Producing Unsaturated Acid Patents (Class 562/532)
  • Patent number: 11661392
    Abstract: An improved process can be used for the production of methacrylates, in particular methacrylic acid and/or methyl methacrylate (MMA). Specific embodiments of this process can be used for the safe and efficient production of these products from C-4-based raw materials, in particular those based on isobutylene or tert-butanol as raw materials. With this novel process, it is possible to operate such processes for a longer period of time without any safety or cleaning related shutdowns. This makes it possible to carry out such processes as simple, economic, and environmentally friendly as possible.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: May 30, 2023
    Assignee: Röhm GmbH
    Inventors: Steffen Krill, Jalyn Deng, Markus Maier
  • Patent number: 11236034
    Abstract: Provided is a process for preparing acrylic acid comprising (1) preparing acrolein by catalytic gas phase oxidation comprising (a) providing a reaction gas comprising (i) 5 to 10 mol % propylene, (ii) 0.02 to 0.75 mol % propane, and (iii) 0.25 to 1.9 mol % of a fuel mixture comprising at least one of methane and ethane, wherein the molar ratio of the total amount of propane, methane, and ethane to the total amount of propylene is from 0.01:1 to 0.25:1, (b) contacting the reaction gas with a first mixed metal oxide catalyst to form a mixture comprising acrolein, wherein the first mixed metal oxide catalyst comprises one or more of molybdenum, bismuth, cobalt, and iron, and (2) contacting the acrolein mixture with a second mixed metal oxide catalyst to form a mixture comprising acrylic acid, wherein the second mixed metal oxide catalyst comprises one or more of molybdenum, vanadium, tungsten, copper, and antimony.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: February 1, 2022
    Assignee: Rohm and Haas Company
    Inventors: Donald A. Ebert, Timothy Allen Hale, Brian Robert Keyes, Justin Rose, Jinsuo Xu
  • Patent number: 10577311
    Abstract: The invention relates to a method for an economically and technically improved embodiment of a production interruption in a production method for isocyanates by phosgenation of the corresponding amines, in which the entire production plant is not closed while one or more parts of the plant is taken out of operation, rather the input materials and/or reaction products available in the production plant are recirculated through at least one part of the plant that has not been taken out of operation. The invention further relates to a plant for producing isocyanates and to a method for operating a plant for producing isocyanates.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: March 3, 2020
    Assignee: Covestro Deutschland AG
    Inventors: Thomas Knauf, Dirk Manzel, Peter Plathen, Jürgen Spriewald
  • Patent number: 10343969
    Abstract: A plant (1) for recovering acrylic acid, which includes: a absorption column (201); a dissociation column (205); a first line (101) connected to the dissociation column (205); a second line (102) connecting the absorption column (201) and the dissociation column (205); a third line (103) feeding a substream of the mother acid obtained in the crystallization into the dissociation column (205); a fourth line (104) connecting the crystallization apparatus and the absorption column (201); and a fifth line (105) connecting the dissociation column (205) and the absorption column (201).
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: July 9, 2019
    Assignee: BASF SE
    Inventors: Ulrich Hammon, Thomas Walter, Markus Ottenbacher, Frank Huetten
  • Patent number: 10017432
    Abstract: The invention relates to a process of the oxidative dehydrogenation of an alkane containing 2 to 6 carbon atoms and/or the oxidation of an alkene containing 2 to 6 carbon atoms, wherein a gas stream comprising oxygen and the alkane and/or alkene is contacted with a mixed metal oxide catalyst containing molybdenum, vanadium, niobium and optionally tellurium, and wherein the weight hourly space velocity is of from 2.1 to 25.0 hr?1 and the temperature is of from 300 to 500° C.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: July 10, 2018
    Assignee: SHELL OIL COMPANY
    Inventors: Alouisius Nicolaas Renée Bos, Ronald Jan Schoonebeek, Frank Spies, Michiel Johannes Franciscus Maria Verhaak
  • Patent number: 9914699
