Encodes A Fusion Protein Patents (Class 536/23.4)
  • Patent number: 9029522
    Abstract: A recombinant fusion interferon for animals. The recombinant fusion interferon comprises an animal interferon and a Fc region of an animal immunoglobulin G (IgG). The animal interferon and the Fc region of the animal immunoglobulin G can be further joined by a linker. A polynucleotide that encodes the recombinant fusion interferon for animals, a method for producing the recombinant fusion interferon, and the use of the recombinant fusion interferon.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: May 12, 2015
    Assignee: SBC Virbac Biotech Co., Ltd.
    Inventors: Tsun-Yung Kuo, Chung-Chin Wu, Han-Ting Chen
  • Patent number: 9029315
    Abstract: The subject invention provides novel soluble PD-1 (sPD-1) proteins, nucleic acids, and fusion constructs thereof, for enhancing humoral and cell-mediated immunity of a subject. Also provided are therapeutic compositions comprising the sPD-1 proteins, nucleic acids, and fusion constructs of the subject invention. In a preferred embodiment, the therapeutic composition is formulated as a vaccine composition. Advantageously, the sPD-1 proteins, nucleic acids, and therapeutic compositions provide protective immunity against pathogenic infection including HIV infection. In addition, the subject invention can be used in the prevention and/or treatment of tumor or cancer.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 12, 2015
    Assignee: The University of Hong Kong
    Inventors: Zhiwei Chen, Jingying Zhou
  • Publication number: 20150126709
    Abstract: The present invention refers to a fusion protein comprising a TNF-superfamily (TNFSF) cytokine or a receptor binding domain thereof fused to a collectin trimerization domain, to a nucleic acid molecule encoding the fusion protein, and to a cell comprising the nucleic acid molecule. The fusion protein is present as a trimeric complex or as an oligomer thereof. The fusion protein, the nucleic acid, and the cell is suitable as pharmaceutical composition or for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: July 2, 2014
    Publication date: May 7, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann, Marcus Branschädel
  • Publication number: 20150125481
    Abstract: The present invention discloses a polypeptide comprising: a protein A part including at least one IgG binding domain and an Sbi part including at least one IgG binding domain. In a further embodiment, the invention discloses an immunogenic composition comprising at least two different staphylococcal polypeptides, each comprising an IgG binding domain.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Cindy CASTADO, Cecile Anne NEYT, Jan POOLMAN
  • Publication number: 20150125419
    Abstract: The present invention refers to single-chain fusion proteins comprising three soluble TNF superfamily (TNFSF) cytokine domains and nucleic acid molecules encoding these fusion proteins. The fusion proteins are substantially non-aggregating and suitable for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: June 30, 2014
    Publication date: May 7, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann
  • Publication number: 20150126445
    Abstract: A polypeptide and polynucleotides comprising at least two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a non-human peptide-of-interest are disclosed. Pharmaceutical compositions comprising the non-human polypeptides and polynucleotides of the invention and methods of using both human and non-human polypeptides and polynucleotides are also disclosed.
    Type: Application
    Filed: December 10, 2014
    Publication date: May 7, 2015
    Inventors: FUAD FARES, UDI EYAL FIMA
  • Publication number: 20150125421
    Abstract: The present invention provides fusion proteins including an autoimmune antigen, an allergen antigen or an alloantigen, and an anti-inflammatory cytokine. Compositions and methods including the fusion proteins are also provided.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventor: Mark D. Mannie
  • Publication number: 20150125893
    Abstract: The invention provides fusion proteins comprising at least one fluorescent protein that is linked to at least one transporter protein that changes three-dimensional conformation upon specifically transporting its substrate. The transporter protein may be a nitrate transporter, a peptide transporter, or a hormone transporter. The invention provides fusion proteins comprising at least one fluorescent protein that is linked to at least one mechanosensitive ion channel protein. The invention also provides for methods of using the fusion proteins of the present invention and nucleic acids encoding the fusion proteins.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Inventors: Wolf B. Frommer, Cheng-Hsun Ho
  • Publication number: 20150118260
    Abstract: This invention relates to recombinant CTLA-4 proteins, e.g., soluble CTLA-4 or CTLA-4 fusion toxins, and methods for making and using them.
