Of Hydrocarbon Patents (Class 562/542)
  • Patent number: 8716525
    Abstract: The present invention relates to a method and apparatus for continuous recovery of (meth)acrylic acid, and more specifically to a method of continuous recovery of (meth)acrylic acid, including: conducting gas phase oxidation of at least one compound selected from the group consisting of propane, propylene, butane, i-butylene, t-butylene, and (meth)acrolein in the presence of a catalyst to obtain a mixed gas containing (meth)acrylic acid; quenching the (meth)acrylic acid-containing mixed gas to remove high boiling point by-products in the (meth)acrylic acid-containing mixed gas; contacting the high boiling point by-product-free (meth)acrylic acid-containing mixed gas with water or an aqueous solution to obtain an aqueous solution containing (meth)acrylic acid; and purifying the aqueous solution containing (meth)acrylic acid to obtain (meth)acrylic acid.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 6, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Se-Won Baek, Hyun-Kyu Kim, Dong-Hyun Cho, Jun-Seok Ko
  • Patent number: 8586499
    Abstract: A method for producing a catalyst for the preparation of methacrylic acid comprising a heteropolyacid compound containing phosphorus, molybdenum and an element X selected from the group consisting of potassium, rubidium, cesium and thallium and having an atomic ratio of the element X to molybdenum of 0.5:12 to 2:12, which method comprises the steps of mixing aqueous slurry A containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 2:12 to 4:12, and aqueous slurry B containing starting compounds of the heteropolyacid compound in which an atomic ratio of the element X to molybdenum is from 0:12 to 0.5:12 to form a slurry mixture; heat-treating the slurry mixture at a temperature of 100° C. or higher; drying the slurry mixture; and calcining the dried mixture.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: November 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Toshiaki Miyatake, Junji Shibata, Eiichi Shiraishi
  • Patent number: 8563774
    Abstract: Disclosed is a method for producing a catalyst, in which physical properties of a dried material or a calcined material in a production process of the catalyst are stable and a change in at least one of a catalyst activity and a selectivity to a target product is small and hence reproducibility of the catalyst is excellent. The present invention is a method for producing a catalyst containing molybdenum, bismuth, and iron, which contains the steps of washing a surface of at least one device equipped in an apparatus for the production of catalyst, to which a solid matter adheres, with a basic solution, and producing the catalyst with the apparatus for the production of catalyst thus washed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 22, 2013
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Masahide Kondo, Masanori Nitta, Hiroyuki Naitou, Toru Kuroda, Seiichi Kawato
  • Patent number: 8273313
    Abstract: A system and process for separating methacrolein (MA) from methacrylic acid (MAA) and acetic acid in the gas phase product from partial oxidation of isobutylene (IB) in two oxidation steps is disclosed. The process and system maximize recovery of all three components at minimum capital and energy cost, under conditions that minimize polymerization conditions and plugging by solids deposition in compressors, columns, etc.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 25, 2012
    Assignee: Saudi Basic Industries Corporation
    Inventor: Frederick Merrill Galloway
  • Patent number: 8043583
    Abstract: Disclosed is a shell-and-tube reactor or heat exchanger, which alternately comprises a doughnut-type baffle plate and a first disc-type baffle plate in order to increase heat transfer efficiency. In the reactor or heat exchanger, a second disc-type baffle plate is placed in an empty space inside of the doughnut-type baffle plate, and some tubes, through the inside of which a first object for heat transfer with a heat transfer medium, are present in a region inside of the doughnut-type baffle plate and outside of the second disc-type baffle plate. Also disclosed is a method for producing an oxide, comprising: using said reactor or heat exchanger, and causing a catalytic vapor-phase oxidation reaction in the tubes, through the inside of which the first object for heat transfer with the heat transfer medium is passed.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: October 25, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Sang Baek Shin, Sang Phil Han, Ye Hoon Im, Young Bae Kim, Jung Hoon Chang, Sang Oeb Na, Won Am Lee
  • Patent number: 7977503
    Abstract: The objective of the present invention is to provide a method for inhibiting polymerization of (meth)acrylic acid and the like. By the method, the generation of deposit in a pipe, which is exclusively used for providing a solution of a dialkyldithiocarbamic acid copper salt to a distillation column and the like, is prevented, and the problems such as the clogging of the pipe and polymerization in the distillation column are solved. The method according to the present invention for inhibiting polymerization of (meth)acrylic acid and/or an ester thereof is characterized in comprising a step of inhibiting polymerization of (meth)acrylic acid and/or the ester thereof by using a solution of a dialkyldithiocarbamic acid copper salt dissolved in an organic solvent, wherein a content amount of copper sulfate in the solution of the dialkyldithiocarbamic acid copper salt is 100 ppm or less by mass.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: July 12, 2011
    Assignee: Nippon Shokubai Co., Ltd.