    Abstract: The present invention relates to the production of acrolein, acrylic acid or methacrylic acid by dehydration reaction of renewable raw material such as glycerin or hydroxycarboxylic acids, in the presence of a novel catalyst system supported on a carrier having a bimodal structure and a high pore volume and distribution. The dehydration reactions can be carried out for longer operation duration, so that acrolein, acrylic acid or methacrylic acid can be produced at higher productivity and for longer running time.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: March 13, 2018
    Assignee: Arkema France
    Inventors: Jean-Luc Dubois, Kimito Okumura, Yasushi Kobayashi, Ryota Hiraoka
  • Patent number: 9422218
    Abstract: A process for recharging the reaction tubes of a tube bundle reactor with a new fixed catalyst bed, in which a heterogeneously catalyzed partial gas phase oxidation of an organic compound had been performed beforehand in a preceding fixed catalyst bed comprising Mo-comprising multielement oxide active compositions to form a steam-comprising product gas mixture, in which, before the recharge, solid deposit which had been deposited on the tube inner walls and comprises molybdenum oxide and/or molybdenum oxide hydrate is brushed away with the aid of a brush.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: August 23, 2016
    Assignee: BASF SE
    Inventors: Volker Schliephake, Klaus Bott, Rolf-Dieter Becher, Klaus Joachim Mueller-Engel, Jochen Petzoldt, Ulrich Cremer, Andreas Raichle
  • Patent number: 9334221
    Abstract: The invention relates to a process for producing acrylic acid, comprising: converting a C3-oxygenate into acrolein, wherein said C3-oxygenate is selected from the group consisting of 1-propanol, monohydroxyacetone, 2-hydroxypropanal, 3-hydroxypropanal, dihydroxyacetone and 2,3-dihydroxypropanal; and converting the acrolein into acrylic acid. Said C3-oxygenate preferably contains 2 oxygen atoms, and most preferably it is monopropylene glycol.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: May 10, 2016
    Assignee: Shell Oil Company
    Inventor: Jean-Paul Lange
  • Patent number: 9334220
    Abstract: The invention relates to a process for producing acrylic acid, comprising: converting a C3-oxygenate into a C3-hydroxyacid, wherein said C3-oxygenate is selected from the group consisting of 1-propanol, 2-propanol, propanal, acetone, monopropylene glycol, monohydroxyacetone, 2-hydroxypropanal, dihydroxyacetone and 2,3-dihydroxypropanal; and converting the C3-hydroxyacid into acrylic acid.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: May 10, 2016
    Assignee: Shell Oil Company
    Inventor: Jean-Paul Lange
  • Patent number: 9334217
    Abstract: The invention relates to a process for producing acrylic acid, comprising: converting a C3-oxygenate into propanoic acid, wherein said C3-oxygenate is a compound selected from the group consisting of 1-propanol, monopropylene glycol, monohydroxyacetone, 2-hydroxypropanal, glycerol and dihydroxyacetone; and converting the propanoic acid into acrylic acid. Said C3-oxygenate preferably contains 2 oxygen atoms, and most preferably it is monopropylene glycol.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: May 10, 2016
    Assignee: Shell Oil Company
    Inventor: Jean-Paul Lange
  • Patent number: 9309180
    Abstract: Method for producing acrylic acid by dehydration of a C3 hydroxycarboxylic acid, characterized in that dehydration is achieved by contacting, at a temperature of more than 150° C., the hydroxycarboxylic acid with a mixture which is liquid at this temperature and comprises at least one metal salt of a C3 hydroxycarboxylic acid, and water.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: April 12, 2016
    Assignee: Evonik Degussa GmbH
    Inventors: Franz-Felix Kuppinger, Florian Klasovsky, Alexander May, Min-Zae Oh
  • Patent number: 9242232
    Abstract: There is provided a hetero polyacid-based catalyst for methacrylic acid production, which is more excellent in performance, life and moisture absorption during storage, the catalyst being a catalyst for methacrylic acid production, wherein a proton is replaced so as to satisfy conditions of ?=A+(B×C) and 0.5???1.4 when the atomic ratio of the alkali metal atom relative to 10 atoms of Mo is taken as A and the atomic ratio of the copper atom relative to 10 atoms of Mo is taken as B in MoaPbVcCudYeZfOg where Y represents cesium or the like; Z represents iron or the like; and a to g represent each an atomic ratio of each element relative to 10 atoms of Mo.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: January 26, 2016
