Peroxy Containing Reactant Patents (Class 568/385)
  • Patent number: 11370735
    Abstract: A method for decomposing a phenolic by-product generated in a phenol preparation process, the method including: adding a phenolic by-product stream, a decomposition apparatus side discharge stream, and process water to a mixing apparatus and mixing the phenolic by-product stream, the decomposition apparatus side discharge stream, and the process water; adding a mixing apparatus discharge stream discharged from the mixing apparatus to a phase separation apparatus and phase-separating the mixing apparatus discharge stream into an oil phase and an aqueous phase; feeding an oil phase stream discharged from the phase-separation apparatus and discharged to a decomposition apparatus and decomposing the oil phase stream; and circulating the decomposition apparatus side discharge stream discharged from the decomposition apparatus to the mixing apparatus.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: June 28, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Sang Beom Lee, Min Suk Kang, Joon Ho Shin
  • Patent number: 10954180
    Abstract: The present disclosure relates to a process for acid-catalyzed decomposition of aryl ?-hydroperoxide with a continuous flow tubular reactor. The process is a novel process performed in a tubular reactor, taking the aryl ?-hydroperoxide such as cumene hydroperoxide (CHP) as a raw material and taking acids as a catalyst, performing acid-catalyzed decomposition of the aryl ?-hydroperoxide solution in a short reaction time ranging from tens of seconds to several minutes, thereby obtaining the phenols; wherein an inert component may be filled in the reactor, so that the effects of heat transmission and mass transfer can be enhanced. The aryl ?-hydroperoxide and acid are respectively introduced by a metering pump into a mixing module to be mixed, and then enter the tubular reactor to be reacted so as to produce the products such as phenols.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: March 23, 2021
    Assignee: CHANGZHOU UNIVERSITY
    Inventors: Qun Chen, Xuan Dai, Mingyang He, Weiyou Zhou, Fu'an Sun, Zhonghua Sun
  • Patent number: 10457620
    Abstract: A system for producing phenol and bisphenol A comprising: a first production unit for producing phenol comprising a decomposition reaction unit and a purification unit; a second production unit for producing bisphenol A comprising a reaction unit and a concentration unit; and a removal unit for removing methanol and acetone during the production of phenol and bisphenol A. The removal unit includes a removal column comprising an overhead purge part, a bottom recirculation part and a supply part. The supply part comprises a purification unit discharge part to supply methanol, acetone, and water discharged from the purification unit to the removal column and a concentration unit discharge part to supply phenol, acetone, and water discharged from the concentration unit to the removal column, and is provided to the midsection of the removal column.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: October 29, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Sang Beom Lee, Sung Kyu Lee, Joon Ho Shin, Sung Ho Lee, Sa Eun Park, In Yong Jeong
  • Patent number: 10065171
    Abstract: Disclosed herein are a method and systems for cumene hydroperoxide cleavage with an improved configuration for online instrumentation. The systems comprise a first fluid loop comprising one or more reactors and a fluid pump and a second fluid loop in fluid communication with the first fluid loop. This second fluid loop comprises an instrument configured to measure a characteristic of a fluid flowing through the second loop, wherein an input of the second fluid loop is disposed downstream of said fluid pump and an output of the second fluid loop is disposed upstream of said fluid pump. The method comprises causing fluid to flow within a first stage comprising one or more reactors and a fluid pump, wherein the first stage is configured to decompose a cumene hydroperoxide in the presence of a catalyst mixture to form a dicumyl peroxide mixture. The method also comprises causing at least a portion of the fluid to flow through a instrumentation line in open fluid communication with the first stage.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: September 4, 2018
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Mark Erik Nelson, James Patrick Williams
  • Patent number: 10017440
    Abstract: A method of producing phenol and acetone can include: alkylating benzene with a C2-6 alkyl source in the presence of a zeolite catalyst to produce a C8-12 alkylbenzene; oxidizing the C8-12 alkylbenzene in the presence of an oxygen containing gas to produce a C8-12 alkylbenzene hydroperoxide; cleaving decomposing the C8-12 alkylbenzene hydroperoxide in the presence of an acid catalyst to produce phenol, a C3-6 ketone, and undesirable side products such as, but not limited to acetaldehyde, DMBA, acetophenone, AMS, AMS dimers, unidentified heavies, or a combination including at least one of the foregoing; and monitoring a concentration of the C8-12 alkylbenzene hydroperoxide in a process stream of a reactor in real time at a temperature and a pressure of the process stream; and in real time, controlling a parameter of the reactor and/or the cleaving decomposing in response to the concentration of the C8-12 alkylbenzene hydroperoxide.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: July 10, 2018
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Mark Erik Nelson, Andrey Vladimirovich Zinenkov, Arkady Samuilovich Dykman
  • Publication number: 20150141700
    Abstract: A process for producing alkylated aromatic compounds includes pyrolyzing a coal feed to produce a coke stream and a coal tar stream. The coal tar stream is hydrotreated and the resulting hydrotreated coal tar stream is cracked. A portion of the cracked coal tar stream is separated to obtain a fraction having an initial boiling point in the range of about 60° C. to about 180° C., and an aromatics-rich hydrocarbon stream is extracted by contacting the fraction with one or more solvents. The aromatics-rich hydrocarbon stream is contacted with an alkylating agent to produce an alkylated aromatic stream, or the aromatics-rich hydrocarbon stream is reacted with an aliphatic compound or methanol in the presence of a catalyst to produce a methylated aromatic stream. The alkylated aromatic stream, the methylated aromatic stream, or both are separated into at least a benzene stream, a toluene stream, and a xylenes stream.
