Contacting With Water Patents (Class 528/499)
  • Patent number: 8383703
    Abstract: A process is provided for producing discrete solid beads of polymeric material e.g. phenolic resin having a mesoporous structure, which process may produce resin beads on an industrial scale without aggregates of resin building up speedily and interrupting production. The process comprises the steps of: (a) combining a stream of a polymerizable liquid precursor e.g. a novolac and hexamine as cross-linking agent dissolved in a first polar organic liquid e.g. ethylene glycol with a stream of a liquid suspension medium which is a second non-polar organic liquid with which the liquid precursor is substantially or completely immiscible e.g. transformer oil containing a drying oil; (b) mixing the combined stream to disperse the polymerizable liquid precursor as droplets in the suspension medium e.g.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: February 26, 2013
    Assignee: British American Tobacco (Investments) Limited
    Inventors: Stephen Robert Tennison, Jonathan Robert Tunbridge, Roger Nicholas Place, Oleksandr Kozynchenko
  • Patent number: 8372934
    Abstract: Organopolysiloxanes with consistent product properties are prepared while minimizing alcohol usage in the hydrolysis of chlorosilanes by use of a vertical continuous loop reactor having a heating unit on an ascending side of the loop which is regulated such that the temperature of the reactant mixture is within ±5° C. of a set value.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: February 12, 2013
    Assignee: Wacker Chemie AG
    Inventor: Gerhard Staiger
  • Patent number: 8349974
    Abstract: A biaxially oriented polyarylene sulfide film which has an excellent elongation at break and flatness is provided. The biaxially oriented film may be a biaxially oriented polyarylene sulfide film which is substantially composed of a polyarylene sulfide resin (A), wherein one of the elongations at break in the machine direction and in the transverse direction of the film is not lower than 110%; one of the breaking stresses in the machine direction and in the transverse direction of the film of the film is not higher than 200 MPa; and both of the heat shrinkage ratio in the machine direction of the film and that in the transverse direction of the film at 260° C. for 10 minutes are not less than 0% and not more than 10%.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: January 8, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Tetsuya Machida, Masatoshi Ohkura, Yasuyuki Imanishi
  • Patent number: 8338563
    Abstract: Method for purifying a solution of at least one plastic in a solvent, the said solution comprising insolubles, whereby the solution is purified using a centrifugal settler.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: December 25, 2012
    Assignee: Solvay (Societe Anonyme)
    Inventor: Bernard Vandenhende
  • Patent number: 8329857
    Abstract: The present invention provides a method for producing a polyester resin, comprising carrying out a hot-water treatment and a heat treatment, in this order, of polyester prepolymer particles obtained by melt polycondensation of a dicarboxylic acid component and a diol component. The hot-water treatment comprises bringing the polyester prepolymer particles with an intrinsic viscosity of from at least 0.10 dL/g to at most 1.0 dL/g and with a density of at most 1.36 g/cm3 into contact with hot water at a temperature higher than the glass transition temperature of the polyester prepolymer particles and less than 100° C., under the condition satisfying the following formula (1): 40?(T?Tg)t?6000??(1) wherein t is a hot-water treatment time (second), T is the temperature of the hot water (° C.) and Tg is the glass transition temperature (° C.) of the polyester prepolymer particles.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: December 11, 2012
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Michiko Yoshida, Takeyuki Doi, Naoya Maeda, Hisashi Kimura
  • Patent number: 8329832
    Abstract: A method for producing a cyclic polyarylene sulfide, wherein a cyclic polyarylene sulfide is produced by heating a reaction mixture which is composed of at least a linear polyarylene sulfide (a), a sulfidizing agent (b), a dihalogenated aromatic compound (c) and an organic polar solvent (d). This method for producing a cyclic polyarylene sulfide is characterized in that not less than 1.25 liters of the organic polar solvent is used per 1 mole of the sulfur content in the reaction mixture. This method enables to efficiently produce a cyclic polyarylene sulfide, more specifically cyclic oligoarylene sulfide by an economical and simple process in short time.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: December 11, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Shunsuke Horiuchi, Kohei Yamashita, Kayo Tsuchiya, Koji Yamauchi