    Type: Application
    Filed: February 28, 2013
    Publication date: April 30, 2015
    Inventors: Zhirui Wang, David H. Sachs, Christene A. Huang
  • Publication number: 20150118262
    Abstract: The invention described herein relates to a Haemophilus influenzae (H. influenzae) regulon encoding type IV pili. In particular, the invention relates to type IV pili from nontypeable H. influenzae (NTHi) and from H. influenzae strains a, b, c, e and f. The invention provides isolated H. influenzae pilus polynucleotides and polypeptides encoded by the polynucleotides as well as polynucleotides and polypeptides encoded by the polynucleotides involved in the assembly/disassembly of the structure. The invention also relates to uses of these polynucleotides and/or polypeptides including methods for eliciting an immune response to H. influenzae and methods of treating and preventing H. influenzae related pathological conditions.
    Type: Application
    Filed: January 9, 2015
    Publication date: April 30, 2015
    Inventors: LAUREN O. BAKALETZ, ROBERT S. MUNSON, JR.
  • Publication number: 20150119334
    Abstract: An isolated peptide is disclosed. The peptide comprises a titanium oxide binding amino acid sequence connected to a heterologous biologically active amino acid sequence via a beta sheet breaker linker, wherein: (i) the titanium oxide binding amino acid sequence is selected to bind coordinatively with titanium oxide; (ii) the titanium oxide binding amino acid sequence is selected to induce a beta sheet structure; and (ii) the titanium oxide binding amino acid sequence binds to titanium oxide with a higher affinity than said biologically active amino acid sequence binds to the titanium oxide under physiological conditions. Use of the peptides and titanium devices comprising same are also disclosed.
    Type: Application
    Filed: June 3, 2013
    Publication date: April 30, 2015
    Applicant: Ben-Gurion niversity of the Negev Research and Development Authority
    Inventors: Hanna Rapaport, Anna Gittelman
  • Publication number: 20150118693
    Abstract: The invention provides a method of high-throughput sorting of high expression protein-producing cell, which utilizes linking a protein and a transmembrane domain with a self-processing cleavage site and regulating the secretion of the protein or expression of protein on the cell membrane by adding self-processing cleavage enzyme inhibitor. Then, the high expression cell line can be high-throughput sorted by a detection technique. The invention also provides a recombinant nucleotide sequence and a vector used in the method and a cell sorted by the method.
    Type: Application
    Filed: April 28, 2014
    Publication date: April 30, 2015
    Applicant: Taipei Medical University
    Inventors: KUO-HSIANG CHUANG, TIAN-LU CHENG, I-SHIUAN CHIANG, YUAN-CHIN HSIEH
  • Patent number: 9018446
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Tomotsugu Koyama, Kyoko Matsui, Masaru Takagi
  • Patent number: 9018450
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Masaru Takagi, Nobutaka Mitsuda, Tomotsugu Koyama, Kyoko Matsui
  • Patent number: 9017659
    Abstract: Systems for pathotropic (disease-seeking) targeted gene delivery are provided, including viral particles with extremely high titers. In particular, the viral particles are engineered to specifically deliver therapeutic or diagnostic agents to a disease site, such as cancer metastic sites. Personalized dosing regimens are also provided to treat diseases such as cancer efficaciously with reduced adverse side effects.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: April 28, 2015
    Assignee: Epeius Biotechnologies Corporation
    Inventors: Frederick L. Hall, Erlinda M. Gordon
  • Publication number: 20150110825
    Abstract: The present invention provides nanoparticles and compositions of various constructs that combine meta-stable viral proteins (e.g., RSV F protein) and self-assembling molecules (e.g., ferritin, HSPs) such that the pre-fusion conformational state of these key viral proteins is preserved (and locked) along with the protein self-assembling into a polyhedral shape, thereby creating nanoparticles that are effective vaccine agents. The invention also provides nanoparticles comprising a viral fusion protein, or fragment or variant thereof, and a self-assembling molecule, and immunogenic and vaccine compositions including the same.