    Assignee: NipponKayaku KabushikiKaisha
    Inventors: Takayuki Iijima, Tatsuhiko Kurakami, Eiji Nishimura, Tomoyuki Ejiri, Hideomi Sakai
  • Patent number: 9126171
    Abstract: A process for recharging the reaction tubes of a tube bundle reactor with a new fixed catalyst bed, in which a heterogeneously catalyzed partial gas phase oxidation of an organic compound had been performed beforehand in a preceding fixed catalyst bed comprising Mo-comprising multielement oxide active compositions to form a steam-comprising product gas mixture, in which, before the recharge, solid deposit which had been deposited on the tube inner walls and comprises molybdenum oxide and/or molybdenum oxide hydrate is brushed away with the aid of a brush.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: September 8, 2015
    Assignee: BASF SE
    Inventors: Volker Schliephake, Klaus Bott, Rolf-Dieter Becher, Klaus Joachim Mueller-Engel, Jochen Petzoldt, Ulrich Cremer, Andreas Raichle
  • Patent number: 9079841
    Abstract: The invention concerns a method for preparing acrolein from glycerol or glycerine, wherein dehydration of the glycerol or glycerine is achieved in the presence of a catalyst based on zirconium oxide and which active phase consists in at least a) a silicon oxide, a zirconium oxide and at least one metal M oxide, said metal being selected from tungsten, cerium, manganese, niobium, tantalum, vanadium and titanium, b) a titanium oxide, a zirconium oxide and at least one metal M oxide, said metal being selected from tungsten, cerium, manganese, niobium, tantalum, vanadium and silicon. This method can be used for making 3-(methylthio)propionic aldehyde MMP, 2-hydroxy-4-methylthiobutyronitrile HMTBN, methionine and its analogs.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: July 14, 2015
    Assignees: ADISSEO FRANCE S.A.S., CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Pascaline Lauriol-Garbey, Virginie Belliere-Baca, Stéphane Loridant, Jean-Marc Millet
  • Publication number: 20150087861
    Abstract: The invention relates to the production of acrolein and/or acrylic acid from glycerol, and more particularly to a method for continuous production of a stream comprising acrolein by dehydration of glycerol, comprising cycles of reaction and regeneration of a dehydration catalyst.
    Type: Application
    Filed: April 3, 2013
    Publication date: March 26, 2015
    Inventors: Jean-Francois Devaux, Michel Fauconet, Nabil Tlili
  • Patent number: 8962881
    Abstract: The disclosed invention is a method for manufacturing an oxidized organic compound which includes a step of forming an oxidized organic compound, in use of a fixed-bed reactor having a reaction tube packed with an oxide catalyst, by supplying at least one type of organic compound as a reaction feedstock gas and using a molecular oxygen-containing gas to carry out a catalytic gas-phase oxidation reaction; and a step of stopping the catalytic gas-phase oxidation reaction. In the manufacturing method, when stopping the catalytic gas-phase oxidation reaction, the supply of the reaction feedstock gas is stopped, after which an inert gas is supplied to the reactor, then a molecular oxygen-containing gas is supplied, subsequent to which the supply of the molecular oxygen-containing gas to the reactor is stopped.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: February 24, 2015
    Assignee: Nippon Shokubai Co, Ltd
    Inventors: Michio Tanimoto, Nobuyuki Hakozaki
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Publication number: 20140303338
    Abstract: A process for producing acrolein, comprising: a glycerin dehydration step of conducting dehydration reaction of glycerin to obtain an acrolein-containing gas; a partial-condensation step of cooling the acrolein-containing gas to condense a part of acrolein, water and a high-boiling substance contained in the acrolein-containing gas, thereby obtaining a purified gas and a condensate; and a separation step of separating the purified gas from the condensate; wherein a polymerization inhibitor is added to the acrolein-containing gas or the condensate in the partial-condensation step.
    Type: Application
    Filed: September 25, 2012
    Publication date: October 9, 2014
    Applicant: Nippon Shokubai Co., Ltd.
