorenz, Thomas Ernst Müller
  • Patent number: 8563650
    Abstract: The present invention concerns a method for producing an aqueous dispersion (X1), the method including a step that includes mixing an aqueous dispersion liquid (W) of resin particles (A) comprising a resin (a) with a precursor (b0) of a resin (b) or an oily liquid (OL) comprising the precursor (b0) and an organic solvent to disperse the precursor (b0) or the oily liquid (OL) in the aqueous dispersion liquid (W), followed by causing the precursor (b0) to react in the aqueous dispersion liquid (W) to form resin particles (B) comprising the resin (b), thereby obtaining the aqueous dispersion (X1) of resin particles (C) having a structure where resin particles (A) are adhered on the surface of the resin particles (B), wherein at least one of the resin (a) and the resin (b) contains a polyester resin (p1) formed in the presence of a specific titanium catalyst (t) or a resin (p2) having the polyester resin (p1) as a constituent unit.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: October 22, 2013
    Assignee: Sanyo Chemical Industries, Ltd.
    Inventors: Shuhei Yahiro, Yoko Sakurai, Yasuhiro Ono
  • Patent number: 8546513
    Abstract: The disclosure relates to methods and materials useful for polymerizing a monomer. In one embodiment, for example, the disclosure provides a method for polymerizing a monomer containing a plurality of electrophilic groups, wherein the method comprises contacting the monomer with a nucleophilic reagent in the presence of a guanidine-containing catalyst. The methods and materials of the disclosure find utility, for example, in the field of materials science.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: October 1, 2013
    Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: James L. Hedrick, Russell C. Pratt, Robert M. Waymouth
  • Publication number: 20130237682
    Abstract: The invention relates to a method for preparing linear polymers having an amide end or having a star architecture comprising an amide core, by means of a ring opening using lactide and glycolide monomers or a lactide monomer ring in the presence of a catalyst, wherein the method includes the steps of: (i) reacting the excess monomer(s) with an initiator in a solvent, said initiator being selected from among an amine and an amino alcohol, given that the initiator has at least one primary or secondary amine function; (ii) adding a catalyst, said catalyst being a non-nucleophilic base and including at least one neutral sp2 nitrogen atom; and (iii) neutralizing the reaction mixture. Said novel method is particularly advantageous in that it can be easily monitored and enables better modulation of the polymers, and thus of the properties thereof, than the methods of the prior art. The invention also relates to novel polymers that are obtainable by means of said method.
    Type: Application
    Filed: November 14, 2011
    Publication date: September 12, 2013
    Inventors: Didier Bourissou, Blanca Martin-Vaca, Aurélie Alba, Roland Cherif-Cheikh, Anne-Paula De Sousa Delgado
  • Patent number: 8519058
    Abstract: Novel, crosslinked polymers using biomass derived materials, such as aldaric acids and derivatives, are provided. The polymers can be used as hydrogels and in antimicrobial compositions.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: August 27, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Allen Andrews, Henry Keith Chenault, Garret D. Figuly
  • Patent number: 8501044
    Abstract: An antistatic composition containing various types of polymers such as a polyamide, an aliphatic polyester, an elastomer thereof and a polyurethane elastomer, and a metal salt in specific amounts, and preferably, an antistatic composition in which an additive component such as an organic compound which has an —{O(AO)n}— group (A represents an alkylene group having 2 to 4 carbon atoms, and n represents an integer of 1 to 7) and all molecular chain terminals of which are CH3 and/or CH2 groups is compounded as needed.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: August 6, 2013
    Assignees: Sanko Chemical Industry Co., Ltd., Riken Technos Corporation
    Inventors: Noriaki Fujihana, Yoshiharu Tatsukami, Masaki Enomoto, Ikuo Ohkoshi
  • Patent number: 8492504
    Abstract: The disclosure relates to methods and materials useful for depolymerizing a polymer. In one embodiment, for example, the disclosure provides a method for depolymerizing a polymer containing electrophilic linkages, wherein the method comprises contacting the polymer with a nucleophilic reagent in the presence of a guanidine-containing compound. The methods and materials of the disclosure find utility, for example, in the field of waste reclamation and recycling.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 23, 2013
    Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: James Lupton Hedrick, Russell Clayton Pratt, Robert M. Waymouth
  • Publication number: 20130184429
    Abstract: Biodegradable polyesters are made by synthesizing copolymers derived from biodegradable hydroxyacid monomers as well as from hydroxyacid monomers containing a functional group such as an azide group, a halogen group, a thioacetate group, and the like. Preferably, the functionalized biodegradable polyester copolymers are derived from a functionalized hydroxyacid such as a homolog of lactic acid and/or glycolic acid with the copolyester thus containing functional groups on the backbone thereof. These biodegradable polyesters can be utilized wherever biodegradable polyesters are currently used, and also serve as a polymer to which various medical and drug delivery systems can be attached.