    Inventor: Kazuhiko Sakamoto
  • Patent number: 7868201
    Abstract: A process for the oxidation of hydrocarbons comprises contacting the hydrocarbon with an oxygen-containing gas in the presence of a catalyst comprising a microporous solid support, preferably a zeolite, having from 8- to 12-ring open windows and comprising non-framework metal cations selected from manganese, iron, cobalt, vanadium, chromium, copper, nickel, and ruthenium, and mixtures thereof, providing that the oxygen-containing gas does not contain significant amounts of added hydrogen. The catalyst is novel and forms part of the invention. The process may be used for oxidation of alkanes, cycloalkanes, benzene and alkylbenzenes, and is suitable for use in regioselective terminal oxidation of straight chain alkanes and for selective oxidation/separation of p-dialkylbenzenes from an alkylbenzene mixture, for example, p-xylene from an isomeric mixture of xylenes.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bi-Zeng Zhan, Bjorn Moden, Jihad Dakka, Jose Santiesteban, Sebastian C. Reyes, Enrique Iglesia
  • Patent number: 7728149
    Abstract: A process produces a corresponding dicarboxylic acid by subjecting a cycloalkane to an oxidative cleavage reaction with oxygen in the presence of a catalyst in a liquid phase using a continuous reactor, in which a residence time ? (hr) satisfies the following condition: 0.1???50/c, wherein c is the proportion (% by weight) of the cycloalkane to the total weight of a charged liquid. The catalyst includes, for example, cobalt compounds, manganese compounds, and mixtures of these compounds, as well as imide compounds having at least one cyclic imide skeleton.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: June 1, 2010
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Kiyokazu Murata, Hiroyuki Miura
  • Patent number: 7723549
    Abstract: A process for preparing at least one target product by partial oxidation and/or ammoxidation of propylene, in which the propylene source used is a propane dehydrogenation, the propane used therein being obtained by a rectificative prepurification of crude propane.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: May 25, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Armin Diefenbacher, Claus Hechler, Christoph Adami, Martin Dieterle
  • Patent number: 7705179
    Abstract: The present invention relates to the oxidation with oxygen, or a gas containing it, of hydrocarbons to the corresponding carboxylic acids, alcohols and/or ketones or of alcohols and/or ketones to the corresponding carboxylic acids. More specifically, the invention consists of a process for oxidizing hydrocarbon, alcohol and/or ketone using oxygen or a gas containing it, in a liquid phase and in the presence of a catalyst dissolved in the reaction medium, characterized in that the catalyst comprises at least one soluble manganese and/or cobalt compound, at least one soluble chromium compound and at least one soluble iron compound.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: April 27, 2010
    Assignee: Rhodia Polyamide Intermediates
    Inventor: Eric Fache
  • Patent number: 7642214
    Abstract: An object of the present invention is to provide a highly active catalyst for producing an unsaturated oxygen-containing compound from an alkane and the catalyst comprising Mo, V, Ti and Sb or Te as the indispensable active components. The preferable catalyst is represented by formula (1) or (2) as shown below, Mo1.0VaTibXcYdOe??(1) Mo1.0VaTibXcYdZfOe??(2) wherein X represents Sb or Te; Y represents Nb, W or Zr; Z represents Li, Na, K, Rb, Cs, Mg, Ca or Sr; a, b, c, d, e and f represent atomic ratios of their respective elements, with 0<a<0.7, 0<b<0.3, 0<c<0.7, 0?d<0.3, 0<f<0.1; e is a number determined by oxidation states of the other elements than oxygen.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: January 5, 2010
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Tomoaki Kobayashi, Yoshimasa Seo
  • Publication number: 20090306425
    Abstract: A process for the production of carboxylic acids by oxidation of a hydrocarbon by oxygen or a gas containing oxygen and notably to the oxidation of cyclohexane to give adipic acid; the subject process entails a stage of oxidation of the hydrocarbon and at least one stage for extracting the dicarboxylic acids formed from the reaction medium and optionally recycling the unconverted hydrocarbon with oxidation by-products, such as alcohols and ketones, and which also includes a stage of conversion, removal or extraction of the ?,?-hydroxycarboxylic compounds formed during the oxidation stage and converting these compounds into diacids.