    Inventors: Hideaki Tsuneki, Masanori Nonoguchi, Koji Nishi
  • Patent number: 8829235
    Abstract: The invention relates to a process for preparation of methacrylic acid, comprising the steps: a) providing a feed composition comprising a main compound selected from isobutylene and tert-butyl alcohol and at least one co-compound selected from the group consisting of methanol, dimethyl ether and formaldehyde; b) subjecting the feed composition provided in step a) with at least a first part of said at least one co-compound to a catalytic reaction zone and obtaining an oxidation phase comprising methyl methacrylate and methacrylic acid.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: September 9, 2014
    Assignee: Evonk Röhm GmbH
    Inventor: Torsten Balduf
  • Publication number: 20140213811
    Abstract: The present invention relates to the production of acrolein, acrylic acid or methacrylic acid by dehydration reaction of renewable raw material such as glycerin or hydroxycarboxylic acids, in the presence of a novel catalyst system supported on a carrier having a bimodal structure and a high pore volume and distribution. The dehydration reactions can be carried out for longer operation duration, so that acrolein, acrylic acid or methacrylic acid can be produced at higher productivity and for longer running time.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 31, 2014
    Inventors: Jean-Luc Dubois, Kimito Okumura, Yasushi Kobayashi, Ryota Hiraoka
  • Patent number: 8748545
    Abstract: The present invention relates to the manufacture of bioresourced polymer-grade acrylic acid from glycerol. The polymer grade acrylic acid produced has limited content of certain impurities harmful to polymerization processes, such as, total aldehydes, protoanemonin, maleic anhydride and nonphenolic polymerization inhibitors. The invention also relates to the use of the bioresourced acrylic acid obtained for manufacture of superabsorbents or for manufacture of polymers or copolymers using amide or ester derivatives of the bioresourced acrylic acid.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: June 10, 2014
    Assignee: Arkema France
    Inventors: Jean-Francois Devaux, Michel Fauconet, Denis Laurent
  • Patent number: 8742169
    Abstract: The present invention relates to a method for producing acrolein, comprising step (1) of subjecting glycerol to dehydration reaction in the presence of a copper compound and a compound containing a heteroatom; step (2) of recovering acrolein generated in the dehydration reaction step (1); step (3) of recovering part or all of the copper compound which remained after the recovery of acrolein; step (4) of treating part or all of the recovered copper compound with at least one member selected from a group consisting of an oxidizing agent and acid; and step (5) of returning part or all of the copper compound treated in the above step to step (1); and a method for producing acrylic acid, comprising reacting acrolein obtained by the above method with molecular oxygen.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: June 3, 2014
    Assignee: Showa Denko K.K.
    Inventors: Takanori Aoki, Masayuki Yoshimura
  • Publication number: 20130324758
    Abstract: The present invention relates to the selective elimination of propanal in acrolein-rich streams to produce acrolein and/or acrylic acid and/or acrylonitrile and/or methylmercaptopropionaldehyde containing low amount of propanal and/or propionic acid and/or propionitrile. One subject of the present invention is a process for manufacturing acrolein comprising a step of selective elimination of propanal in an acrolein-rich stream in contact with a catalyst comprising at least molybdenum. Another subject of the present invention is a process for manufacturing acrylic acid from glycerol including a step of selective elimination of propanal in an acrolein-rich stream in contact with a catalyst comprising at least molybdenum.
    Type: Application
    Filed: January 26, 2012
    Publication date: December 5, 2013
    Applicant: Arkema France
    Inventors: Jean-Francois Devaux, Jean-Luc Dubois
  • Publication number: 20130317253
    Abstract: The present invention relates to a method and apparatus for continuous recovery of (meth)acrylic acid, and more specifically to a method of continuous recovery of (meth)acrylic acid, including: conducting gas phase oxidation of at least one compound selected from the group consisting of propane, propylene, butane, i-butylene, t-butylene, and (meth)acrolein in the presence of a catalyst to obtain a mixed gas containing (meth)acrylic acid; quenching the (meth)acrylic acid-containing mixed gas to remove high boiling point by-products in the (meth)acrylic acid-containing mixed gas; contacting the high boiling point by-product-free (meth)acrylic acid-containing mixed gas with water or an aqueous solution to obtain an aqueous solution containing (meth)acrylic acid; and purifying the aqueous solution containing (meth)acrylic acid to obtain (meth)acrylic acid.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 28, 2013
    Applicant: LG Chem, Ltd.