  • Patent number: 8329814
    Abstract: Briefly described, embodiments of this disclosure include ink formulation and modified pigments. One exemplary modified pigment, among others, includes a pigment A represented by the formula in FIG. 3.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: December 11, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Zeying Ma, Gregg A. Lane, Yuan Yu, Xiaohe Chen, George M. Sarkisian
  • Patent number: 8324339
    Abstract: Method and apparatus for thermally processing polyester pellets, e.g., polyethylene terephthalate pellets, in order to achieve a partial crystallization, whereby the polyester melt is fed to an underwater pelletizer and pelletized, the pellets obtained are fed to a water/solids separating device and the dried pellets are fed at a pellet temperature of greater than 100°C. to an agitation device that the pellets leave at a pellet temperature of over 100°C.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: December 4, 2012
    Assignee: Eastman Chemical Company
    Inventor: Theodor Bruckmann
  • Patent number: 8314206
    Abstract: In one embodiment, a block copolymer-containing composition includes PS-b-PXVP and a lithium salt, where “X” is 2 or 4. All lithium salt is present in the composition at no greater than 1 ppm by weight. In one embodiment, a homogenous block copolymer-including comprising has PS-b-PXVP present in the composition at no less than 99.99998% by weight, where “X” is 2 or 4. Methods of forming such compositions are disclosed.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: November 20, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Scott Sills
  • Patent number: 8309683
    Abstract: A process for crystallizing a polyester polymer by introducing a molten polyester polymer, such as a polyethylene terephthalate polymer, into a liquid medium at a liquid medium temperature greater than the Tg of the polyester polymer, such as at a temperature ranging from 100° C. to 190° C., and allowing the molten polyester polymer to reside in the liquid medium for a time sufficient to crystallize the polymer under a pressure equal to or greater than the vapor pressure of the liquid medium. A process flow, underwater cutting process, crystallization in a pipe, and a separator are also described.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 13, 2012
    Assignee: Grupo Petrotemex, S.A. DE C.V.
    Inventors: Michael Paul Ekart, Mary Therese Jernigan, Cory Lee Wells, Larry Cates Windes
  • Patent number: 8309675
    Abstract: The invention relates to highly acetalized, coarse-grained polyvinyl acetals with a degree of acetalization of >80 mol % and an average grain size of ?100 ?m obtainable by acetalization of partially or fully hydrolyzed polyvinyl esters with a degree of hydrolysis of ?70 mol % with acetaldehyde, characterized by the fact that the acetalization is started at a temperature T1 of 0° C.?T1?+20° C. and is then continued at a temperature T2 of >+40° C., wherein the temperature T2 is held for a time period of 0.05 to 4 hours and the acetalization is performed in a closed reactor.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: November 13, 2012
    Assignee: Kuraray Europe GmbH
    Inventor: Werner Bauer
  • Patent number: 8304516
    Abstract: The present invention provides a method for continuously washing poly(vinyl butyral) in which a poly(vinyl butyral) slurry is passed through multiple continuous stirred tank reactors, each of which is adjusted to specific processing parameters that allow for continuous input, washing, and removal of poly(vinyl butyral). The resulting poly(vinyl butyral) can then be dried to form a powder resin that can be used in place of conventional poly(vinyl butyral) resin. In an alternative embodiment, a counter current screw washing unit is provided that passes wash water over the poly(vinyl butyral) in a direction opposite to the flow of the poly(vinyl butyral), thereby allowing the continuous washing of the poly(vinyl butyral) resin.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: November 6, 2012
    Assignee: Solutia Inc.