    Type: Application
    Filed: September 24, 2014
    Publication date: April 23, 2015
    Inventors: Ram SASISEKHARAN, Aditya RAGURAM, Vidya SUBRAMANIAN
  • Publication number: 20150110720
    Abstract: Embodiments of the present invention provide for the facile generation of a stable recombinant fusion polypeptides with intrinsic fluorescent properties. The recombinant antibodies may be suitable for qualitative and/or quantitative immunofluorescence analysis. Generally, the fluorescent polypeptides include a fluorescent domain comprising a C-terminus and an N-terminus; a first antibody domain covalently linked to the C-terminus; and a second antibody domain covalently linked to the N-terminus.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 23, 2015
    Applicant: STC.UNM
    Inventors: ANATOLIY MARKIV, RAVI VENKATA DURVASULA, ANGRAY SINGH KANG
  • Publication number: 20150110734
    Abstract: The present invention refers to single-chain fusion proteins comprising three soluble TNF superfamily (TNFSF) cytokine domains and nucleic acid molecules encoding these fusion proteins. The fusion proteins are substantially non-aggregating and suitable for therapeutic, diagnostic and/or research applications.
    Type: Application
    Filed: December 2, 2014
    Publication date: April 23, 2015
    Inventors: Oliver HILL, Christian Gieffers, Meinolf Thiemann
  • Publication number: 20150111222
    Abstract: The present disclosure provides, inter alia, genetically encoded recombinant peptide biosensors comprising analyte-binding framework portions and signaling portions, wherein the signaling portions are present within the framework portions at sites or amino acid positions that undergo a conformational change upon interaction of the framework portion with an analyte.
    Type: Application
    Filed: August 8, 2012
    Publication date: April 23, 2015
    Applicant: HOWARD hUGHES MEDICAL INSTITUTE
    Inventors: Jonathan Marvin, Loren Looger, Richard T. Lee, Eric Schreiter
  • Patent number: 9012617
    Abstract: Dual colored fluorescent indicators of specific tyrosine kinase activity and methods of use thereof are disclosed.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: April 21, 2015
    Assignee: The Trustees of The University of Pennsylvania
    Inventors: Matthew Dalva, Julia X. Zhu
  • Patent number: 9012721
    Abstract: The invention relates to transgenic plants with improved growth and nitrogen use efficiency expressing nitrate transporter gene, methods of making such plants and methods for improving growth and nitrogen use efficiency.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: April 21, 2015
    Assignees: Plant Bioscience Limited, Nanjing Agricultural University
    Inventors: Guohua Xu, Xiaorong Fan, Qirong Shen, Anthony Miller
  • Patent number: 9012726
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Masaru Takagi, Nobutaka Mitsuda, Tomotsugu Koyama, Kyoko Matsui
  • Patent number: 9012727
    Abstract: This invention is intended to be used to search for a transcription factor having novel functions of increasing the weight of an individual plant, increasing the weight of a given tissue per individual plant, or improving the productivity of a given substance per individual plant and to improve such properties in the plant. The weight of an individual plant is increased, the weight of a given tissue per individual plant is increased, the productivity of a given substance per individual plant is improved, or the content of a given substance per given tissue of a plant is increased via expression of a transcription factor that has been modified to suppress transcription accelerating activity.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Chatani, Chikara Ohto, Yukio Okamura, Norihiro Mitsukawa, Nobuhiko Muramoto, Masaru Takagi, Nobutaka Mitsuda, Tomotsugu Koyama, Kyoko Matsui
  • Publication number: 20150104865
    Abstract: The present invention provides an engineered multidomain protein including at least two nonidentical engineered domains, each of which contains a protein-protein interaction interface containing amino acid sequence segments derived from two or more existing homologous parent domains, thereby conferring on the engineered domains assembly specificities distinct from assembly specificities of the parent domains. In particular, the engineered domains form heterodimers with one another preferentially over forming homodimers. Methods of designing and using the engineered proteins are also included.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 16, 2015
    Inventors: Jonathan H. Davis, James S. Huston
  • Publication number: 20150104500
    Abstract: Provided herein are methods, compositions, and kits for preventing, inhibiting, reducing the severity of, or treating a disease or condition. A pharmaceutical composition provided herein can comprise a nucleic acid sequence encoding an antigen fused to an immune cell product, e.g., MIP-3?, and an adjuvant. The antigen can be from a bacteria, virus, fungus, parasite, or cancer. The antigen can be an Alzheimer's disease antigen.