    Type: Application
    Filed: August 22, 2014
    Publication date: May 21, 2015
    Inventors: James A. Johnson, Paul T. Barger, Maureen L. Bricker, John Q. Chen, Peter K. Coughlin, Stanley J. Frey, Joseph A. Kocal, Matthew Lippmann, Vasant P. Thakkar
  • Patent number: 8975444
    Abstract: A process for oxidizing cumene to cumene hydroperoxide using an oxygen containing gas, which process composes—conducting a cumene feed and an oxygen containing gas feed to at least the first oxidation reactor in a series of 3-8 reactors, thereby forming an oxidation mixture, and—conducting the oxidation mixture from one oxidation reactor to at least one subsequent reactor, wherein—the reactors are operated with reducing liquid levels; —the oxidation is operated as a dry oxidation, whereby the only gaseous feeds conducted to the oxidation reactors are the cumene feed and the oxygen containing gas feed; —the oxygen containing gas feed is washed with caustic and then with water to remove all acidic or caustic traces before conducting it into an oxidation reactor; —the pressure within each oxidation reactor is in the range of 0-10 barg; —the off-gases from the top section of each oxidation reactor are separated and cooled, whereby a condensate containing unreacted cumene is formed, and—washing the condensate and
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 10, 2015
    Assignee: Borealis AG
    Inventors: Veli-Matti Purola, Anja Mannerla
  • Patent number: 8952202
    Abstract: The present invention concerns a process for oxidizing cumene to cumene hydroperoxide using an oxygen containing gas, preferably air, which process comprises —conducting a cumene feed and an oxygen containing gas feed to at least the first oxidation reactor in a series of 3-8 reactors, thereby forming an oxidation mixture, and conducting the formed oxidation mixture from one reactor to the next, preferably after an oxidation reaction has taken place, wherein —the reactors comprise at least one lower pressure oxidizer (1) as the first reactor in the series and at least one higher pressure oxidizer (2) as the last reactor in the series; —any lower pressure oxidizer is operated at a pressure of at least atmospheric pressure and any higher pressure oxidizer is operated at a pressure of at least 0.5 bar higher than said at least one lower pressure oxidizer.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 10, 2015
    Assignee: Borealis AG
    Inventor: Veli-Matti Purola
  • Patent number: 8921610
    Abstract: A process for oxidizing a composition comprising contacting an alkylbenzene of the general formula (I): where R1 and R2 each independently represents hydrogen or an alkyl group having from 1 to 4 carbon atoms, wherein R1 and R2 may be joined to form a cyclic group having from 4 to 10 carbon atoms, the cyclic group being optionally substituted, and R3 represents hydrogen, one or more alkyl groups having from 1 to 4 carbon atoms or a cyclohexyl group; and (ii) about 0.05 wt % to about 5 wt % of phenol, with oxygen in the presence of a catalyst containing a cyclic imide having the general formula (II): wherein X represents an oxygen atom, a hydroxyl group, or an acyloxy group under conditions effective to convert at least a portion of the alkylbenzene to a hydroperoxide.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Edmund J. Mozeleski, Charles Morris Smith, Christopher L. Becker, Stephen Zushma
  • Patent number: 8921609
    Abstract: In a process for oxidizing a hydrocarbon, the hydrocarbon is contacted with oxygen in the presence of an N-substituted cyclic imide and under conditions to oxidize the hydrocarbon to produce an oxidized hydrocarbon product and at least one decomposition product of the N-substituted cyclic imide. At least a portion of the at least one decomposition product is contacted with hydroxylamine or a salt thereof under conditions to convert the at least one decomposition product back to said imide.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Stephen Zushma, Nicolas P. Coute, Francisco M. Benitez, Edmund J. Mozeleski
  • Patent number: 8889915
    Abstract: Systems and methods for improving crude acetone column energy efficiency and operation are provided. The method for improving crude acetone column energy efficiency and operation can include introducing a crude acetone including acetone and phenol to a fractionation column and introducing cumene, AMS, or a combination thereof to the fractionation column. The method can include fractionating the crude acetone within the fractionation column to produce an acetone containing overhead and a phenol containing bottoms. The method can also include condensing at least a portion of the acetone containing overhead indirectly with a cool heat transfer medium to provide a condensed crude acetone product and a heated heat transfer medium, wherein the heat transfer medium includes cumene.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: November 18, 2014
    Assignee: Kellogg Brown & Root LLC
    Inventors: Truc Vu, Theodor Robert Wilks
  • Publication number: 20140316098
    Abstract: In a process for producing phenol, a composition comprising an alkylaromatic compound is contacted with an oxygen-containing stream in the presence of an oxidation catalyst comprising a cyclic imide under oxidation conditions effective to oxidize 15 wt % or less of the alkylaromatic compound based upon the total weight of the composition and produce an oxidation product comprising unreacted alkylaromatic compound and alkylaromatic hydroperoxide in a molar ratio of 6:1 to 100:1. Thereafter, at least a portion of the oxidation product is contacted with an acidic molecular sieve catalyst under cleavage conditions effective to convert at least a portion of the alkylaromatic hydroperoxide into phenol and cyclohexanone.