    Type: Application
    Filed: July 28, 2011
    Publication date: July 18, 2013
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Coleen Pugh, Abhishek Banerjee, William Storms, Colin Wright
  • Patent number: 8470926
    Abstract: The present invention relates to an unsaturated polyester resin comprising itaconate ester units as reactive unsaturation, wherein the resin comprises itaconate, citraconate and mesaconate ester units. Preferably, the resin comprises itaconate, citraconate and mesaconate ester units in an amount of from 40 to 90 mol % itaconate, from 2 to 30 mol % citraconate and from 5 to 40 mol % mesaconate in which 100 mol % is the total amount of itaconate, citraconate and mesaconate esters units.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: June 25, 2013
    Assignee: DSM IP Assets B.V.
    Inventors: Marian Henryk Szkudlarek, Johan Franz Gradus Antonius Jansen, Stefanus Jacobus Duyvestijn, Silvana Rensina Antonnietta Di Silvestre
  • Publication number: 20130158226
    Abstract: A salt catalyst comprises an ionic complex of i) a nitrogen base comprising one or more guanidine and/or amidine functional groups, and ii) an oxoacid comprising one or more active acid groups, the active acid groups independently comprising a carbonyl group (C?O), sulfoxide group (S?O), and/or a phosphonyl group (P?O) bonded to one or more active hydroxy groups; wherein a ratio of moles of the active hydroxy groups to moles of the guanidine and/or amidine functional groups is greater than 0 and less than 2.0. The salt catalysts are capable of catalyzing ring opening polymerization of cyclic carbonyl compounds.
    Type: Application
    Filed: February 20, 2013
    Publication date: June 20, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: International Business Machines Corporation
  • Patent number: 8466254
    Abstract: The present disclosure provides processes for the preparation of unsaturated polyesters. In embodiments, a process of the present disclosure includes reacting an organic diol with a cyclic alkylene carbonate in the presence of a first catalyst to thereby form a polyalkoxy diol, optionally adding thereto a further amount of cyclic alkylene carbonate in the presence of a second catalyst, and subsequently polycondensing the resulting mixture with a dicarboxylic acid in combination with an anhydride.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: June 18, 2013
    Assignee: Xerox Corporation
    Inventor: Guerino G Sacripante
  • Patent number: 8450447
    Abstract: Polyesteramides prepared from decreased perfection diamide diester monomers. The polymers exhibit improved physical properties.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: May 28, 2013
    Inventors: William J. Harris, Peter S. Martin, Jerry E. White, Rene Broos
  • Publication number: 20130123458
    Abstract: The disclosure relates to methods and materials useful for polymerizing a monomer. In one embodiment, for example, the disclosure provides a method for polymerizing a monomer containing a plurality of electrophilic groups, wherein the method comprises contacting the monomer with a nucleophilic reagent in the presence of a guanidine-containing catalyst. The methods and materials of the disclosure find utility, for example, in the field of materials science.