    Inventors: Se-Won Baek, Hyun-Kyu Kim, Dong-Hyun Cho, Jun-Seok Ko
  • Patent number: 8563774
    Abstract: Disclosed is a method for producing a catalyst, in which physical properties of a dried material or a calcined material in a production process of the catalyst are stable and a change in at least one of a catalyst activity and a selectivity to a target product is small and hence reproducibility of the catalyst is excellent. The present invention is a method for producing a catalyst containing molybdenum, bismuth, and iron, which contains the steps of washing a surface of at least one device equipped in an apparatus for the production of catalyst, to which a solid matter adheres, with a basic solution, and producing the catalyst with the apparatus for the production of catalyst thus washed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Masahide Kondo, Masanori Nitta, Hiroyuki Naitou, Toru Kuroda, Seiichi Kawato
  • Publication number: 20130274508
    Abstract: The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
    Type: Application
    Filed: October 16, 2012
    Publication date: October 17, 2013
    Applicant: Arkema Inc.
    Inventors: Michael S. DeCourcy, John L. Steinbach, Nicolas Dupont, Roger L. Roundy
  • Publication number: 20130261323
    Abstract: Isobutene, isoprene, and butadiene are obtained from mixtures of C4 and/or C5 olefins by dehydrogenation. The C4 and/or C5 olefins can be obtained by dehydration of C4 and C5 alcohols, for example, renewable C4 and C5 alcohols prepared from biomass by thermochemical or fermentation processes. Isoprene or butadiene can be polymerized to form polymers such as polyisoprene, polybutadiene, synthetic rubbers such as butyl rubber, etc. in addition, butadiene can be converted to monomers such as methyl methacrylate, adipic acid, adiponitrile, 1,4-butadiene, etc. which can then be polymerized to form nylons, polyesters, polymethylmethacrylate etc.
    Type: Application
    Filed: May 24, 2013
    Publication date: October 3, 2013
    Applicant: GEVO, INC.
    Inventors: Matthew W. Peters, Joshua D. Taylor, David E. Henton, Leo E. Manzer, Patrick R. Gruber, Josefa M. Griffith, Yassin Al Obaidi
  • Publication number: 20130261335
    Abstract: An object of the present invention is to provide a process for producing methacrylic acid with good productivity over a long period of time.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Noriaki SUYASU, Eiichi SHIRAISHI
  • Patent number: 8546293
    Abstract: A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide which comprises the element Mo, the elements Bi and/or V and one or more of the elements Co, Ni, Fe, Cu and alkali metals, in which sources of the different elements are used to obtain a finely divided mixture which is coarsened to a powder by press agglomeration, the coarsened powder is used to form, by press agglomeration, shaped bodies V which are separated into undamaged shaped bodies V+ and into damaged shaped bodies V?, the undamaged shaped bodies V+ are converted by thermal treatment to the shaped catalyst bodies K, and the damaged shaped bodies V? are comminuted and recycled into the obtaining of the finely divided mixture.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: October 1, 2013
    Assignee: BASF SE
    Inventors: Andreas Raichle, Holger Borchert, Klaus Joachim Mueller-Engel, Catharina Horstmann, Josef Macht
  • Patent number: 8492584
    Abstract: The invention relates to a process for oxidizing at least one organic substance with oxygen, which comprises the following steps: (a) adding the at least one organic substance as a liquid and an oxygenous gas stream to a first reaction stage to form a reaction mixture, at least some of the oxygen reacting with the organic compound to form a reaction product, (b) adding the reaction mixture from the first reaction stage to an adiabatically operated reaction stage in which the unconverted organic substance reacts further at least partly to give the product. The invention further relates to an apparatus for performing the process.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: July 23, 2013
    Assignee: BASF SE
    Inventors: Joaquim Henrique Teles, Steffen Oehlenschläger, Kai Gumlich, Martin Schäfer, Stephan Lamm, Stefan Berg, Michael Nilles, Hans-Peter Schildberg, Tilo John, Peter Zehner
  • Patent number: 8491758
    Abstract: A process for inhibiting polymerization of (meth)acrylic acid and/or (meth)acrylic esters by introducing an oxygenous gas into the (meth)acrylic acid and/or the (meth)acrylic ester, in which the (meth)acrylic acid and/or the (meth)acrylic ester has a degree of purity of at least 95% and is in the liquid state.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: July 23, 2013
    Assignee: BASF SE
    Inventors: Gunter Lipowsky, Steffen Rissel, Volker Schliephake, Ulrich Jäger, Sylke Haremza
  • Patent number: 8481448
    Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
  • Publication number: 20130172577
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 4, 2013
    Applicant: BASF SE
    Inventor: BASF SE
  • Publication number: 20130165690
    Abstract: The present invention relates to a process for the manufacture of hioresourced acrylic acid of polymer grade having a content by weight of acrylic acid greater than 99% and the following contents of impurities: protoanemonin less than 5 ppm, total aldehydes less than 10 ppm, maleic anhydride less than 30 ppm, nonphenolic polymerization inhibitors less than 10 ppm, and a content by weight of 14C such that the 14C/12C ratio is greater than 0.8×10?12.