    Type: Application
    Filed: December 15, 2011
    Publication date: October 23, 2014
    Applicant: ExxonMobil chemical Patents Inc.
    Inventors: Kun Wang, Roberto Garcia, Jihad M. Dakka, Gabor Kiss
  • Publication number: 20140275630
    Abstract: Systems and methods for improving crude acetone column energy efficiency and operation are provided. The method for improving crude acetone column energy efficiency and operation can include introducing a crude acetone including acetone and phenol to a fractionation column and introducing cumene, AMS, or a combination thereof to the fractionation column. The method can include fractionating the crude acetone within the fractionation column to produce an acetone containing overhead and a phenol containing bottoms. The method can also include condensing at least a portion of the acetone containing overhead indirectly with a cool heat transfer medium to provide a condensed crude acetone product and a heated heat transfer medium, wherein the heat transfer medium includes cumene.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 18, 2014
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventors: Truc Vu, Theodor Robert Wilks
  • Patent number: 8658835
    Abstract: In a process for oxidizing a hydrocarbon to a corresponding hydroperoxide, alcohol, ketone, carboxylic acid or dicarboxylic acid, the hydrocarbon is contacted with an oxygen-containing gas in the presence of a catalyst comprising a cyclic imide. The contacting produces an effluent comprising an oxidized hydrocarbon product and unreacted imide catalyst and the effluent is treated with at least one solid sorbent to remove at least part of the unreacted imide catalyst and produce a treated effluent comprising said oxidized hydrocarbon product. The organic phase can then be recovered.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Jihad M. Dakka, Stephen Zushma
  • Publication number: 20130261323
    Abstract: Isobutene, isoprene, and butadiene are obtained from mixtures of C4 and/or C5 olefins by dehydrogenation. The C4 and/or C5 olefins can be obtained by dehydration of C4 and C5 alcohols, for example, renewable C4 and C5 alcohols prepared from biomass by thermochemical or fermentation processes. Isoprene or butadiene can be polymerized to form polymers such as polyisoprene, polybutadiene, synthetic rubbers such as butyl rubber, etc. in addition, butadiene can be converted to monomers such as methyl methacrylate, adipic acid, adiponitrile, 1,4-butadiene, etc. which can then be polymerized to form nylons, polyesters, polymethylmethacrylate etc.
    Type: Application
    Filed: May 24, 2013
    Publication date: October 3, 2013
    Applicant: GEVO, INC.
    Inventors: Matthew W. Peters, Joshua D. Taylor, David E. Henton, Leo E. Manzer, Patrick R. Gruber, Josefa M. Griffith, Yassin Al Obaidi
  • Patent number: 8487138
    Abstract: In a process for oxidizing a hydrocarbon to a corresponding hydroperoxide, alcohol, ketone, carboxylic acid or dicarboxylic acid, the hydrocarbon is contacted with an oxygen-containing gas in the presence of a catalyst comprising a cyclic imide of the general formula (I): wherein each of R1 and R2 is independently selected from hydrocarbyl and substituted hydrocarbyl radicals having 1 to 20 carbon atoms, or from the groups SO3H, NH2, OH and NO2, or from the atoms H, F, Cl, Br and I provided that R1 and R2 can be linked to one another via a covalent bond; each of Q1 and Q2 is independently selected from C, CH, N and CR3; each of X and Z is independently selected from C, S, CH2, N, P and an element of Group 4 of the Periodic Table; Y is O or OH; k is 0, 1, or 2; 1 is 0, 1, or 2; m is 1 to 3, and R3 can be any of the entities listed for R1.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: July 16, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, James C. Vartuli, Stephen Zushma
  • Publication number: 20130157840
    Abstract: This disclosure provides a molecular sieve composition having a first and second crystalline molecular sieve, made by the method comprising: (a) providing a reaction mixture comprising at least one source of ions of tetravalent element Y, at least one source of alkali metal hydroxide, water, optionally at least one seed crystal, and optionally at least one source of ions of trivalent element X, the reaction mixture having the following molar composition: Y:X2=2 to infinity, preferably from about 2 to about 1000, OH?:Y=0.001 to 2, preferably from 0.1 to 1, M+:Y=0.001 to 2, preferably from 0.