    Type: Application
    Filed: January 7, 2013
    Publication date: May 16, 2013
    Applicants: The Board of Directors of the Leland Stanford Junior University, International Business Machines Corporation
    Inventors: International Business Machines Corporation, The Board of Directors of the Leland Stanford Junior University
  • Patent number: 8431218
    Abstract: A poly(lactic acid) resin composition is provided, comprising (a) a poly(lactic acid) resin, (b) at least one modifier selected from at least one metal/nonmetal alkoxide, at least one metal/nonmetal alkoxide having at least one functional group capable of reacting with the poly(lactic acid) resin, or a mixture thereof, (c) a first catalyst, and (d) optionally, a second catalyst. A process for preparing a transparent and impact-resistant article from the poly(lactic acid) resin composition of the invention, and articles prepared therefrom are also provided.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 30, 2013
    Assignee: Far Eastern New Century Corporation
    Inventors: Chih-Ying Kuo, Li-Ling Chang, Ru-Yu Wu, Yih-Wen Wang
  • Patent number: 8367796
    Abstract: The disclosure relates to methods and materials useful for polymerizing a monomer. In one embodiment, for example, the disclosure provides a method for polymerizing a monomer containing a plurality of electrophilic groups, wherein the method comprises contacting the monomer with a nucleophilic reagent in the presence of a guanidine-containing catalyst. The methods and materials of the disclosure find utility, for example, in the field of materials science.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: February 5, 2013
    Assignees: International Business Machines Corporation, Stanford University
    Inventors: James Lupton Hedrick, Russell Clayton Pratt, Robert M. Waymouth
  • Publication number: 20130030143
    Abstract: A method for manufacturing a liquid crystal polyester, comprising: a melt polycondensation step in which 0.001 to 1% by mass of a heterocyclic aromatic compound represented by the following formula (I) is added to a monomer mixture comprising at least one monomer selected from the group consisting of terephthalic acid, a terephthalic acid derivative, 2,6-naphthalenedicarboxylic acid and a 2,6-naphthalenedicarboxylic acid derivative, relative to 100% by mass of the monomer mixture, and then a melt polycondensation is conducted at a temperature of 240 to 300° C. so as to obtain a polymer. (wherein each of X1 and X2 independently represents a methyl group, an ethyl group, a propyl group, a butyl group or a pentyl group, provided that one or more hydrogen atoms on a heterocyclic aromatic ring may each independently be replaced by a halogen atom, an alkyl group or an aryl group).
    Type: Application
    Filed: July 24, 2012
    Publication date: January 31, 2013
    Inventor: Shintaro SAITO
  • Patent number: 8299203
    Abstract: A melt phase process for making a polyester polymer melt phase product by adding an antimony containing catalyst to the melt phase, polycondensing the melt containing said catalyst in the melt phase until the It.V. of the melt reaches at least 0.75 dL/g. Polyester polymer melt phase pellets containing antimony residues and having an It.V. of at least 0.75 dL/g are obtained without solid state polymerization. The polyester polymer pellets containing antimony residues and having an It.V. of at least 0.70 dL/g obtained without increasing the molecular weight of the melt phase product by solid state polymerization are fed to an extruder, melted to produce a molten polyester polymer, and extruded through a die to form shaped articles. The melt phase products and articles made thereby have low b* color and/or high L* brightness, and the reaction time to make the melt phase products is short.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 30, 2012
    Assignee: Grupo Petrotemex, S.A. DE C.V.
    Inventors: Mary Therese Jernigan, Michael Paul Ekart, Richard Gill Bonner
  • Patent number: 8293850
    Abstract: A process for the solid phase continuous polymerization of polyester in order to achieve a molecular weight increase, measurable by the intrinsic viscosity IV increase of the polyester, wherein the use of at least a reactor (15) is provided, the reactor (15) being cylindrical, rotary around its own central axis (S), substantially horizontal, slightly inclined so as to produce the polymerization of the polyester granules passing through the reactor by gravity thanks to the inclination and the rotation of the reactor (15), inside the reactor there being produced a purge gas flow having the same or the opposite direction with respect to the flow of the polyester granules.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: October 23, 2012
    Assignee: Cobarr S.p.A.