    Inventors: Pol D'Haene, Nandan Ukidwe, Paul Van Lierde
  • Patent number: 8304461
    Abstract: The present invention provides methods of making composite materials comprising combining particles of crosslinked rubber with coagulated aqueous polymer dispersions to form a mixture in aqueous dispersion, and subjecting the aqueous dispersion mixture to solid state shear pulverization to form materials that can be processed as thermoplastics at crosslinked rubber concentrations of from 10 to as high as 95 wt. %, based on the total solids of the material. The method may further comprise kneading the pulverized product to form useful articles, such as roofing membranes and shoe soles.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: November 6, 2012
    Assignee: Rohm and Haas Company
    Inventors: Carlos A. Cruz, Willie Lau, Joseph M. Rokowski, Qi Wang
  • Patent number: 8304462
    Abstract: The present invention provides methods of making composite materials comprising combining particles of crosslinked rubber with one or more aqueous polymer dispersion of a suspension polymer to form a mixture in aqueous dispersion, and, optionally, subjecting the aqueous dispersion mixture to solid state shear pulverization to form materials that can be processed as thermoplastics at crosslinked rubber concentrations of from 10 to as high as 95 wt. %, based on the total solids of the material. The method may further comprise kneading and/or compression molding the pulverized product to form useful articles, such as roofing membranes and shoe soles.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: November 6, 2012
    Assignee: Rohm and Haas Company
    Inventors: Willie Lau, Rachel Z. Pytel, Joseph M. Rokowski
  • Patent number: 8304460
    Abstract: The present invention provides methods of making shapeable composites in the form of finely divided materials or articles and the materials and articles produced by the methods, the methods comprising forming mixtures by (i) treating an aqueous thermoplastic acrylic or vinyl polymer to increase the particle size thereof to a weight average particle size of 1 ?m or more, and, optionally, dewatering to form a crumb mixture; and (ii) combining a thermoplastic acrylic or vinyl polymer with one or more waste rubber vulcanizate having a sieve particle size ranging from 10 to 600 ?m in the amount of from 15 to 95 wt. %, based on the total weight of polymer and rubber to form a crumb slurry, such that (ii) can take place before, during, after (i) but before any dewatering, or after any dewatering; and (iii) thermoplastic processing the mixture. Thermoplastic processing can directly form articles, like sheets or films. The shapeable composites have excellent adhesion to other materials.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: November 6, 2012
    Assignee: Rohm and Haas Company
    Inventors: Willie Lau, Donald C. Schall, Harry R. Heulings, IV, Kimberly B. Kosto, Joseph M. Rokowski
  • Patent number: 8299207
    Abstract: A process for removing residual monomers from water-absorbing polymer particles, wherein the water-absorbing polymer particles are thermally aftertreated in a mixer with rotating mixing tools at a temperature of at least 60° C. in the presence of water vapor.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: October 30, 2012
    Assignee: BASF SE
    Inventors: Robert Wengeler, Karin Flore
  • Patent number: 8288506
    Abstract: Disclosed is a method of manufacturing a conductive coating film having superior chemical resistance or solvent resistance and durability by chemically bonding a resin having an amine group (—NH2) with carbon nanotubes having a carboxyl group (—COOH). The conductive material having high bondability with carbon nanotubes and superior electrical properties includes carbon nanotubes uniformly contained therein, and thus has appropriate surface resistivity, and thereby can be used for antistatic, electrostatic dissipation and electromagnetic shielding purposes and in transparent or opaque electrodes depending on the resistivity value.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: October 16, 2012
    Assignee: Kolon Industries, Inc.
    Inventors: Jeong Han Kim, Ji Sung Kim, Ki Nam Kwak, Sang Min Song, Chung Seock Kang
  • Patent number: 8263734
    Abstract: The techniques provide a system and a method of producing polyphenylene sulfide (PPS) polymer. The PPS polymer is produced by reacting a sulfur source and a dihaloaromatic compound in the presence of a polar organic compound in a polymerization mixture in a polymerization vessel. The PPS polymer is washed with a base to lower the oligomer content of the PPS polymer and thus the off-gassing during processing.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: September 11, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffrey S. Fodor, Aubrey South, Jr.