    Type: Application
    Filed: June 9, 2006
    Publication date: December 10, 2009
    Inventors: Didier Bonnet, Romain Petroff Saint-Arroma, Sebastien Righini, Tania Ireland, Jean-Pierre Simonato
  • Patent number: 7608734
    Abstract: Disclosed is a process for producing unsaturated aldehydes and/or unsaturated acids from olefins or alkanes in a fixed bed shell-and-tube heat exchanger-type reactor by catalytic vapor phase oxidation. A heat exchanger-type reactor for use in such a process is also disclosed. The process utilizes at least one first-step reaction zone and a second-step reaction zone that is divided into two or more shell spaces by at least one partition. The process may be applied to a single-step process for producing unsaturated acids from alkanes or alkenes.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: October 27, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Kyoung Su Ha, Boo Gon Woo, Jun Seok Ko, Seong Pil Kang, Seok Hwan Choi, Young Bae Kim
  • Patent number: 7524987
    Abstract: A process for preparing acrolein, or acrylic acid or a mixture thereof as a target product from propane, in which propane is partially dehydrogenated under heterogeneous catalysis in a reaction zone A, molecular hydrogen thus formed is incinerated partly to water and the product gas A thus formed in reaction zone A is used without secondary component removal to charge a reaction zone B in which propylene present in product gas A is partially oxidized to the target product. From the product gas B formed in reaction zone B, the target product is removed and the residual gas I remaining after an aftertreatment comprising a CO2 scrubbing and a partial discharge thereof is recycled into reaction zone A.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: April 28, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Machhammer, Klaus Joachim Müller-Engel, Martin Dieterle
  • Publication number: 20090018362
    Abstract: The invention relates to a method for preparing acrylic acid from propylene, comprising the oxidation of propylene to acrolein and a second step comprising the oxidation of acrolein to acrylic acid, including a glycerol dehydration step preformed in the presence of a gas containing propylene and, more specifically, in the presence of the reaction gas originating from the propylene to acrolein oxidation step. The inventive method enables the use, in part, of renewable raw material, while increasing acrylic acid production.
    Type: Application
    Filed: February 6, 2007
    Publication date: January 15, 2009
    Applicant: Arkema France
    Inventor: Jean-Luc Dubois
  • Patent number: 7468167
    Abstract: A method for quickly starting up a reactor and a reactor system therefor are provided. A shell-and-tube reactor in the system is adapted to circulate a heat medium having a solid point in the range of 50-250° C. to the outside of the reaction tubes and characterized by initiating temperature elevation of the reactor by introducing a gas of a temperature in the range of 100-400° C. to the reaction tubes' side and then circulating the heat medium in a heated state to the outside of the reaction tubes. By introducing a gas of an elevated temperature preparatorily to the reaction tubes, it is made possible to prevent the heat medium after circulation from being solidified again and enable the reactor to be quickly started up.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 23, 2008
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yukihiro Matsumoto, Takeshi Nishimura, Hideki Sogabe, Kazuhiko Sakamoto, Osamu Dodo
  • Publication number: 20080194870
    Abstract: A process for the preparation of a dicarboxylic acid, comprising the steps of (a) contacting a conjugated diene with carbon monoxide and water in the presence of a catalyst system including a source of palladium, a source of an anion and a bidentate phosphine ligand, to obtain a mixture comprising an ethylenically unsaturated acid product; (b) reacting the mixture obtained in step (a) further with carbon monoxide and water to obtain the dicarboxylic acid in admixture with the ethylenically unsaturated acid; (c) separating the dicarboxylic acid from a liquid filtrate comprising the catalyst system; and (d) recycling at least part of the obtained liquid filtrate to step (a).