    Inventor: Giuliano Cavaglia
  • Patent number: 8252888
    Abstract: The present invention relates to a method for the continuous production of high-molecular polyesters by esterification of dicarboxylic acids and/or transesterification of dicarboxylic acid esters with diols and/or mixtures thereof in the presence of catalysts with formation of a prepolymer in a tower reactor and polycondensation thereof to form a high-molecular polyester in a polycondensation reactor, a prepolymer with >40 to 70 repeat units (DP) being produced in the tower reactor and this prepolymer being polycondensed in only one further reactor to form a polyester with >150 to 205 DP.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: August 28, 2012
    Assignee: Uhde Inventa-Fischer GmbH
    Inventor: Eike Schulz Van Endert
  • Patent number: 8247522
    Abstract: A process for producing non-solid-stated polyester polymer particles having one or more properties similar to polyester polymer particles that have undergone solid-state processing.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: August 21, 2012
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Bruce Roger DeBruin, Tommy Ray Maddox, II, John Alan Wabshall, Jr., Steven Lee Stafford, Stephen Weinhold, Robert Noah Estep, Mary Therese Jernigan, Steven Paul Bellner, Alan George Wonders, John Guy Franjione
  • Publication number: 20120184706
    Abstract: The present invention relates to a method for synthesizing polyesters or copolyesters having a mean molar mass in mass MW, greater than 10000, by means of a direct polyesterification reaction between a diacid, diester, hydroxyacid, or hydroxyester and a diol, or between hydroxyacids or hydroxyesters, said method being characterized in that said polyesterification reaction is carried out at a temperature of 60 to 150° C. at atmospheric pressure in a reaction medium including at least one acidic ionic liquid consisting of an anion and a cation, the electrical charges of which balance each other out, and wherein at least the cation is a strong acid according to the Bronsted definition, or comprises a grouping that is a strong acid according to the Bronsted definition.
    Type: Application
    Filed: July 28, 2010
    Publication date: July 19, 2012
    Inventors: Alain Fradet, Hervé Lefebvre, Jean-Pierre Bazureau, Ludovic Paquin, Daniel Carrie
  • Publication number: 20120178896
    Abstract: The present invention relates to a substantially gel-free and substantially linear biodegradable polyester obtainable by means of reaction with radical initiators starting from a precursor polyester provided with an unsaturated chain terminator, said terminator having the formula: T-(CH2)n—CH?CH2 wherein “T” is selected from hydroxylic, carboxylic, amine, amide or ester group, and “n” is an integer comprised between 0 and 13.
    Type: Application
    Filed: September 24, 2010
    Publication date: July 12, 2012
    Applicant: NOVAMONT S.P.A.
    Inventors: Catia Bastioli, Luigi Capuzzi
  • Patent number: 8207289
    Abstract: Polyester compositions, especially polyethylene terephthalate homopolymer and copolymers, are disclosed containing titanium catalysts and catalyst deactivator added late in the manufacturing processing having reduced acetaldehyde generation rates. The polyester compositions are low in free acetaldehyde, making them suitable for fabrication into beverage containers for relatively tasteless beverages such as bottle water. Furthermore, the polyesters are polymerized to a high inherent viscosity in reduced processing time, without the necessity of further polymerization in the solid state, and in the absence of acetaldehyde scavengers leading to polyester polymers having reduced color.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: June 26, 2012
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Mary Therese Jernigan
  • Publication number: 20120121839
    Abstract: The present invention relates to a process for preparing an unsaturated polyester resin comprising itaconate ester units as reactive unsaturations by reacting at least itaconic acid and/or itaconic anhydride and at least one diol, wherein the process is effected in the presence of an inhibitor having a gelation activity factor less than or equal to (0.5) and having an efficiency factor of from (0.55) up to 1.