  • Patent number: 8258252
    Abstract: Present invention is to provide a sustained-release composition which contains a physiologically active substance in high content even when gelatin is not included, and suppresses its initial excessive release and, thus, can achieve a stable release rate over about one month. A sustained-release composition containing a lactic acid-glycolic acid polymer having a ratio or weight average molecular weight and number average molecular weight of about 1.90 or lower, or a salt thereof, and a physiologically active substance.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: September 4, 2012
    Assignee: Takeda Pharmaceutical Company Limited
    Inventors: Kazumichi Yamatomo, Akiko Yamada, Yoshio Hata
  • Patent number: 8242235
    Abstract: Objects of the present invention are to provide a purification process that enables Pd and P to be removed effectively, and to provide an electroluminescent material and an electroluminescent device obtained by employing the process. The present invention relates to a process for purifying an electroluminescent material, the process involving treating, with an oxidizing agent and then with a column, an electroluminescent material that contains Pd and/or P as impurities so as to remove the Pd and/or P.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: August 14, 2012
    Assignees: Hitachi Chemical Co., Ltd., Maxdem Incorporated
    Inventors: Yoshihiro Tsuda, Yoshii Morishita, Satoyuki Nomura, Seiji Tai, Yousuke Hoshi, Shigeaki Funyuu, Matthew L. Marrocco, III, Farshad J. Motamedi, Li-Sheng Wang
  • Patent number: 8207291
    Abstract: Process for devolatilization of a polymer of an aromatic alkylene, such as styrene and, in particular, an improved process using water as a stripping agent (i) in which the total amount of water to be disposed of can be reduced, (ii) which allows at least a portion of the water to be recycled as stripping agent, reducing make-up requirements for the stripping agent, and (iii) which allows at least a portion of the aromatic alkylene monomer in the water to be recycled to the polymerization process (via the devolatilization steps) rather than being disposed.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 26, 2012
    Assignee: Ineos Europe Limited
    Inventor: Jean-Marc Galewski
  • Patent number: 8207290
    Abstract: In one aspect, the present invention provides a process for forming polymeric nanoparticles, which comprises using a static mixer to create a mixed flowing stream of an anti-solvent, e.g., by introducing a liquid anti-solvent into a static mixer, and introducing a polymer solution into the mixed flowing anti-solvent stream such that controlled precipitation of polymeric nanoparticles occurs. The nanoparticles can then be separated from the anti-solvent stream.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: June 26, 2012
    Assignee: Cerulean Pharma Inc.
    Inventors: John Podobinski, J. Michael Ramstack, David S. Dickey
  • Patent number: 8202965
    Abstract: The invention concerns processes for hydrolyzing polyphosphoric acid in a never-dried spun multifilament yarn, comprising: a) removing surface liquid from filaments in a never-dried spun multifilament yarn; and b) contacting the yarn with a hot surface to hydrolyze polyphosphoric acid, wherein the filaments remain substantially unfused; wherein the hot surface has a surface temperature of at least about 150° C.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: June 19, 2012
    Assignees: E.I. du Pont de Nemours and Company, Magellan Systems International, LLC
    Inventor: Christopher William Newton
  • Patent number: 8193308
    Abstract: The present invention provides the process for preparing a fluorine-containing polymer which can easily and efficiently separate a fluorine-containing polymer and water from an aqueous dispersion of a fluorine-containing polymer, and the fluorine-containing polymer obtained by the mentioned preparation process. Further the present invention provides the molded article obtained by crosslinking a curable composition comprising the above-mentioned fluorine-containing polymer and a crosslinking agent. The preparation process is a process for preparing a fluorine-containing polymer comprising a step for heat-treating an aqueous dispersion of a fluorine-containing polymer having a concentration of 3 to 70% by weight to obtain the fluorine-containing polymer having a water content of not more than 1% by weight.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 5, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Masaki Irie, Yosuke Nishimura, Manabu Fujisawa
  • Patent number: 8183336
    Abstract: In a process for producing a poly(arylene sulfide) by polymerizing a sulfur source and a dihalo-aromatic compound in the presence of an alkali metal hydroxide in an organic amide solvent, the production process comprises washing a polymer obtained by the polymerization with a hydrophilic organic solvent containing water in a proportion of 1 to 30% by weight, thereby collecting a purified polymer, the content of nitrogen contained in an extract extracted by a mixed solvent containing 40% by weight of acetonitrile and 60% by weight of water from the purified polymer is at most 50 ppm on the basis of the weight of the polymer, and a poly(arylene sulfide), the content of nitrogen contained in an extract extracted by a mixed solvent containing 40% by weight of acetonitrile and 60% by weight of water from the purified polymer is at most 50 ppm on the basis of the weight of the polymer.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 22, 2012
    Assignee: Kureha Corporation
    Inventors: Hiroyuki Sato, Koichi Suzuki, Hirohito Kawama
  • Patent number: 8183337
    Abstract: Methods for the purification of ethylene vinyl alcohol copolymers are provided.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 22, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Stephen D. Pacetti
  • Patent number: 8158740
    Abstract: A process for producing a soluble silicone product is provided. The process includes the steps of chemically reacting a polydialkoxysiloxane with an aliphatic alcohol with or without a catalyst in a reaction mixture, removing produced alcohol from the mixture; recovering the water soluble portion of produced silicone product, purifying the water soluble portion; and recovering hydrophilic material in the water insoluble portion.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: April 17, 2012
    Assignee: One Unlimited, Inc.