    Type: Application
    Filed: February 10, 2006
    Publication date: August 14, 2008
    Inventors: Eit Drent, Rene Ernst, Willem Wade Jager, Cornelia Alida Krom
  • Publication number: 20080154056
    Abstract: An improved process for the production of unsaturated carboxylic acids and unsaturated nitriles from their corresponding C3 to C5 alkanes, or mixtures of C3 to C5 alkanes and alkenes, that involves oxidation in the presence of a supported Mo-V-based mixed metal oxide catalyst in a multi-stage reaction system which employs both separation of the oxidation product from one or more intermediate effluent streams, as well as feeding additional oxygen to reaction zones subsequent to the first reaction zone.
    Type: Application
    Filed: November 16, 2007
    Publication date: June 26, 2008
    Inventors: Anne Mae Gaffney, Scott Han
  • Patent number: 7368598
    Abstract: Provided herein are processes for conversion of methane to acetic acid. In one embodiment, the processes are for direct, selective conversion of methane to acetic acid in a single step.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: May 6, 2008
    Assignee: University of South California
    Inventor: Roy A. Periana
  • Patent number: 7361622
    Abstract: Alkenes, unsaturated saturated carboxylic acids, saturated carboxylic acids and their higher analogues are prepared cumulatively from corresponding alkanes utilizing using a multi-staged catalyst system and a multi-stage process which comprises steam cracking of alkanes to corresponding alkenes at flame temperatures and at short contact times in combination with one or more oxidation catalysts for catalytically converting the corresponding alkenes to further corresponding oxygenated products using short contact time reactor conditions.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: April 22, 2008
    Assignee: Rohm and Haas Company
    Inventors: Abraham Benderly, Anne Mae Gaffney, Mark Anthony Silvano
  • Patent number: 7326811
    Abstract: A shell-and-tube type heat exchanger of the smallest possible length necessary for heat exchange is disclosed which is capable of obtaining uniform distribution of flow of a shell side fluid and substantially eliminating the structural restriction imposed on the shell side. This shell-and-tube type heat exchanger is provided with one annular conduit furnished with not less than two partitions concurrently serving as an expansion joint for introducing and discharging a shell side fluid and allowing the flow path for said shell side fluid to be separated into an introducing part and a discharging part and which comprises a place having no array of heat-transfer tubes in the flow path for said shell side fluid. It prevents the equipment from necessitating an unnecessary enlargement due to the structural restriction on the shell side and enables the shell side fluid to produce a uniform flow.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: February 5, 2008
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Tetsuji Mitsumoto, Takeshi Nishimura, Sei Nakahara, Osamu Dodo
  • Patent number: 7294734
    Abstract: This invention relates to a process for converting a hydrocarbon reactant to a product comprising an oxygenate or a nitrile, the process comprising: (A) flowing a reactant composition comprising the hydrocarbon reactant, and oxygen or a source of oxygen, and optionally ammonia, through a microchannel reactor in contact with a catalyst to convert the hydrocarbon reactant to the product, the hydrocarbon reactant undergoing an exothermic reaction in the microchannel reactor; (B) transferring heat from the microchannel reactor to a heat exchanger during step (A); and (C) quenching the product from step (A).
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: November 13, 2007
    Assignee: Velocys, Inc.