    Type: Application
    Filed: March 24, 2010
    Publication date: May 17, 2012
    Inventors: Marian Henryk Szkudlarek, Johan Franz Gradus Anton Jansen, Stefanus Jacobus Duyvestijn, di Silvana Rensina Antonnietta Silvestre
  • Patent number: 8138240
    Abstract: Composition suitable for a powder coating composition comprising at least one resin and at least one dispersant wherein the dispersant is added during the resin synthesis or while the resin leaves the reactor.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: March 20, 2012
    Assignee: DSM IP Assets B.V.
    Inventors: Leendert J. Molhoek, Jurjen H. M. Bolks, Jochum Beetsma
  • Publication number: 20120059142
    Abstract: A process for preparing polyester alcohols by condensation of polytetrahydrofuran with aromatic dicarboxylic acids and/or their anhydrides and/or their esters, preferably isophthalic acid, phthalic acid and terephthalic acid and more preferably isophthalic acid, in the presence of a transesterification catalyst in a multi-stage operation at different pressure levels with at least one reaction stage at atmospheric pressure and at least one reaction stage at reduced pressure, where distillate is removed from the reaction system, comprises deactivating the catalyst after the polycondensation by using phosphoric acid in a molar ratio of 1:1 to 1:3.5 for catalyst to phosphoric acid.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 8, 2012
    Applicant: BASF SE
    Inventors: Hermann Graf, Ulrike Mahn, Stefan Käshammer, Günter Scherr, Christian Nitschke
  • Publication number: 20110275749
    Abstract: Provided is a polylactic acid resin composition which has excellent flexibility and heat resistance without decreasing a biomass degree. The polylactic acid resin composition includes a polylactic acid and a branched polylactic acid having at least three branched chains composed of a polylactic acid in the molecule can be obtained. This polylactic acid resin composition is very superior due to the following reasons: the resin composition has excellent flexibility because plasticization is accelerated; the resin composition has excellent heat resistance because crystallization is accelerated; and the resin composition is effective in protection of the global environment and measures against fossil resource depletion because the resin composition is derived from a recyclable resource.
    Type: Application
    Filed: January 15, 2010
    Publication date: November 10, 2011
    Applicant: BIOBASE CORPORATION
    Inventors: Hiroshi Uyama, Takahiko Terada, Takeshi Yanagimoto
  • Publication number: 20110269066
    Abstract: Methods and compositions including a compound represented by formula (I): wherein n represents an integer of from 1 to 4, RHL('s) each independently represents Cl or F, and R1 represents an alkyl group having from 8 to 20 carbon atoms.
    Type: Application
    Filed: July 8, 2011
    Publication date: November 3, 2011
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Yuki Sasaki, Hirotaka Matsuoka, Satoshi Hiraoka, Fumiaki Mera, Yasuo Matsumura
  • Patent number: 8044169
    Abstract: A dryer system configured for use in a polyester polymer production process. In one embodiment, the dryer system can be utilized in a non-solid-state polymer production process to dry the polymer particles prior to crystallization.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 25, 2011
    Assignee: Grupo Petrotemex, S.A. DE C.V.
    Inventors: Bruce Roger DeBruin, Tommy Ray Maddox, II, Ollie W Smith, Jr., Duane Alan Hall, Jeremy R Shuppert, Alan George Wonders, Aaron Grills
  • Patent number: 8021864
    Abstract: The present invention provides a resin capable of contributing greatly to solve environmental problems and problems related to exhaustion of fossil fuel resources and having physical properties suited for practical use. The polyester according to the present invention has a diol and a dicarboxylic acid as constituent components and has an amount of terminal acid of 50 equivalents/metric ton or less.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: September 20, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takayuki Aoshima, Yasuaki Miki, Katsuhisa Kumazawa, Satoshi Katou, Tadashi Uyeda, Toyomasa Hoshino, Noboru Shintani, Kenji Yamagishi, Atsushi Isotani
  • Patent number: 8017718
    Abstract: Disclosed are vinyl ethers and related compositions. The vinyl ethers are the conjugate addition reaction product of reactants comprising a vinyl ether group-containing acrylic ester and a nucleophile.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: September 13, 2011
    Assignee: PPG Industries Ohio, Inc.