    Type: Application
    Filed: August 28, 2014
    Publication date: April 16, 2015
    Inventor: Richard Markham
  • Publication number: 20150104874
    Abstract: The invention relates to kinase ligands and polyligands. In particular, the invention relates to ligands, homopolyligands, and heteropolyligands that modulate AKT activity. The ligands, homopolyligands, and heteropolyligands are utilized as research tools or as therapeutics. The invention includes linkage of the ligands, homopolyligands, and heteropolyligands to a cellular localization signal, epitope tag and/or a reporter. The invention also includes polynucleotides encoding the ligands, homopolyligands, and heteropolyligands.
    Type: Application
    Filed: July 18, 2014
    Publication date: April 16, 2015
    Inventor: Thomas D. REED
  • Publication number: 20150104468
    Abstract: The present disclosure provides methods of site-specific labeling of antibodies, using proteins having 4?-phosphopantetheinyl transferase activity that catalyze post-translational modification of peptide sequences (“peptide tags”) incorporated into one or more specific sites of an antibody of interest. Enzymatic labeling enables quantitative and irreversible covalent modification of a specific serine residue within the peptide tags incorporated into the antibody, and thus creates desirable antibody conjugates.
    Type: Application
    Filed: May 31, 2013
    Publication date: April 16, 2015
    Applicant: IRM LLC
    Inventors: Bernhard Hubert Geierstanger, Jan Grunewald, Badry Bursulaya
  • Patent number: 9006410
    Abstract: Methods of increasing the yield in plant expression of recombinant proteins comprising engineering glycosylation sites into cloned genes or cDNAs for proteins using codons that drive post-translational modifications in plants and engineering the cloned genes or cDNAs to contain a plant secretory signal sequence that targets the gene products (protein) for secretion are present. The methods result in increased recombinant glycosylated protein yields. Proteins produced according to these methods are also present.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: April 14, 2015
    Assignee: Ohio University
    Inventors: Marcia J. Kieliszewski, Jianfeng Xu, Gary D. Meyer
  • Patent number: 9006517
    Abstract: The present invention is directed to controlling nematode infestation. The invention discloses methods and compositions for use in controlling nematode infestation by providing recombinant DNA molecules to the cells of a plant in order to achieve a reduction in nematode infestation. The invention is also directed to methods for making transgenic plants that express the recombinant DNA molecule for use in protecting plants from nematode infestation.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: April 14, 2015
    Assignee: Monsanto Technology LLC
    Inventors: John D. Bradley, Catherine C. Baublite, Michael J. Crawford, Stanislaw Flasinski, Deryck J. Williams
  • Patent number: 9006409
    Abstract: The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: April 14, 2015
    Assignee: Novozymes, Inc.
    Inventor: Sandra Merino
  • Publication number: 20150099297
    Abstract: A chimeric protein is made from the combination of (i) a pathogen recognition module derived from a scavenger receptor and (ii) an anchor domain from a different scavenger receptor. The chimeric protein binds to specific pathogens and is useful in various treatments.
    Type: Application
    Filed: March 12, 2013
    Publication date: April 9, 2015
    Inventors: Karl Tryggvason, Timo Pikkarainen, Juha Ojala, Jonas Axelsson
  • Publication number: 20150098944
    Abstract: Disclosed is a recombinant fusion protein containing an amino-acid sequence which comprises: (a) the Fc section or part of an Fc section of an immunoglobulin as component (A) or a functional variant of component (A); (b) the extracellular part of a TNF ligand or a partial sequence of the extracellular part of a TNF ligand as component (B) or a functional variant of component (B); and optionally (c) a transition area between component (A) and component (B), containing a linker.