    Type: Application
    Filed: February 18, 2013
    Publication date: June 20, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Patent number: 8440864
    Abstract: In a process for producing sec-butylbenzene, a C4 olefinic hydrocarbon feedstock comprising isobutene and at least one n-butene is contacted with methanol and/or water in the presence of an acid catalyst to selectively oxygenate isobutene to produce an effluent stream rich in n-butene and containing less isobutene than the feedstock. The effluent stream is then contacted with benzene under alkylation conditions and in the presence of an alkylation catalyst to produce alkylation stream comprising sec-butylbenzene.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 14, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Jon E. R. Stanat, James R. Lattner, Jane C. Cheng
  • Patent number: 8436213
    Abstract: In a process for reducing the level of tert-butylbenzene in a mixed butylbenzene feed comprising tert-butylbenzene and sec-butylbenzene, the feed is contacted under dealkylation conditions with a catalyst system comprising a dealkylation catalyst whereby the tert-butylbenzene is selectively dealkylated to produce an effluent stream which comprises benzene and which has a lower concentration of tert-butylbenzene than said feed.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 7, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Jane C. Cheng, John S. Buchanan
  • Patent number: 8394995
    Abstract: The invention provides a process for the preparation of a carbonyl compound in high efficiency by oxidizing an alcohol. The process for the preparation of a carbonyl compound of the present invention includes a step of oxidizing an alcohol in the presence of a compound of the formula (I) or a derivative or a salt thereof, and an oxidant, wherein R1 and R2 independently represent hydrogen, a halogen, a nitro or acidic group, or an alkyl or alkoxy group, each of which optionally has a substituent, or R1 and R2 combine the two carbon atoms to which they are boned to form an aromatic ring.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: March 12, 2013
    Assignee: National University Corporation Nagoya University
    Inventors: Kazuaki Ishihara, Muhammet Uyanik, Yukihiro Isogai, Suguru Ohara
  • Publication number: 20120289749
    Abstract: Nanocatalysts and methods of synthesizing and using the same are provided.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 15, 2012
    Inventors: Tewodros Asefa, Ankush V. Biradar
  • Patent number: 8247616
    Abstract: A method of producing phenol, acetone and alpha-methyl styrene. A mixture of cumene hydroperoxide and dimethylbenzyl alcohol is provided. The mixture is subjected to a first stage reaction in the presence of about 0.5 to 1.5 wt. % water and about 20 to 400 ppm sulfuric acid at a reactor pressure of about 450 to 760 mm Hg, a temperature of about 60 to 85° C., and a residence time of 4 to 45 minutes to produce a composition having an acetone to phenol mole ratio of about 1 to 1.5. The composition is subjected to a second stage reaction in the presence of about 0.5 to 3 wt. % additional water with a second stage reactor temperature of about 110 to 150° C. and a residence time of 0.5 to 30 minutes.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: August 21, 2012
    Assignee: Honeywell International Inc.
    Inventors: Scott R. Keenan, Michael K. Hagans
  • Publication number: 20120197045
    Abstract: A method of producing phenol, acetone and alpha-methyl styrene. A mixture of cumene hydroperoxide and dimethylbenzyl alcohol is provided. The mixture is subjected to a first stage reaction in the presence of about 0.5 to 1.5 wt. % water and about 20 to 400 ppm sulfuric acid at a reactor pressure of about 450 to 760 mm Hg, a temperature of about 60 to 85° C., and a residence time of 4 to 45 minutes to produce a composition having an acetone to phenol mole ratio of about 1 to 1.5. The composition is subjected to a second stage reaction in the presence of about 0.5 to 3 wt. % additional water with a second stage reactor temperature of about 110 to 150° C. and a residence time of 0.5 to 30 minutes.
    Type: Application
    Filed: March 28, 2012
    Publication date: August 2, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Scott Roy Keenan, Michael Keith Hagans
  • Publication number: 20120157692
    Abstract: The present invention discloses processes for producing ?-nitrocarbonyl and ?-dicarbonyl compounds, which can be precursors in the synthesis of pyrrole compounds. A process for producing pyrroles such as 2,5-dimethylpyrrole, and structurally similar pyrrole compounds, is also disclosed.