    Type: Application
    Filed: March 15, 2011
    Publication date: June 27, 2013
    Applicant: ARKEMA FRANCE
    Inventors: Michel Fauconet, Nabil Tlili
  • Patent number: 8461380
    Abstract: To provide a method of producing acrylic acid which enables low energy-consumption production of acrylic acid from glycerin mixtures including glycerin and one or more compound selected from the group consisting of fatty acids, fatty acid salts, glycerides, fatty acid esters, alkali compounds and alkali compound salts. The method of producing acrylic acid according to the present invention includes the steps of obtaining an acrolein mixture by causing a dehydration reaction to a glycerin mixture; and obtaining an acrylic acid mixture by causing an oxidation reaction to the acrolein mixture; and recovering acrylic acid from the acrylic acid mixture.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: June 11, 2013
    Assignee: Showa Denko K.K.
    Inventors: Takanori Aoki, Norihide Arai
  • Patent number: 8426335
    Abstract: An object of the present invention is to provide: a catalyst for production of acrylic acid which is a catalyst usable for production of acrylic acid and is excellent in the catalytic performances such as catalytic activity and in the physical properties such as physical strength of the catalyst itself; and a process for production of acrylic acid using this catalyst. As a means of achieving this object, a catalyst for production of acrylic acid according to the present invention is a catalyst obtained by drying a mixed liquid of starting materials including molybdenum and vanadium as essential components to give a dried material, molding the dried material with a liquid binder, and calcining the resultant molding, with the catalyst being characterized in that an ignition loss ratio of the dried material is from 5 to 40% by mass.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: April 23, 2013
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiromi Yunoki, Michio Tanimoto, Daisuke Nakamura
  • Patent number: 8404887
    Abstract: A process for producing acrylic acid of the present invention comprises the step of conducting gas-phase oxidative dehydrogenation of a composition containing propionaldehyde using a solid catalyst containing molybdenum and vanadium as essential components, thereby obtaining acrylic acid. The obtained acrylic acid is preferably purified by crystallization, and a monomeric component containing the purified acrylic acid is polymerized to thereby give a hydrophilic resin such as an absorbent resin and a water-soluble resin.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: March 26, 2013
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Toshimitsu Moriguchi, Yoshitaka Arita
  • Publication number: 20130066100
    Abstract: A process for preparing a catalyst used in a production of acrolein and acrylic acid by dehydration reaction of glycerin, characterized by the steps of mixing a solution of heteropolyacid or constituents of heteropolyacid, a solution of at least one metal selected from elements belonging to Group 1 to Group 16 of the Periodic Table of Elements or its onium and a carrier to obtain a solid substance, and then of effecting at least one time of calcination before said solid substance is used in the dehydration reaction of glycerin. A catalyst obtained by the process for use in a production of acrolein and acrylic acid by dehydration reaction of glycerin. A process for preparing acrolein by catalytic dehydration of glycerin carried out in the presence of the catalyst and under a pressurized condition. A process for preparing acrylic acid obtained by oxydation of acrolein obtained. A process for preparing acrylonitrile obtained by ammoxidation of acrolein obtained.
    Type: Application
    Filed: October 15, 2010
    Publication date: March 14, 2013
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Yasuhiro Magatani, Kimito Okumura, Jean-Luc Dubois
  • Publication number: 20130053595
    Abstract: A catalyst composition comprising at least an heteropolyacid deposited on a porous titania carrier. A catalyst composition comprising at least an heteropolyacid in which protons in the heteropolyacid may be partially exchanged by at least one cation selected from elements belonging to Group 1 to Group 16 of the Periodic Table of Elements that have been deposited on a porous titania carrier. A method for preparing the catalyst composition, comprising impregnating a titania carrier with a solution of at least one metal selected from elements belonging to the Group 1 to Group 16 of the Periodic Table of Elements or onium, drying and firing the resulting solid mixture, secondly impregnating the resulting solid mixture with a solution of heteropolyacid, drying, and firing the resulting solid mixture. A process for preparing acrolein and acrylic acid by dehydration of glycerin, carried out in the presence of the catalyst.