    Inventor: Leonard William Luria
  • Patent number: 8148491
    Abstract: This invention relates to a process for preparing polytrimethylene ether glycols or copolymers thereof by a polycondensation reaction using at least one acid catalyst, wherein the temperature of the reaction is controlled such that the average temperature during the first half of the reaction is higher than the average temperature during the second half of the reaction.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 3, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: David C. Confer, Mark Andrew Harmer, Christian Hoffmann, Scott Christopher Jackson, Sigridur Soley Kristjansdottir, Rupert Spence
  • Patent number: 8138232
    Abstract: The invention relates to a method for recycling plastic materials which contain at least two polymers, copolymers or blends thereof based on polystyrene. The plastic material is thereby mixed with a solvent for the polymers, copolymers or blends. Subsequently a precipitation is effected by addition of a corresponding precipitant so that then the gelatinous precipitation product can be separated from the further components of the plastic material. The method is used for recycling of any plastic materials, in particular of plastic materials from electronic scrap processing and from shredder light fractions.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: March 20, 2012
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Andreas Maeurer, Martin Schlummer, Otto Beck
  • Patent number: 8124668
    Abstract: [Problem] To provide a safe ocular lens material having high oxygen permeability, excellent surface wettability, the excellent lubricity/easy lubricating property of surface, little in surface adhesive and superior flexibility and stress relaxation, in addition, suppressing elution of a monomer from the final product. [Means for Solving the Problem] An ocular lens comprising a compound (A) having an ethylenically unsaturated group and polydimethylsiloxane structure through a urethane bond and an 1-alkyl-3-methylene-2-pyrrolidone (B).
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: February 28, 2012
    Assignee: Menicon Co., Ltd.
    Inventors: Masaki Baba, Tsuyoshi Watanabe
  • Patent number: 8124718
    Abstract: A process for preparing an aqueous aminoplastic urea-formaldehyde resin suitable for use in bonding lignocellulosic materials, which provides products of very low formaldehyde emission while maintaining superior performance.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: February 28, 2012
    Assignee: Chimar Hellas S.A.
    Inventors: Anastassios Hatjiissaak, Electra Papadopoulou
  • Patent number: 8080195
    Abstract: A method of producing a fluoropolymer by which a melt-processable fluoropolymer (A) having a specific unstable terminal group or groups (P) is subjected to melt-kneading in a kneader having a stabilization treatment zone to thereby produce a fluoro-polymer (B) resulting from conversion of the specific unstable terminal group or groups (P) to —CF2H. The specific unstable terminal group or groups (P) include alkoxycarbonyl groups, fluoroalkoxycarbonyl groups and/or carboxyl group quaternary nitrogen compound salts, the melt-kneading is carried out in the absence or presence of an alkali metal element or alkaline earth metal element, the content of the alkali metal element or alkaline earth metal element is not greater than 2 ppm of the composition under melt-kneading, and the melt-kneading in the stabilization treatment zone is carried out in the presence of water. A fluoro-polymerised material is also disclosed.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: December 20, 2011
    Assignee: Daikin Industries, Ltd
    Inventors: Yoshiyuki Takase, Kenji Ishii, Shouji Fukuoka
  • Patent number: 8080196
    Abstract: A continuous process wherein polymers or polymeric materials can be subjected to multiple sequential processing systems of differing temperatures and process conditions to synergistically enhance the pelletization and crystallization of those polymers and polymeric formulations, dispersions, and solutions. The multiple sequential processing systems include the processes and equipment for mixing/extrusion, pelletization, multiple transportation processes, crystallization, multiple drying processes, and optional post-processing manipulations of pellets formed. Multiple serial and/or parallel crystallization processing systems are disclosed.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: December 20, 2011
    Assignee: Gala Industries, Inc.