    Type: Application
    Filed: February 28, 2012
    Publication date: June 21, 2012
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Hu Yang, Eduardo J. Baralt
  • Patent number: 8163944
    Abstract: The present invention relates to compositions and methods for achieving the efficient allylic oxidation of organic molecules, especially olefins and steroids, under aqueous conditions. The invention concerns the use of dirhodium (II,II) “paddlewheel complexes, and in particular, dirhodium carboximate and tert-butyl hydroperoxide as catalysts for the reaction. The use of aqueous conditions is particularly advantageous in the allylic oxidation of 7-keto steroids, which could not be effectively oxidized using anhydrous methods, and in extending allylic oxidation to enamides and enol ethers.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: April 24, 2012
    Assignee: University of Maryland College Park
    Inventors: Michael P. Doyle, Arthur J. Catino, Hojae Choi, Jason M. Nichols
  • Publication number: 20110306800
    Abstract: An improved method for the production of phenol, acetone and alpha-methyl styrene (AMS) from a cumene hydroperoxide and dimethylbenzyl alcohol (DMBA) mixture is described, wherein 0.5-5% additional water by weight is added prior to the final DMBA dehydration step, carried out in the presence of about 20-400 ppm mineral acid catalyst at 110-150° C. for 0.5 to 40 minutes residence time. The use of additional water allows greater flexibility in maintaining optimum temperature in the second stage over a much broader turndown range with fixed equipment, decreases the residual dicumyl peroxide (DCP) at the yield optimum for a given temperature, and increases the overall yield of AMS at optimum conditions at a given temperature.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Inventors: Scott Roy Keenan, Michael Keith Hagans
  • Patent number: 8026398
    Abstract: Catalyst comprising a combination of oxidized metals and processes for cleaving phenylalkyl hydroperoxides in the presence of the catalyst.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: September 27, 2011
    Inventors: Narayana Mysore, John Charles Saukaitis, John Anthony Smegal
  • Publication number: 20110152577
    Abstract: In a process for producing sec-butylbenzene, a C4 olefinic hydrocarbon feedstock comprising isobutene and at least one n-butene is contacted with methanol and/or water in the presence of an acid catalyst to selectively oxygenate isobutene to produce an effluent stream rich in n-butene and containing less isobutene than the feedstock. The effluent stream is then contacted with benzene under alkylation conditions and in the presence of an alkylation catalyst to produce alkylation stream comprising sec-butylbenzene.
    Type: Application
    Filed: August 4, 2009
    Publication date: June 23, 2011
    Inventors: John S. Buchanan, Jon E.R. Stanat, James R. Lattner, Jane C. Cheng
  • Patent number: 7939693
    Abstract: A process for producing sec-butylbenzene comprises feeding reactants comprising benzene and a C4 olefin to a distillation column reactor having a first reaction zone containing an alkylation catalyst and a second distillation zone, which is located below said first reaction zone and which is substantially free of alkylation catalyst, wherein the ratio of the number of distillation stages in said first reaction zone to the number of distillation stages in said second distillation zone is less than 1:1. Concurrently in the distillation reactor, the reactants are contacted with the alkylation catalyst in the first reaction zone under conditions such that the C4 olefin reacts with the benzene to produce sec-butylbenzene and the sec-butylbenzene is fractioned from the unreacted C4 olefin. The sec-butylbenzene thereby passes as a liquid phase stream from the first reaction zone to the second distillation zone and the liquid phase steam is withdrawn from the distillation column reactor as bottoms.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 10, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane C. Cheng, Jihad M. Dakka, Travis A. Reine, Jon E. Stanat
  • Patent number: 7906686
    Abstract: In a process for producing hydroperoxides, an alkylaromatic compound of general formula (I): in which R1 and R2 each independently represents hydrogen or an alkyl group having from 1 to 4 carbon atoms, provided that R1 and R2 may be joined to form a cyclic group having from 4 to 10 carbon atoms, said cyclic group being optionally substituted, and R3 represents hydrogen, one or more alkyl groups having from 1 to 4 carbon atoms or a cyclohexyl group, is contacted with oxygen in the presence of a catalyst comprising a polyoxometalate to produce a hydroperoxide of general formula (II): in which R1, R2 and R3 have the same meaning as in formula (I) and wherein the polyoxometalate comprises a polyoxotungstate substituted with at least one further transition metal.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: March 15, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Helge Jaensch, Jihad M. Dakka, Francisco M. Benitez, Ulrich Kortz, Ryan Matthew Richards
  • Patent number: 7888537
    Abstract: The present invention provides a process for decomposing a cumene hydroperoxide to produce phenol and acetone. The process utilizes a solid catalyst that can be non-layered or layered. The process includes: (1) introducing a process stream containing cumene hydroperoxide into a reaction vessel; (2) contacting the process stream with catalyst particles to form a process stream; and (3) withdrawing a portion of the product stream from the reactor and recovering phenol and acetone products.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: February 15, 2011
    Assignee: UOP LLC
    Inventors: Robert J. Schmidt, Deng-Yang Jan, Raelynn M. Miller, James A. Johnson
  • Patent number: 7858832
    Abstract: A process for producing sec-butylbenzene comprises contacting a feed comprising benzene and a C4 alkylating agent under alkylation conditions comprising a temperature of about 110° C. to about 150° C. with a catalyst comprising at least one molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The sec-butylbenzene can be then oxidized to produce a hydroperoxide and the hydroperoxide decomposed to produce phenol and methyl ethyl ketone.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: December 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane C. Cheng, John S. Buchanan, Jon E. Stanat, Christine N. Elia, Jihad M. Dakka
  • Publication number: 20100317896
    Abstract: A process for producing sec-butylbenzene comprises feeding reactants comprising benzene and a C4 olefin to a distillation column reactor having a first reaction zone containing an alkylation catalyst and a second distillation zone, which is located below said first reaction zone and which is substantially free of alkylation catalyst, wherein the ratio of the number of distillation stages in said first reaction zone to the number of distillation stages in said second distillation zone is less than 1:1. Concurrently in the distillation column reactor, the reactants are contacted with the alkylation catalyst in the first reaction zone under conditions such that the C4 olefin reacts with the benzene to produce sec-butylbenzene and the sec-butylbenzene is fractionated from the unreacted C4 olefin. The sec-butylbenzene thereby passes as a liquid phase stream from the first reaction zone to the second distillation zone and the liquid phase stream is withdrawn from the distillation column reactor as bottoms.