    Type: Application
    Filed: September 18, 2009
    Publication date: February 28, 2013
    Applicants: ARKEMA FRANCE, NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Yasuhiro Magatani, Kimito Okumura, Jean-Luc Dubois, Jean-Francois Devaux
  • Patent number: 8378136
    Abstract: The subject of the present invention is a process for preparing acrolein by dehydration of glycerol in the presence of a catalyst system comprising oxygen, phosphorus and at least one metal chosen from vanadium, boron or aluminium. The process is preferably carried out in the gas phase in the presence of oxygen starting from aqueous solutions of glycerol.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: February 19, 2013
    Assignee: Arkema France
    Inventor: Jean-Luc Dubois
  • Patent number: 8362296
    Abstract: The present invention relates to a process for preparing 4-pentenoic acid, at least comprising the oxidation of a mixture (G) comprising 4-pentenal, 3-methyl-2-butanone and cyclopentene oxide, and to the use of a mixture (G) comprising 4-pentenal, 3-methyl-2-butanone and cyclopentene oxide for preparing 4-pentenoic acid. In the context of the present invention, the mixture (G) is preferably obtained as a by-product of the oxidation of cyclopentene to cyclopentanone by means of dinitrogen monoxide.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: January 29, 2013
    Assignee: BASF SE
    Inventors: Joaquim Henrique Teles, Michael Schelper, Kai Gumlich, Mathieu Chabanas, Christian Müller, Anton Meier
  • Publication number: 20130018161
    Abstract: A catalyst for glycerin dehydration of the present invention comprises boron phosphate or a rare-earth metal phosphate, wherein a molar ratio P/B of phosphorus (P) to boron (B) or a molar ratio P/R of phosphorus (P) to a rare-earth metal (R) is more than 1.0 and 2.0 or less. An another catalyst for glycerin dehydration of the present invention comprises a combination of boron phosphate and a metal element or a combination of a rare-earth metal phosphate and a metal element other than a rare-earth metal, wherein a molar ratio M/(P+B) of a metal element (M) to phosphorus (P) and boron (B) or a molar ratio M/(P+R) of a metal element (M) to phosphorus (P) and a rare-earth metal (R) is more than 0.00005 and 0.5 or less.
    Type: Application
    Filed: March 28, 2011
    Publication date: January 17, 2013
    Inventors: Takayuki Ezawa, Masaki Okada, Yoshitaka Arita
  • Publication number: 20130006009
    Abstract: A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide which comprises the element Mo, the elements Bi and/or V and one or more of the elements Co, Ni, Fe, Cu and alkali metals, in which sources of the different elements are used to obtain a finely divided mixture which is coarsened to a powder by press agglomeration, the coarsened powder is used to form, by press agglomeration, shaped bodies V which are separated into undamaged shaped bodies V+ and into damaged shaped bodies V?, the undamaged shaped bodies V+ are converted by thermal treatment to the shaped catalyst bodies K, and the damaged shaped bodies V? are comminuted and recycled into the obtaining of the finely divided mixture.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Applicant: BASF SE
    Inventors: Andreas RAICHLE, Holger Borchert, Klaus Joachim Müller-Engel, Catharina Horstmann, Josef Macht
  • Patent number: 8318978
    Abstract: The invention offers an improvement in a process for start-up in the occasion of producing acrylic acid by catalytically oxidizing acrolein at vapor phase under high load conditions, the start-up meaning the step of increasing the acrolein supply rate (loading) from the non-reacting condition to the prescribed reaction conditions. This process is characterized in that the acrolein supply rate is increased in the start-up stage of the reaction until the prescribed composition of starting reactant gas and the flow rate of the starting reactant gas are obtained, while adjusting at least one of the reaction temperature, the composition of the starting reactant gas and the flow rate of the starting reactant gas, so as to maintain the acrolein conversion at not lower than 90 mol %, the maximum peak temperature of the catalyst layer in each reaction zone at no higher than 400° C.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: November 27, 2012
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Michio Tanimoto, Hideo Onodera
  • Publication number: 20120245382
    Abstract: The invention discloses a method for producing acetaldehyde and/or acetic acid, according to which method a gaseous flow, containing molecular oxygen, ethanol and at least one impurity selected from sulphur compounds, is brought into contact at a high temperature with a sulphur-resistant oxidation catalyst. The ethanol is preferably obtained from a biomass. Said sulphur-resistant oxidation catalyst comprises, for example, vanadium oxide and at least one oxide of zirconium, titanium and aluminium. In one embodiment, the gaseous flow is converted, on the sulphur-resistant oxidation catalyst, into a first oxidation mixture, acetaldehyde being the predominant oxidation product, and said first oxidation mixture is converted, on another oxidation catalyst, into a second oxidation mixture, acetic acid being the predominant oxidation product. Said other oxidation catalyst comprises, for example, a multi-metal oxide containing at least molybdenum and vanadium.