    Inventors: John H. Brophy, Frederick A. Pesa, Anna Lee Tonkovich, Jeffrey S. McDaniel, Kai Tod Paul Jarosch
  • Patent number: 7253310
    Abstract: A process for preparing (meth)acrylic acid by heterogeneously catalyzed gas phase partial oxidation of a saturated hydrocarbon precursor compound, in which the charging gas mixture contains from 5 to 25% by volume of steam and the molar ratio of molecular oxygen present in the charging gas mixture to saturated hydrocarbon precursor compound present in the charging gas mixture is from 1.5:1 to 2.5:1.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: August 7, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Frank Rosowski, Hans-Guenther Lintz, Ina Grisstede, Elisabet Bacells Cabre
  • Patent number: 7183428
    Abstract: A method for producing acrylic acid by using an acrylic acid-containing solution of high concentration without azeotropic distillation is provided. This method of producing acrylic acid comprises introducing an acrylic acid-containing gas obtained by catalytic gas phase oxidation reaction into an absorption column and supplying the acrylic acid-containing solution to crystallization step thereby separating the solution into acrylic acid and residual mother liquid, and distilling at least part of the residual mother liquid and circulating the distillate obtained by the distillation to the absorption column.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: February 27, 2007
    Assignee: Nippon Shokubai Co., Inc.
    Inventors: Kouji Ueno, Harunori Hirao, Naoki Serata, Takeshi Yokogoshiya
  • Patent number: 7091377
    Abstract: A multimetal oxide material contains the elements Mo, V and Te and/or Sb and at least one of the elements Nb, Ti, W, Ta and Ce and promoters and has a specific X-ray diffraction pattern. Moreover, such a multimetal oxide material is used as a catalyst for heterogeneously catalyzed gas-phase partial oxidations of hydrocarbons.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: August 15, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Martin Dieterle, Hartmut Hibst
  • Patent number: 7078563
    Abstract: A process for the oxidation of a C2 to C4 alkane to produce the corresponding alkene and carboxylic acid which process comprises contacting in an oxidation reaction zone, said alkane, molecular oxygen-containing gas, and the corresponding alkene and optionally, water, in the presence of at least one catalyst active for the oxidation of the alkane to the corresponding alkene and carboxylic acid, to produce a product stream comprising alkene, carboxylic acid and water, wherein in said process the molar ratio of alkene to carboxylic acid produced in said oxidation reaction zone is adjusted or maintained at a pre-determined value by controlling the concentrations of the alkene and optional water in said oxidation reaction zone and optionally by also controlling one or more of the pressure, temperature and residence time of the oxidation reaction zone. Such an oxidation process may be used in an integrated process, such as for the manufacture of vinyl acetate or ethyl acetate.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: July 18, 2006
    Assignee: BP Chemicals Limited
    Inventors: Brian Ellis, Andrew Richard Lucy, Mark Stephen Roberts
  • Patent number: 7074955
    Abstract: A continuously operated heterogeneously catalyzed gas-phase partial oxidation of at least one organic compound in an oxidation reactor is operated safely by a process in which an explosion diagram for the feed gas mixture is deposited as the basis of a cut-out mechanism in a computer.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: July 11, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Hammon, Jochen Meschke, Ulrich Rauh, Klaus Joachim Müller-Engel, Peter Schlemmer, Volker Schliephake
  • Patent number: 7041848
    Abstract: The present invention relates to a process for oxidizing hydrocarbons, in particular branched or unbranched saturated aliphatic hydrocarbons, cycloaliphatic or alkylaromatic hydrocarbons to acidic or polyacidic compounds. The invention relates more particularly to the oxidation, with an oxidizing agent containing molecular oxygen, of cyclohexane to adipic acid, in the presence of organic acid of lipophilic nature and in the absence of adipic acid. The separation and recycling of the unoxidized cyclohexane, the oxidation intermediates and the catalysts are easier than in the presence of acetic acid.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: May 9, 2006
    Assignee: Rhodia Polymide Intermediates