    Type: Application
    Filed: July 11, 2008
    Publication date: December 16, 2010
    Inventors: Jane C. Cheng, Jihad M. Dakka, Travis A. Reine, Jon E. Stanat
  • Patent number: 7834218
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 alkylating agent under alkylation conditions and in the presence of an alkylation catalyst comprising at least one molecular sieve of the MCM-22 family to produce an alkylation effluent comprising secbutylbenzene; wherein the contacting is conducted in a plurality of reaction zones and the C4 alkylating agent secbutylbenzene fraction is recovered from the alkylation effluent and comprises at least 95 wt % sec-butylbenzene, less than 100 wt ppm of C8+ olefins, and less than 0.5 wt % of isobutylbenzene and tert-butylbenzene. The sec-butylbenzene fraction is then oxidized to produce sec-butylbenzene hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketene.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: November 16, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Jon E. Stanat, Francisco M. Benitez, John S. Buchanan, Jane C. Cheng, Jeffrey T. Elks
  • Patent number: 7812196
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 olefin under alkylation conditions and in the presence of an alkylation catalyst to produce an alkylation effluent comprising sec-butylbenzene and C8+ olefins. The alkylation effluent is then treated to reduce the amount of said C8+ olefins and produce a treated effluent, whereafter the sec-butylbenzene in the treated effluent is oxidized to produce a hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketone.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: October 12, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Edmund J. Mozeleski, Jane C. Cheng, Francisco M. Benitez, Jon E. Stanat, John S. Buchanan
  • Patent number: 7799956
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene with a C4 alkylating agent under alkylation conditions with catalyst comprising zeolite beta or a molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom to produce an alkylation effluent comprising sec-butylbenzene. The sec-butylbenzene is then oxidized to produce a hydroperoxide and the hydroperoxide is decomposed to produce phenol and methyl ethyl ketone.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: September 21, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane Chi-ya Cheng, John S. Buchanan, Doron Levin, Michael A. Steckel, Jihad M. Dakka, James P. Stokes, John L. Robbins, Jon E. Stanat, Charles M. Smith, José G. Santiesteban
  • Publication number: 20100185016
    Abstract: In a process for producing hydroperoxides, an alkylaromatic compound of general formula (I): in which R1 and R2 each independently represents hydrogen or an alkyl group having from 1 to 4 carbon atoms, provided that R1 and R2 may be joined to form a cyclic group having from 4 to 10 carbon atoms, said cyclic group being optionally substituted, and R3 represents hydrogen, one or more alkyl groups having from 1 to 4 carbon atoms or a cyclohexyl group, is contacted with oxygen in the presence of a catalyst comprising a polyoxometalate to produce a hydroperoxide of general formula (II): in which R1, R2 and R3 have the same meaning as in formula (I) and wherein the polyoxometalate comprises a polyoxotungstate substituted with at least one further transition metal.
    Type: Application
    Filed: April 7, 2008
    Publication date: July 22, 2010
    Inventors: Helge Jaensch, Jihad M. Dakka, Francisco M. Benitez, Ulrich Kortz, Ryan Matthew Richards
  • Patent number: 7759524
    Abstract: In a process for producing phenol and methyl ethyl ketone, benzene and a C4 olefin are contacted under alkylation conditions and in the presence of an alkylation catalyst to produce sec-butylbenzene. The sec-butylbenzene is then oxidized to produce an oxidation effluent comprising sec-butylbenzene hydroperoxide and acetophenone. At least part of the sec-butylbenzene hydroperoxide in the oxidation effluent is cleaved to produce phenol and methyl ethyl ketone, while at least part of the acetophenone is hydrogenated to produce at least one of methyl benzyl alcohol, styrene and ethylbenzene.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John Scott Buchanan, Jihad Mohammed Dakka, Stephen Zushma, Francisco Manuel Benitez, Steven E. Silverberg
  • Publication number: 20100113834
    Abstract: There is provided a process for producing 3,3,3-trifluoropropionyl chloride, which is characterized in that 3,3,3-trifluoropropionaldehyde is chlorinated by a chlorinating agent selected from the group consisting of chlorine (Cl2), sulfuryl chloride (SO2Cl2) and organic N-chloro compounds.