    Type: Application
    Filed: October 23, 2014
    Publication date: April 9, 2015
    Inventors: Olivier Gaide, Pascal Schneider, Jurg Tschopp
  • Publication number: 20150099708
    Abstract: The invention provides novel Wnt polypeptides that have improved production characteristics, solubility, systemic delivery, and tissue uptake, and polynucleotides encoding the Wnt polypeptides of the invention. The Wnt polypeptides of the invention can be used therapeutically, such as, for example, in methods of preventing or treating muscle loss and/or promoting muscle hypertrophy and growth.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 9, 2015
    Inventors: Tom Tong Lee, Michael J. Fitch, Kevin Lai, Peter Flynn, Monica Bennett
  • Patent number: 9000139
    Abstract: A composition for preventing or treating cervical cancer comprising a human papillomavirus plasmodium and an immunity enhancer is provided. A fusion protein including a fusion polypeptide recombined to transform a 3D structure of E6 and E7, which are antigens against types 16 and 18 human papillomavirus (HPV), a signal peptide for secreting the fusion polypeptide outside the cells and an immunity enhancer peptide present in an individual is also provided. The fusion protein may be useful in treating HPV-triggered tumors by inducing an immune response specific to the antigens against the HPV types 16 and 18.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 7, 2015
    Assignee: Genexine, Inc.
    Inventors: Young Chul Sung, Sang Hwan Seo, You Suk Suh
  • Publication number: 20150093358
    Abstract: A polypeptide and polynucleotides comprising at least two carboxy-terminal peptides (CTP) of chorionic gonadotrophin attached to a non-human peptide-of-interest are disclosed. Pharmaceutical compositions comprising the non-human polypeptides and polynucleotides of the invention and methods of using both human and non-human polypeptides and polynucleotides are also discarded.
    Type: Application
    Filed: November 26, 2014
    Publication date: April 2, 2015
    Inventors: FUAD FARES, UDI EYAL FIMA
  • Publication number: 20150093382
    Abstract: The present invention aims to provide a lactoferrin fusion protein, which is configured to retain the biological activities of natural lactoferrin, to have a significantly prolonged in vivo lifetime, and to be more clinically useful than natural and gene recombinant lactoferrin, as well as a method for preparation thereof, etc. The present invention provides a fusion protein formed with a protein or peptide comprising an FcRn-binding region and lactoferrin or a biologically active fragment or peptide of lactoferrin, which is represented by: (LF-s-Y)n or (Y-s-LF)n [wherein LF represents lactoferrin or a biologically active fragment or peptide of lactoferrin, Y represents the protein or peptide comprising an FcRn-binding region, s represents any amino acid sequence of 0 to 10 residues, and n represents an integer of 1 to 10], or a variant thereof.
    Type: Application
    Filed: April 23, 2013
    Publication date: April 2, 2015
    Inventors: Atsushi Sato, Shinji Kagaya
  • Publication number: 20150094215
    Abstract: A reverse transcriptase encoded by L-1 (LINE-1) has been identified as a target molecule for treating or preventing cancers induced or mediated by this molecule. Method of treating or preventing such cancers in patients involves administration of a therapeutically effective amount of a composition having an inhibitor or antagonist of the reverse transcriptase in cells of the patients. The inhibitor or antagonist blocks lengthening of telomeres in telomerase negative cells. Methods and kits for detecting pathologically proliferating cells expressing L1RT are also disclosed.
    Type: Application
    Filed: July 14, 2014
    Publication date: April 2, 2015
    Inventors: Igor E. BONDAREV, John S. BERTRAM
  • Publication number: 20150093357
    Abstract: The present invention relates to a therapeutic polypeptide and methods for its creation and use for modulating an immune response in a host organism in need thereof. In particular, the invention relates to the administration to an organism in need thereof, of an effective amount of a pre-coupled polypeptide complex comprising a lymphokine polypeptide portion, for example IL-15 (SEQ ID NO: 5, 6), IL-2 (SEQ ID NO: 10, 12) or combinations of both, and an interleukin receptor polypeptide portion, for example IL-15Ra (SEQ ID NO: 7, 8), IL-2Ra (SEQ ID NO: 9, 11) or combinations of both, for augmenting the immune system in, for example, cancer, SCID, AIDS, or vaccination; or inhibiting the immune system in, for example, rheumatoid arthritis, or Lupus. The therapeutic complex of the invention surprisingly demonstrates increased half-life, and efficacy in vivo.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Leo Lefrancois, Thomas A. Stoklasek
  • Publication number: 20150093414
    Abstract: Modified Rv3616c proteins and their use as medicaments, particularly for the prevention of reactivation of tuberculosis.