    Inventors: Wayne Martin, George Norman Benoit, Jr., Robert Gene Mann, Charles W. Simmons, Roger Blake Wright
  • Patent number: 8067494
    Abstract: Magnesium oxide (MgO) compounded into a polymer can subsequently be hydrated in-situ within the polymer to form magnesium hydroxide. In the case of silane-based or peroxide-based crosslinkable resins, the MgO hydration and polymer crosslinking can be done in a single process step, or in sequential steps. In the case of non-crosslinkable compounds, hydration can be carried out after compounding (no crosslinking step). In all cases, steam CV, sauna, or hot water bath are options for hydration. This approach enables preparation of polymer compounds that are flame retarded with metal hydrates yet free of the traditional limitations posed by shelf instability, extrusion scorch, undesired dehydration, and processing temperature limitations posed by metal hydrates.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: November 29, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Jeffrey M. Cogen, Ashish Batra, Geoffrey D. Brown, Paul D. Whaley
  • Patent number: 8053550
    Abstract: Process for the purification of a vinyl chloride polymer (PVC) comprising at least one compound of a heavy metal, according to which: (a) the PVC is dissolved in a water-miscible polar organic solvent; (b) an aqueous solution comprising a reagent, which is either a base capable of reacting with the compound of the heavy metal (R1) or a dispersing agent capable of stabilizing the said compound (R2), is added to the organic solution, the water being introduced in an amount (Q) such that it brings about the formation of a two-phase medium, the continuous phase of which is the organic phase; (c) the two-phase medium is subjected to stirring for a time sufficient for the reagent to be able to interact with (exert its effect on) the compound of the heavy metal; (d) the precipitation of the PVC out of this two-phase medium is brought about.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: November 8, 2011
    Assignee: Solvay (Societe Anonyme)
    Inventors: Eric Fassiau, Murielle Manin
  • Patent number: 8053607
    Abstract: A method for producing a polyether-polyol having a narrow molecular weight distribution, which comprises carrying out selective fractional extraction of the low-molecular weight component from a polyether-polyol (A) having an average molecular weight of from 500 to 4500 represented by formula (1): HO—[(CH2)4O]n—[(CR1R2)pO]q—H??(1) wherein R1 and R2, which may be the same or different, each represents a hydrogen atom or a linear or branched alkyl group having from 1 to 5 carbon atoms; n indicates a positive integer; p indicates an integer of from 1 to 8; and q indicates 0 or a positive integer, by the use of an aqueous solution (C) containing from 15 to 70 wt % sulfuric acid at a room temperature to 100° C., to thereby suitably determine the amount of the aqueous sulfuric acid solution to the overall organic layer and the sulfuric acid concentration in accordance with the molecular weight and molecular weight distribution of the intended polyether-polyol to be fractionally extracted.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 8, 2011
    Assignee: Hodogaya Chemical Co., Ltd.