    Type: Application
    Filed: March 29, 2007
    Publication date: May 6, 2010
    Applicant: Central Glass Company Limited
    Inventors: Takeo Komata, Kenji Hosoi, Shinya Akiba
  • Publication number: 20100063326
    Abstract: Catalyst comprising a combination of oxidized metals and processes for cleaving phenylalkyl hydroperoxides in the presence of the catalyst.
    Type: Application
    Filed: May 14, 2007
    Publication date: March 11, 2010
    Inventors: Narayana Mysore, John Charles Saukaitis, John Anthony Smegal
  • Publication number: 20100029990
    Abstract: Multi-step process for the preparation of compounds via hazardous intermediates comprising the steps of a) preparing in a microreactor a hazardous intermediate and b) optionally performing one or more reaction steps on the hazardous intermediate in one or more additional microreactors and c) further converting the hazardous intermediate with a suitable reaction agent in a subsequent microreactor until a stable end product is formed.
    Type: Application
    Filed: May 23, 2007
    Publication date: February 4, 2010
    Inventors: Rafael Wilhelmus Elisabeth Ghislain Reintjens, Quirinus Bernardus Broxterman, Martina Kotthaus, Peter Poechlauer
  • Publication number: 20090312580
    Abstract: A process for producing sec-butylbenzene comprises contacting a feed comprising benzene and a C4 alkylating agent under alkylation conditions comprising a temperature of about 110° C. to about 150° C. with a catalyst comprising at least one molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The sec-butylbenzene can be then oxidized to produce a hydroperoxide and the hydroperoxide decomposed to produce phenol and methyl ethyl ketone.
    Type: Application
    Filed: February 8, 2007
    Publication date: December 17, 2009
    Inventors: Jane C. Cheng, John S. Buchanan, Jon E. Stanat, Christine N. Elia, Jihad M. Dakka
  • Publication number: 20090216048
    Abstract: In a process for producing phenol and methyl ethyl ketone, benzene and a C4 olefin are contacted under alkylation conditions and in the presence of an alkylation catalyst to produce sec-butylbenzene. The sec-butylbenzene is then oxidized to produce an oxidation effluent comprising sec-butylbenzene hydroperoxide and acetophenone. At least part of the sec-butylbenzene hydroperoxide in the oxidation effluent is cleaved to produce phenol and methyl ethyl ketone, while at least part of the acetophenone is hydrogenated to produce at least one of methyl benzyl alcohol, styrene and ethylbenzene.
    Type: Application
    Filed: December 18, 2008
    Publication date: August 27, 2009
    Inventors: John Scott Buchanan, Jihad Mohammed Dakka, Stephen Zushman, Francisco Manuel Benitez, Steven E. Silverberg
  • Publication number: 20090187047
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 alkylating agent under alkylation conditions and in the presence of an alkylation catalyst comprising at least one molecular sieve of the MCM-22 family to produce an alkylation effluent comprising secbutylbenzene; wherein the contacting is conducted in a plurality of reaction zones and the C4 alkylating agent secbutylbenzene fraction is recovered from the alkylation effluent and comprises at least 95 wt % sec-butylbenzene, less than 100 wt ppm of C8+ olefins, and less than 0.5 wt % of isobutylbenzene and tert-butylbenzene. The sec-butylbenzene fraction is then oxidized to produce sec-butylbenzene hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketone.
    Type: Application
    Filed: February 8, 2007
    Publication date: July 23, 2009
    Inventors: Jihad M. Dakka, Jon E. Stanat, Francisco M. Benitez, John S. Buchanan, Jane C. Cheng, Jeffrey T. Elks
  • Publication number: 20090093638
    Abstract: The present invention relates to compositions and methods for achieving the efficient allylic oxidation of organic molecules, especially olefins and steroids, under aqueous conditions. The invention concerns the use of dirhodium (II,II) “paddlewheel complexes, and in particular, dirhodium carboximate and tert-butyl hydroperoxide as catalysts for the reaction. The use of aqueous conditions is particularly advantageous in the allylic oxidation of 7-keto steroids, which could not be effectively oxidized using anhydrous methods, and in extending allylic oxidation to enamides and enol ethers.