    Type: Application
    Filed: December 3, 2010
    Publication date: September 27, 2012
    Applicant: BASF SE
    Inventors: Sabine Huber, Markus Gitter, Ulrich Cremer
  • Patent number: 8232425
    Abstract: A process for heterogeneously catalyzed partial gas phase oxidation of propylene to acrylic acid, in which the starting reaction gas mixture comprises cyclopropane as an impurity and the acrylic acid, after conversion from the product gas mixture into the condensed phase, is removed with the aid of a crystallative removal.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: July 31, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Dieterle, Joerg Heilek, Klaus Joachim Mueller-Engel
  • Publication number: 20120178965
    Abstract: An aim of the present invention is to produce, from glycerol, a bioresourced acrylic acid, that is to say an acrylic acid essentially based on a carbon source of natural origin, meeting all the quality criteria of monomers customarily used as starting material in processes for polymerization of acrylic acid and of its esters, via an economical process. The process according to the invention comprises a final stage of extraction of acrylic acid by fractional crystallization applied to one of the effluents resulting from the acrylic acid purification chain, the location of this final stage possibly depending on the initial feedstock treated, the nature and the source of the glycerol used in the process, purity specifications to be achieved for the final acrylic acid, or finally economic criteria.
    Type: Application
    Filed: June 29, 2010
    Publication date: July 12, 2012
    Inventor: Michel Fauconet
  • Patent number: 8212070
    Abstract: The invention relates to a method for preparing acrylic acid from an aqueous glycerol solution, comprising a first step of dehydration of the glycerol to acrolein, carried out in the gas phase in the presence of a catalyst and under a pressure of between 1 and 5 bar, and a second step of oxidation of the acrolein to acrylic acid, in which an intermediate step is implemented, consisting in at least partly condensing the water and heavy by-products present in the stream issuing from the first dehydration step. This method serves to obtain high acrylic acid productivity and selectivity.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 3, 2012
    Assignee: Arkema France
    Inventors: Jean-Luc Dubois, Greégory Patience
  • Patent number: 8198477
    Abstract: The present invention relates to a process for producing acrolein by liquid phase dehydration of glycerol by preparing a mixture of a catalyst suspended in an organic solvent comprising one or more vinyl polymers and glycerol; and then mixing and heating the mixture to between 150° C. and 350° C. to dehydrate the glycerol and form acrolein. The vinyl polymers are selected from the group consisting of polyolefins, polystyrene, and mixtures thereof. The polyolefins may be polyethylene, polypropylene, polybutylene, polyisobutylene, polyisoprene, polypentene, or mixtures thereof. The acrolein may be subjected to vapor phase oxidation in the presence of a catalyst, such as a mixed metal oxide, to produce acrylic acid.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 12, 2012
    Inventors: Leonard Edward Bogan, Jr., Mark Anthony Silvano
  • Patent number: 8188310
    Abstract: A process for the long-term operation of a heterogeneously catalyzed partial gas phase oxidation of an organic starting compound, in which the reaction gas input mixture is partially oxidized over a fixed catalyst bed which is accommodated in two successive temperature zones A, B whose temperature is changed with increasing operating time such that the initially lower temperature increases and the difference between the two temperatures decreases.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 29, 2012
    Assignee: BASF SE
    Inventors: Ulrich Cremer, Martin Dieterle, Klaus Joachim Mueller-Engel