    Inventors: Kazuaki Okabe, Hiroshi Nakaoka, Ikuhiko Kanehira
  • Patent number: 8039581
    Abstract: A process for crystallizing a polyester polymer by introducing a molten polyester polymer, such as a polyethylene terephthalate polymer, into a liquid medium at a liquid medium temperature greater than the Tg of the polyester polymer, such as at a temperature ranging from 100° C. to 190° C., and allowing the molten polyester polymer to reside in the liquid medium for a time sufficient to crystallize the polymer under a pressure equal to or greater than the vapor pressure of the liquid medium. A process flow, underwater cutting process, crystallization in a pipe, and a separator are also described.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 18, 2011
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Michael Paul Ekart, Mary Therese Jernigan, Cory Lee Wells, Larry Cates Windes
  • Patent number: 8039578
    Abstract: A process for producing non-solid-stated polyester polymer particles having one or more properties similar to polyester polymer particles that have undergone solid-state processing. In one embodiment, the process comprises (a) forming polyester polymer particles from a polyester polymer melt; (b) quenching at least a portion of the particles, (c) drying at least a portion of the particles, (d) crystallizing at least a portion of the particles, (e) annealing at least a portion of the particles. At all points during and between steps (b) through (e), the average bulk temperature of the particles is maintained above 165° C.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: October 18, 2011
    Assignee: Eastman Chemical Company
    Inventors: Bruce Roger DeBruin, Tommy Ray Maddox, II, John Alan Wabshall, Jr., Steven Lee Stafford, Stephen Weinhold, Robert Noah Estep, Mary Therese Jernigan, Steven Paul Bellner, Alan George Wonders
  • Patent number: 7999061
    Abstract: A catalytic lactide and glycolide copolymerization system comprising a trifluoromethane sulfonate as a catalyst and copolymerization additive and a copolymerization process.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 16, 2011
    Assignee: IPSEN Pharma S.A.S.
    Inventors: Blanca Martin-Vaca, Anca Dumitrescu, Lidija Vranicar, Jean-Bernard Cazaux, Didier Bourissou, Roland Cherif-Cheikh, Frédéric Lacombe
  • Patent number: 7999012
    Abstract: Disclosed is a system to mechanically destroy printer toner cartridges and reclaim their constituent materials under a water shielded environment while providing a safer and more environmentally friendly recycling system. The present invention is an economical system that provides greater protection from possible fire or explosion and releases less irritating or possibly harmful airborne contamination than the currently available systems.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: August 16, 2011
    Inventors: Lacee Lamphere, Brian Ibarra, Donald Laffler, James Hardin
  • Patent number: 7989582
    Abstract: The present invention relates to a process for producing tetrahydrofuran polymer or tetrahydrofuran copolymer by using heteropolyacid catalyst, and more particularly, to a process for producing tetrahydrofuran polymer by using hydronium ion water having a pH of 5.5 or less as a reaction initiator in the initiation step.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: August 2, 2011
    Assignee: Hyosung Corporation
    Inventors: Eun-Ku Lee, Yong-Ho Baek, Joon-Seok Oh, No-Hyun Kim, Jae-Young Huh
  • Patent number: 7985778
    Abstract: Synthetic resin containing ester bond is subjected to hydrolysis treatment to reclaim raw material component before polymerization. Method for decomposing and reclaiming synthetic resin having ester bond in composition structure thereof, by conducting hydrolysis treatment and then separation collection treatment. In the hydrolysis treatment, article containing synthetic resin to be decomposed and reclaimed is exposed to water vapor atmosphere filled under saturation water vapor pressure at treatment temperature at or below melting point of the synthetic resin. The synthetic resin in article to be treated is hydrolyzed by water vapor generated at the treatment temperature, to generate decomposition product before polymerizing to the synthetic resin containing an ester bond. The separation collection treatment is treatment in which the decomposition product generated by the hydrolysis treatment is separated into liquid component and solid component to be collected individually.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: July 26, 2011
    Inventor: Koichi Nakamura
  • Patent number: 7973092
    Abstract: A method for reprocessing used PET bottles having the steps of shredding the bottles to form plastic flakes, sorting the plastic flakes according to at least one criterion into at least two partial quantities, and performing an individual processing treatment including a decontamination treatment. The device permits performing the method whereby it is possible to separate the plastic flakes produced from the threaded part of a PET bottle, these flakes being more difficult to purify, from the lighter plastic flakes from the wall of the bottle, which have a thin wall and are easier to purify, and treating them further in separate reprocessing steps.