    Type: Application
    Filed: October 6, 2008
    Publication date: April 9, 2009
    Applicant: UNIVERSITY OF MARYLAND, COLLEGE PARK
    Inventors: Michael P. Doyle, Arthur J. Catino, Hojae Choi, Jason M. Nichols
  • Patent number: 7485758
    Abstract: A method for the production of phenol and acetone from a cumene hydroperoxide mixture comprises a first stage and a second stage and at least two serially connected reactors, wherein the first stage comprises decomposition of a cumene hydroperoxide mixture in the presence of a catalyst mixture to form a dicumyl peroxide mixture, and the second stage comprises formation of a phenol and acetone mixture from decomposition of the dicumyl peroxide mixture formed in the first stage, wherein, the first stage further comprises: a) forming a catalyst mixture by combining sulfuric acid and phenol in a weight ratio of from 2:1 to 1:1000 in a catalyst formation reactor, b) holding the catalyst mixture in the catalyst formation reactor at a temperature of about 20 to 80° C. for about 1 to 600 minutes; and, c) adding the catalyst mixture to the cumene hydroperoxide mixture to form the phenol and acetone mixture.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: February 3, 2009
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Mark Nelson, Willem Lodewyk Sederel, Arkady Samuilovich Dyckman, Ilya Nikolaevich Grebenshchikov, Viktor Vladimirovich Pinson, Andrey Vladimirovich Zinenkov
  • Patent number: 7482493
    Abstract: A method for the production of phenol and acetone from a cumene hydroperoxide mixture comprises: decomposing the cumene hydroperoxide mixture in the presence of a catalyst mixture to form a mixture comprising phenol and acetone, wherein the method further comprises: a) forming the catalyst mixture in a catalyst formation reactor by combining sulfuric acid and phenol in a weight ratio of from 2:1 to 1:1000; b) holding the catalyst mixture in the catalyst formation reactor at a temperature of about 20 to 80° C. for about 1 to 600 minutes; and c) adding the catalyst mixture to the cumene hydroperoxide mixture to form the phenol and acetone mixture. Running the process in this manner reduces the yield of hydroxyacetone and, consequently, improves the quality of the commercial phenol. Moreover, this method reduces consumption of sulfuric acid in comparison with the process in which sulfuric acid is used as catalyst.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: January 27, 2009
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Mark Nelson, Willem Lodewyk Sederel, Arkady Samuilovich Dyckman, Ilya Nikolaevich Grebenshchikov, Viktor Vladimirovich Pinson, Andrey Vladimirovich Zinenkov
  • Publication number: 20080214873
    Abstract: A method for the production of phenol and acetone from a cumene hydroperoxide mixture comprises a first stage and a second stage and at least two serially connected reactors, wherein the first stage comprises decomposition of a cumene hydroperoxide mixture in the presence of a catalyst mixture to form a dicumyl peroxide mixture, and the second stage comprises formation of a phenol and acetone mixture from decomposition of the dicumyl peroxide mixture formed in the first stage, wherein, the first stage further comprises: a) forming a catalyst mixture by combining sulfuric acid and phenol in a weight ratio of from 2:1 to 1:1000 in a catalyst formation reactor, b) holding the catalyst mixture in the catalyst formation reactor at a temperature of about 20 to 80° C. for about 1 to 600 minutes; and, c) adding the catalyst mixture to the cumene hydroperoxide mixture to form the phenol and acetone mixture.
    Type: Application
    Filed: September 26, 2007
    Publication date: September 4, 2008
    Inventors: Mark Nelson, Willem Lodewyk Sederel, Arkady Samuilovich Dyckman, Ilya Nikolaevich Grebenshchikov, Viktor Vladimirovich Pinson, Andrey Vladimirovich Zinenkov
  • Publication number: 20080214872
    Abstract: A method for the production of phenol and acetone from a cumene hydroperoxide mixture comprises: decomposing the cumene hydroperoxide mixture in the presence of a catalyst mixture to form a mixture comprising phenol and acetone, wherein the method further comprises: a) forming the catalyst mixture in a catalyst formation reactor by combining sulfuric acid and phenol in a weight ratio of from 2:1 to 1:1000; b) holding the catalyst mixture in the catalyst formation reactor at a temperature of about 20 to 80° C. for about 1 to 600 minutes; and c) adding the catalyst mixture to the cumene hydroperoxide mixture to form the phenol and acetone mixture. Running the process in this manner reduces the yield of hydroxyacetone and, consequently, improves the quality of the commercial phenol. Moreover, this method reduces consumption of sulfuric acid in comparison with the process in which sulfuric acid is used as catalyst.
    Type: Application
    Filed: September 26, 2007
    Publication date: September 4, 2008
    Inventors: Mark Nelson, Willem Lodewyk Sederel, Arkady Samuilovich Dyckman, Ilya Nikolaevich Grebenshchikov, Viktor Vladimirovich Pinson, Andrey Vladimirovich Zinenkov
  • Patent number: RE40668
    Abstract: A method for the enhanced decomposition of cumene hydroperoxide by acidic catalyst to phenol and acetone which comprises decomposing cumene hydroperoxide in a non-isothermal manner in the presence of excess acetone whereby the molar ratio of acetone to phenol in a decomposition reactor is from about 1.1:1 to 1.5:1. A method for the selectivity of the decomposition of dicumyl peroxide to alpha methylstyrene also phenol and acetone in the presence of an acidic catalyst which comprises carrying out the decomposition at a temperature of from about 80° to 110° C. A method for carrying out the decomposition of dicumyl peroxide with an acidic catalyst system which comprises performing such decomposition in the presence of the reaction product of (1) an amine with (2) an acidic material which can catalyze the decomposition of CHP.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: March 17, 2009
    Assignees: SABIC Innovative Plastics IP B.V., ILLA International Ltd.
    Inventor: Vladimir M. Zakoshansky