    Inventor: Eric Fache
  • Patent number: 7038082
    Abstract: A process for preparing a multimetal oxide material which contains the elements Mo, V and Te and/or Sb and at least one of the elements Nb, Ti, W, Ta and Ce and if desired promoters and has a specific X-ray diffraction pattern, in which process the last process step comprises washing with acidic liquids. In addition, a multimetal oxide material obtainable in such a way is used as a catalyst for heterogeneously catalyzed gas-phase partial oxidations and/or ammoxidation of hydrocarbons.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: May 2, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Klaus Joachim Müller-Engel, Hartmut Hibst, Martin Dieterle
  • Patent number: 7015356
    Abstract: A carboxylic acid is produced by oxidative cleavage of a cycloalkane with oxygen and performs a reaction in the presence of a catalyst including an imide compound and a metallic compound, the imide compound having a cyclic imide skeleton represented by the following Formula (I): wherein X is an oxygen atom or an —OR group, and wherein R is a hydrogen atom or a hydroxyl-protecting group, under conditions of a reaction temperature of 80° C. or higher and a concentration of the cycloalkane of 21% by weight or more.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: March 21, 2006
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Yasutaka Ishii, Yasuteru Kajikawa
  • Patent number: 6960684
    Abstract: The present invention provides a process in which, when an unsaturated aldehyde and/or an unsaturated carboxylic acid are produced by carrying out a catalytic gas phase oxidation reaction by using a fixed-bed multitubular reactor which is packed with a molybdenum-containing catalyst, the deterioration of the catalyst as located at a hot spot portion can be suppressed; so that the reaction can be continued for a long time while a high yield is maintained, regardless of where the hot spot portion occurs and also even if the concentration of a raw gas is high.
    Type: Grant
    Filed: March 9, 2003
    Date of Patent: November 1, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventor: Hiromi Yunoki
  • Patent number: 6958414
    Abstract: Organic compounds are prepared by heterogeneously catalyzed partial gas-phase oxidation of precursor compounds by a process in which a portion of the reaction gas starting mixture is brought from a low initial pressure to a higher final pressure by means of a radial compressor.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: October 25, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Volker Schliephake, Ulrich Hammon, Ernst Lang, Carl-Ludwig Krüger, Jürgen Schröder, Klaus Joachim Müller-Engel
  • Patent number: 6939991
    Abstract: In a process for preparing acrylic acid, an acrylic acid-containing product gas mixture obtained by catalytic gas phase partial oxidation of a C3 precursor of acrylic acid, after direct cooling with a quench liquid, is fractionally condensed in a separating column provided with internals, rising into itself with sidestream takeoff of crude acrylic acid, and the acrylic acid oligomers which form are dissociated and the resulting dissociation gas is subjected to a countercurrent rectification before it is recycled.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: September 6, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Joachim Thiel, Ulrich Hammon, Dieter Baumann, Jörg Heilek, Jürgen Schröder, Klaus Joachim Müller-Engel
  • Patent number: 6933407
    Abstract: A process prepares methacrylic acid from isobutane by subjecting isobutane to a partial catalytic dehydrogenation in the gas phase and charging an oxidation zone with the isobutenic product gas mixture after the components other than isobutane and isobutene have been substantially removed from the product gas mixture. The oxygen required to charge the oxidation zone is introduced accompanied by nitrogen.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: August 23, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Silke Berndt, Klaus Joachim Müller-Engel, Götz-Peter Schindler, Frank Rosowski, Jochen Petzoldt
  • Patent number: 6919478