    Type: Grant
    Filed: October 9, 2004
    Date of Patent: July 5, 2011
    Assignee: Krones AG
    Inventors: Thomas Friedlaender, Maren Hofferbert, Timm Kirchhoff
  • Patent number: 7960503
    Abstract: The present invention provides a method for continuously washing poly(vinyl butyral) in which a poly(vinyl butyral) slurry is passed through multiple continuous stirred tank reactors, each of which is adjusted to specific processing parameters that allow for continuous input, washing, and removal of poly(vinyl butyral). The resulting poly(vinyl butyral) can then be dried to form a powder resin that can be used in place of conventional poly(vinyl butyral) resin. In an alternative embodiment, a counter current screw washing unit is provided that passes wash water over the poly(vinyl butyral) in a direction opposite to the flow of the poly(vinyl butyral), thereby allowing the continuous washing of the poly(vinyl butyral) resin.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: June 14, 2011
    Assignee: Solutia, Inc.
    Inventors: Pol D'Haene, Nandan Ukidwe, Paul Van Lierde
  • Patent number: 7956156
    Abstract: A process is described for removing isobutene oligomers from an isobutene polymer by stripping the isobutene polymer with vapors of a saturated hydrocarbon having at least 8 carbon atoms and at least partly driving out the isobutene oligomers. Troublesome isobutene oligomers are substantially removed without impairing the reactivity of the isobutene polymer (expressed as the content of the methylidene double bonds).
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: June 7, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Peter Rath, Phillip Hanefeld, Helmut Mach
  • Publication number: 20110118436
    Abstract: A method of degrading a water-soluble, synthetic polymeric film being at least partially covered with a paint material. The method includes placing the film in an extractor apparatus and separating the paint material from the film. The paint material is collected from a water-based solution with a filtration media. The film is degraded in the extractor apparatus.
    Type: Application
    Filed: November 15, 2010
    Publication date: May 19, 2011
    Inventor: Robert Joseph Hanlon, JR.
  • Patent number: 7943724
    Abstract: Process for preparing diamino diphenyl methane and poly-(diamino diphenyl methane) comprising reacting aniline with formaldehyde in the presence of hydrogen chloride added in the gaseous form wherein the aniline contains 0.1 to 7 wt %, preferably 2 to 5 wt % of a protic chemical, preferably water.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: May 17, 2011
    Assignee: Huntsman International LLC
    Inventor: Robert Henry Carr
  • Patent number: 7943676
    Abstract: A method of recycling waste plastic foam materials firstly is to smash a waste material including polyurethane foam into fine particles so as to obtain a first starting material. The first starting material is then crisped and followingly milled into powder so as to obtain a second starting material. The second starting material is then placed into a mixer to mix with a first foaming reaction solution including polyol, catalyst and additives injected into the mixer so as to form a semi-treated foaming material. And then, the semi-treated foaming material is mixed with a second foaming reaction solution including diisocyanate injected into the mixer so as to obtain a completed-treated foaming material. Lastly, the completed-treated foaming material is poured into a mold and then water vapor is uniformly introduced into the mold so as to induce the completed-treated foaming material to proceed foaming reaction.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: May 17, 2011
    Inventor: Kun-Huang Chang
  • Patent number: 7939579
    Abstract: Hydrogels, methods of preparing hydrogels, and ophthalmic lenses comprising hydrogels are described. Fully hydrated embodiments of the hydrogels have relatively high water content and oxygen permeability, along with relatively low modulus of elasticity. Embodiments of the hydrogels in substantially dehydrated condition are adapted to lathe cutting at or above room temperature. Embodiments of contact lenses made with the silicone hydrogels have low on-eye water loss.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: May 10, 2011
    Assignee: Contamac Limited
    Inventors: Tristan Tapper, Richard Young
  • Patent number: 7923039
    Abstract: Disclosed is a method and apparatus for the extraction of high molecular weight biopolymers from plants. Specifically, invention described herein relates to the commercial processing of plant material, including that from desert plants native to the southwestern United States and Mexico, such as the guayule plant (Parthenium argentatum), for the extraction of biopolymers, including natural rubbers. More specifically, the invention relates to laboratory to commercial scale extraction of high molecular weight biopolymers from plant materials including the chemical and mechanical processing of the plants and purification of the extracted biopolymer.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: April 12, 2011
    Assignee: Yulex Corporation
    Inventors: Katrina Cornish, Raymond G. McCoy, III, Jeffrey A. Martin, Jali Williams, Anthony Nocera, Jr.