    Inventors: John E. Schwendeman, M. Lisa Perrine
  • Publication number: 20110218298
    Abstract: High molecular weight disulfide polymers are synthesized in aqueous media by exposing dithiol compounds to a mild oxidizing environment in the presence of a tertiary amine catalyst. The unique oxidizing system polymerizes monomers through the formation of sulfur-sulfur bonds between dithiol compounds. The same oxidizing system may be used to make disulfide-crosslinked gels from compounds containing multiple thiol groups. The oxidizing system is comprised of oxygen at atmospheric concentration and dilute hydrogen peroxide. A filler such as carbon black may be incorporated into the polymer or cross-linked gel during polymerization. A polydisulfide polymer is provided having a weight average molecular weight of greater than about 100,000 g/mol and a polydispersity index of about 2 or less. A tetrathiol composition results from a reaction of a diacrylate with a trithiol.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 8, 2011
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Judit E. Puskas, Emily Q. Rosenthal
  • Publication number: 20110213116
    Abstract: The invention provides methods and systems for manufacturing low-acid polyalkylene terephthalate, for example, polybutylene terephthalate (PBT). The invention also provides methods and systems for preparing macrocyclic polyester oligomer (MPO) from low-acid polyalkylene terephthalate. Finally, the invention provides methods and systems for preparing MPO via reaction of a diol and a dialkyl ester in an organic solvent to form non-isolated, low-acid polyalkylene terephthalate which undergoes cyclization (depolymerization) to form MPO.
    Type: Application
    Filed: July 29, 2010
    Publication date: September 1, 2011
    Inventors: Peter D. Phelps, Gary R. Faler
  • Patent number: 7989577
    Abstract: A process for producing non-solid-stated polyester polymer particles having one or more properties similar to polyester polymer particles that have undergone solid-state processing.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: August 2, 2011
    Assignee: Grupo Petromex, S.A. De C.V.
    Inventors: Bruce Roger DeBruin, Tommy Ray Maddox, II, John Alan Wabshall, Jr., Steven Lee Stafford, Stephen Weinhold, Robert Noah Estep, Mary Therese Jernigan, Steven Paul Bellner, Alan George Wonders, John Guy Franjione
  • Patent number: 7985566
    Abstract: The present invention provides a resin capable of contributing greatly to solve environmental problems and problems related to exhaustion of fossil fuel resources and having physical properties suited for practical use. The polyester according to the present invention has a diol and a dicarboxylic acid as constituent components and has an amount of terminal acid of 50 equivalents/metric ton or less.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: July 26, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takayuki Aoshima, Yasuaki Miki, Katsuhisa Kumazawa, Satoshi Katou, Tadashi Uyeda, Toyomasa Hoshino, Noboru Shintani, Kenji Yamagishi, Atsushi Isotani
  • Patent number: 7981583
    Abstract: A binder resin for an electrostatic image developing toner is obtained by polycondensation reaction of at least two polycarboxylic acids and at least one polyol, wherein the at least two polycarboxylic acids include at least one of a first specific polycarboxylic acid and a second specific polycarboxylic acid in an amount of from about 3 mol % to less than about 50 mol % based on a total amount of the at least two polycarboxylic acids, the binder resin includes a catalyst-derived metal in an amount of from about 0 ppm to about 10 ppm, and the binder resin has a glass transition temperature Tg of from about 45° C. to about 80° C.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: July 19, 2011
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yuki Sasaki, Hirotaka Matsuoka
  • Patent number: 7960496