    Abstract: In producing a catalyst used for synthesis of an unsaturated aldehyde and an unsaturated carboxylic acid by a gas-phase catalytic oxidation, there is used a step of packing an additive-containing catalyst precursor of the catalyst into a tubular reactor, passing a gas through the tubular reactor, and elevating, in this state, the temperature of the additive-containing catalyst precursor so that a temperature of the gas at an outlet of the catalyst precursor layer becomes higher than a temperature of the gas at an inlet of the catalyst precursor layer. The step makes possible easy and highly reproducible production of a high-performance catalyst which is small in the reduction in catalytic performance caused by, for example, the thermal decomposition of the additive contained in the catalyst precursor.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: July 19, 2005
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Seiichi Kawato, Masahide Kondo, Toru Kuroda, Masanori Nitta, Mieji Sugiyama
  • Patent number: 6888026
    Abstract: An object of this invention is to provide a method for producing acrylic acid that enables to suppress adverse influence of byproducts during distillation and to accomplish long-term continuous operation of the acrylic acid production apparatus. This invention is directed to a method for producing (meth)acrylic acid comprising the step of isolating (meth)acrylic acid from a liquid containing (meth)acrylic acid by distillation wherein the liquid contains glyoxal (including its hydrate) in a concentration of 0.1 mass % or less.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: May 3, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazuhiko Sakamoto, Kazuo Ohkouchi, Tomohiro Nakae
  • Patent number: 6867328
    Abstract: The invention relates to a method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane on a multi-metal oxide mass, said mass containing the elements Mo, V, Te and/or Sb and having a specific X-ray diffractogram.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: March 15, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Andreas Tenten, Hartmut Hibst, Klaus Joachim Müller-Engel, Signe Unverricht, Gerhard Cox
  • Patent number: 6858754
    Abstract: Acrylic acid is prepared by heterogeneously catalyzed partial oxidation of propane by a process in which the steam content of the reaction gas starting mixture is reduced in the course of the process.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: February 22, 2005
    Assignee: BASF Aktiengesellschaft
    Inventor: Frieder Borgmeier
  • Patent number: 6833474
    Abstract: The invention relates to a process for manufacturing acrylic acid from propane. According to this process, a gas mixture, which is free from molecular oxygen and comprises propane, steam as well as, optionally, an inert gas, is passed over a solid composition of formula (I) Mo1VaTebNbcSidOx  (I) in which: a is between 0.006 and 1, including the end points; b is between 0.006 and 1, including the end points; c is between 0.006 and 1, including the end points; d is between 0 and 3.5, including the end points; and x is the quantity of oxygen bound to the other elements, and depends on their oxidation states, in order to oxidize the propane according to the following redox reaction (1): SOLIDoxidized+PROPANE→SOLIDreduced+ACRYLIC ACID  (1).
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: December 21, 2004
    Assignee: ARKEMA
    Inventor: Jean-Luc Dubois
  • Publication number: 20040249197
    Abstract: The invention relates to a method for catalytically oxidizing unsaturated hydrocarbons to form oxidation products, and to the production of saturated alcohols, ketones, aldehydes or carboxylic acids by subsequently hydrogenating the oxidation product. A compound of formula (I) is used as a catalyst during oxidizing in which: R1, R2═H, an aliphatic or aromatic alkoxy radical, carboxyl radical, alkoxycarbonyl radical or hydrocarbon radical, each having 1 to 20 carbon atoms, SO3H, NH2, OH, F, Cl, Br, I and/or NO2, whereby R1 and R2 signify identical or different radicals or R1 and R2 can be coupled to one another via a covalent bond, with Q1, Q2=the same or different, C, CH, N; X, Z═C, S or CH2; Y═O or OH; k=0, 1 or 2; 1=0, 1 or 2; m=1 to 100 in the presence of a radical initiator. Peroxy compounds or azo compounds can be used as radical initiators. Preferred substrates are cyclic aliphatic or aromatic compounds.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 9, 2004
    Inventors: Adolf Kuhnle, Carsten Jost, Roger Arthur Sheldon, Sandrine M.M. Chatel, Isabella W.C.E. Arends
  • Publication number: 20040242922
    Abstract: The present invention relates to a process for the oxidation of hydrocarbons, in particular of branched or unbranched saturated aliphatic hydrocarbons, of cycloaliphatic or alkylaromatic hydrocarbons or of alcohols and/or ketones, to acid or polyacid compounds.