    Type: Application
    Filed: December 2, 2014
    Publication date: April 2, 2015
    Inventors: Normand BLAIS, Anne-Marie GELINAS, James BROWN, Dennis MURPHY, Pascal METTENS
  • Publication number: 20150093401
    Abstract: The present invention provides a polypeptide having the formula: St-R1-S1-Q-S2-R2 wherein St is a stalk sequence which, when the polypeptide is expressed at the surface of a target cell, causes the R and Q epitopes to be projected from the cell surface; R1 and R2 are a Rituximab-binding epitopes each having the an amino acid sequence selected from the group consisting of SEQ ID No. 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 or a variant thereof which retains Rituximab-binding activity; S1 and S2 are optional spacer sequences, which may be the same or different; and Q is a QBEnd1O-binding epitope having the amino acid sequence shown as SEQ ID No. 2 or a variant thereof which QBEnd1O-binding activity. The invention also provides a nucleic acid sequence encoding such a polypeptide and uses thereof in adoptive cell transfer.
    Type: Application
    Filed: April 11, 2013
    Publication date: April 2, 2015
    Applicant: UCL BUSINESS PLC
    Inventors: Martin Pulé, Brain Phillip
  • Publication number: 20150094450
    Abstract: The present invention relates to an repebody capable of binding specifically to interleukin-6 (IL-6) to inhibit the biological activity of IL-6, a polynucleotide encoding the repebody, a vector comprising the polynucleotide, a recombinant microorganism having introduced therein the polynucleotide or the vector, a method of producing the repebody using the recombinant microorganism, a composition for preventing or treating cancer, which comprises the repebody, and a method for preventing or treating cancer, which comprises administering the composition for preventing or treating cancer, which comprises the repebody. The repebody of the present invention significantly reduces the activity of STAT3 and the concentration of interleukin-6, and thus can be widely used as an agent for preventing or treating IL-6-related diseases.
    Type: Application
    Filed: February 27, 2013
    Publication date: April 2, 2015
    Applicants: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY (IAC), KOREA BASIC SCIENCE INSTITUTE
    Inventors: Hak-Sung Kim, Joong-Jae Lee, Jung Min Choi, Eun-Kyeong Jo, Chul-Su Yang, Hae-Kap Cheong, Hyun Jung Kim
  • Patent number: 8993265
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: March 31, 2015
    Assignee: Bristol-Myers Squibb Company
    Inventors: Sharon Cload, Linda Engle, Dasa Lipovsek, Malavi Madireddi, Ginger Chao Rakestraw, Joanna Swain, Wenjun Zhao, Martin J. Corbett, Alexander T. Kozhich
  • Patent number: 8993275
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: March 31, 2015
    Assignee: Novozymes, Inc.
    Inventor: Nikolaj Spodsberg
  • Patent number: 8993743
    Abstract: The present invention relates to a nucleic acid molecule encoding a chimeric protein having the biochemical activity of a surface active protein, wherein said chimeric protein comprises: (a) an N-terminal portion of a first surface active protein, wherein the N-terminal portion is devoid of between 0 and 10 of the most N-terminal amino acids of the mature first surface active protein; and, C-terminally thereof, (b) a C-terminal portion of a second surface active protein, wherein the C-terminal portion is devoid of between 0 and 10 of the most C-terminal amino acids of the mature second surface active protein. The present invention further relates to a vector, a non-human host and a method for the production of a chimeric protein having the biochemical activity of a surface active protein. In addition, the present invention relates to a chimeric protein encoded by the nucleic acid molecule of the invention and a composition comprising the chimeric protein.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 31, 2015
    Assignee: B.R.A.I.N. Biotechnology Research and Information Network AG
    Inventors: Guido Meurer, Esther Gabor, Anke Bachert, Jürgen Eck
  • Patent number: 8993742
    Abstract: The invention relates to polarized cell tubulo-vesicular structure localization signals. The localization signals are utilized as research tools or are linked to polypeptides of interest or therapeutic molecules. Disclosed are methods of making and using polypeptides and modified polypeptides as signals to localize therapeutics, experimental compounds, peptides, proteins and/or other macromolecules to the tubulo-vesicular structures of polarized cells. The polypeptides of the invention optionally include linkage to reporters, epitopes and/or other experimental or therapeutic molecules. The invention also encompasses polynucleotides encoding the localization signals and vectors comprising these polynucleotides.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: March 31, 2015
    Assignee: Intrexon Corporation
    Inventor: Thomas David Reed
  • Publication number: 20150086506
    Abstract: Methods and compositions are provided for the persistent modification of cell membranes with exogenous proteins so as to alter the function of the cell to achieve effects similar to those of gene therapy, without the introduction of exogenous DNA. DNA sequences, the proteins and polypeptides embodying these sequences are disclosed for modulating the immune system. The modulations include down-regulation, up-regulation and apoptosis.