    Abstract: Disclosed herein is a novel stabilizer for preparing a polymer polyol, which is used to prepare polyurethane foam having improved physical properties. The stabilizer is prepared by allowing maleic anhydride to react with a polyether polyol, having an OH functionality of 3-8 and a molecular weight of 3,000-15,000, and then adding ethylene oxide to the reaction solution. Because the molecular weight and functionality of the stabilizer are increased through aging and dimerization, the stabilizer has a high molecular weight of 5,000-30,000, a high OH functionality of 6-10 and a viscosity of 3,000-15,000 cps/25° C. A polymer polyol derived from the stabilizer has low viscosity compared to those of prior products and contributes to the improvement in the physical properties of the resulting polyurethane foam.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: June 14, 2011
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Jang Hyun Choi, Seung Moo Huh, Jeon Koo Lee, Jong Yeol Choi
  • Patent number: 7951899
    Abstract: An enzymatic process for preparing aliphatic polycarbonates via terpolymerization or transesterification using a dialkyl carbonate, an aliphatic diester, and an aliphatic diol or triol reactant. A catalyst having an enzyme capable of catalyzing an ester hydrolysis reaction in an aqueous environment is subsequently added to the reaction mixture. Next, polymerization of the reaction proceeds for an allotted time at a temperature ?100° C. Finally, the copolymer is isolated from an the catalyst via filtration.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: May 31, 2011
    Assignee: Polytechnic University
    Inventors: Richard A. Gross, Zhaozong Jiang
  • Publication number: 20110054143
    Abstract: Disclosed are formaldehyde-free, thermally-curable, alkaline, aqueous binder compositions, curable to formaldehyde-free, water-insoluble thermoset polyester resins, and uses thereof as binders for non-woven fibers and fiber materials.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 3, 2011
    Inventors: Clarence H. HELBING, Mary Hession, James Helbing
  • Patent number: 7888084
    Abstract: The present invention provides a resin capable of contributing greatly to solve environmental problems and problems related to exhaustion of fossil fuel resources and having physical properties suited for practical use. The polyester according to the present invention has a diol and a dicarboxylic acid as constituent components and has an amount of terminal acid of 50 equivalents/metric ton or less.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: February 15, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takayuki Aoshima, Yasuaki Miki, Katsuhisa Kumazawa, Satoshi Katou, Tadashi Uyeda, Toyomasa Hoshino, Noboru Shintani, Kenji Yamagishi, Atsushi Isotani
  • Patent number: 7868125
    Abstract: A process for producing non-solid-stated polyester polymer particles having one or more properties similar to polyester polymer particles that have undergone solid-state processing. In one embodiment, the process comprises (a) forming polyester polymer particles from a polyester polymer melt; (b) quenching at least a portion of the particles, (c) drying at least a portion of the particles, (d) crystallizing at least a portion of the particles, (e) annealing at least a portion of the particles. At all points during and between steps (b) through (e), the average bulk temperature of the particles is maintained above 165° C.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: January 11, 2011
    Assignee: Eastman Chemical Company
    Inventors: Bruce Roger DeBruin, Tommy Ray Maddox, II, John Alan Wabshall, Jr., Steven Lee Stafford, Stephen Weinhold, Robert Noah Estep, Mary Therese Jernigan, Steven Paul Bellner, Alan George Wonders, John Guy Franjione
  • Publication number: 20110003719
    Abstract: Process for the preparation of a polymer-containing composition comprising the steps of: a) preparing a mixture of at least one cyclic monomer selected from glycolide and lactide and a layered double hydroxide comprising as charge-balancing anions 10 to 100% of an organic anion and 0 to 90% of hydroxide, based on the total amount of charge-balancing anions, and b) polymerising said monomer, optionally in the presence of a polymerisation initiator or catalyst.
    Type: Application
    Filed: March 9, 2009
    Publication date: January 6, 2011
    Inventors: Robin Winters, Elwin Schomaker, Siebe Cornelis De Vos