    Type: Application
    Filed: July 8, 2004
    Publication date: December 2, 2004
    Inventors: Didier Bonnet, Eric Fache, Jean-Pierre Simonato
  • Patent number: 6825380
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: November 30, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6797840
    Abstract: A catalyst comprising an In promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated nitrile
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: September 28, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Elsie Mae Vickery
  • Patent number: 6790988
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: September 14, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6780816
    Abstract: A modified carrier carrying on at least a part of an inert carrier surface an oxide which is represented by the formula (1): XaYbZcOd (wherein X is at least an element selected from alkaline earth metals; Y is at least an element selected from Si, Al, Ti and Zr; Z is at least an element selected from Group IA elements and Group IIIb elements of the periodic table, B, Fe, Bi, Co, Ni and Mn; and O is oxygen; a, b, c and d denote the atomic ratios of X, Y, Z and O, respectively, where a=1, 0<b≦100, 0≦c≦10, and d is a numerical value determined by the extents of oxidation of the other elements) is provided. A catalyst formed with the use of this modified carrier carrying a complex oxide containing Mo and V is useful as a vapor-phase catalytic oxidation catalyst, and is particularly suitable as a catalyst for preparing acrylic acid through vapor phase catalytic oxidation of acrolein.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: August 24, 2004
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Michio Tanimoto, Hiromi Yunoki, Daisuke Nakamura
  • Patent number: 6734136
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: May 11, 2004
    Assignee: Rohm and Haas Company
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6730808
    Abstract: Reactor membranes for used in oxidation reactions of hydrocarbons involving oxygen comprising a selective oxidation catalyst on a mixed conducting, oxide ion selective ceramic membrane of the composition (Sr1-xCax)1-yAyMn1-zBzO3-&dgr;, where A is Ba, Pb, Na, K, Y, an element of the lanthanide group or a combination thereof, B is Mg, Al, Ga, In, Sn, an element of the 3d or 4d period or a combination thereof, x is from 0.2 to 0.8, y is from 0 to 0.4, z is from 0 to 0.6, and &dgr; is a number, dependent on x, y and z, that renders the composition charge neutral.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: May 4, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Stefan Bitterlich, Hartwig Voss, Hartmut Hibst, Andreas Tenten, Ingolf Voigt, Ute Pippardt
  • Publication number: 20040030184
    Abstract: A process for the production of acetic acid, which process comprises contacting ethane and/or ethylene with a molecular oxygen-containing gas in a fluid bed reactor in the presence of a microspheroidal fluidised particulate solid oxidation catalyst, wherein at least 90% of said catalyst particles are less than 300 microns.
    Type: Application
    Filed: March 5, 2001
    Publication date: February 12, 2004
    Inventors: John Cook, Brian Ellis, Philip Howard, Michael David Jones, Simon James Kitchen
  • Publication number: 20040015013
    Abstract: A process for the heterogeneously catalyzed gas-phase partial oxidation of an organic compound over a fixed catalyst bed present in a fixed-bed reactor having a plurality of catalyst tubes, in which the reduction of the quality of the catalyst load with increasing duration of operation is restored by a partial catalyst change, is described.
    Type: Application
    Filed: June 13, 2003
    Publication date: January 22, 2004
    Applicant: BASF Aktiengesellschaft
    Inventors: Ulrich Hammon, Jochen Petzoldt, Klaus Joachim Mueller-Engel, Martin Dieterle
  • Publication number: 20040015012
    Abstract: A continuously operated heterogeneously catalyzed gas-phase partial oxidation of at least one organic compound in an oxidation reactor is operated safely by a process in which an explosion diagram for the feed gas mixture is deposited as the basis of a cut-out mechanism in a computer.
    Type: Application
    Filed: June 12, 2003
    Publication date: January 22, 2004
    Applicant: BASF Aktiengesellschaft
    Inventors: Ulrich Hammon, Jochen Meschke, Ulrich Rauh, Klaus Joachim Muller-Engel, Peter Schlemmer