    Type: Application
    Filed: May 19, 2014
    Publication date: March 26, 2015
    Applicant: University of Louisville Research Foundation, Inc.
    Inventor: Haval Shirwan
  • Patent number: 8987551
    Abstract: The invention provides modified oleosins, including at least one artificially introduced cysteine, and methods and compositions for producing the modified oleosins. Also provided are polynucleotides encoding the modified oleosins, constructs and host cells comprising the polynucleotides, methods for producing oil bodies comprising the modified oleosins, in vivo and in vitro, and methods for producing oil in host cells and plants. The invention also provides methods for increasing the rate of CO2 assimilation in photosynthetic cells and plants, and involves reducing or preventing lipid recycling, and/or expressing modified oleosins with artificially introduced cysteine residues in the photosynthetic cells and plants. Also provided are methods for increasing oil production in plants, via expression of modified oleosins in the non-photosynthetic tissues/organs of plants.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: March 24, 2015
    Assignee: Agresearch Limited
    Inventors: Nicholas John Roberts, Richard William Scott, Somrutai Winichayakul, Marissa Roldan
  • Patent number: 8987211
    Abstract: Fusion proteins that contain the fusion of (i) a peptide of less than 100 amino acids comprising a first amino acid sequence comprising AASSG (SEQ ID NO: 1) and a second amino acid sequence comprising XAGXDXXTEXPXS (SEQ ID NO: 2), wherein X designates any amino acid, and (ii) a protein transduction domain (PTD) are provided, along with pharmaceutical compositions containing the fusion protein. The proteins can be used to treat Huntington's disease.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: March 24, 2015
    Assignees: Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Universite Montpellier 2 Sciences et Techniques
    Inventors: Florence Maschat, Marie-Laure Parmentier, Nathalie Bonneaud, Yoan Arribat
  • Patent number: 8986956
    Abstract: The present invention relates to a method for producing hEGF (human epidermal growth factor) which has the same activity as the wild form, in high concentration and with a high degree of purity. More specifically, the invention relates to an hEGF expression vector comprising a nucleic acid sequence coding for the polypeptide of sequence number 14; a host cell in which the expression vector has been genetically transformed; and a method for producing hEGF, comprising a step in which the expression vector is created and is genetically transformed in yeast from which the KEX1 gene is lacking. Using the method of the present invention, it is possible to produce a large volume of human derived EGF which has the same size and activity as human derived EGF, and this EGF can be used in various ways such as in medicine and cosmetics.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: March 24, 2015
    Assignee: Korea Research Institute of Bioscience and Biotechnology
    Inventors: Jung Hoon Sohn, Jung Hoon Bae, Mi Jin Kim, Hyun Jin Kim, Soon Ho Park, Kwang Mook Lim
  • Publication number: 20150079084
    Abstract: The invention provides bispecific fusion proteins that inhibit activation of complement pathway and vascular endothelial growth factor (VEGF) pathway and methods for using these fusion proteins.
    Type: Application
    Filed: November 30, 2012
    Publication date: March 19, 2015
    Inventors: Jeng-Horng Her, Huang-Tsu Chen