Aluminum Or Silicon Containing Material Utilized Patents (Class 568/406)
  • Patent number: 7872158
    Abstract: Chemical production processes are provided that can include exposing a reactant composition to a catalyst composition to form a product composition. The reactant composition can include a multihydric alcohol compound and the product composition can include a carbonyl compound. The catalyst composition can include a metal effective to facilitate catalyst activation. Processes disclosed also include supplementing a dehydration catalyst with a promoter, and activating the supplemented catalyst in the presence of oxygen. Processes also include providing a supplemented dehydration catalyst to within a reactor, and exposing a multihydric alcohol compound to the dehydration catalyst, with the exposing forming coke within the reactor. Oxygen can be provided to the reactor to remove at least a portion of the coke.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: January 18, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Todd A. Werpy
  • Publication number: 20090054695
    Abstract: Chemical production processes are provided that can include exposing a reactant composition to a catalyst composition to form a product composition. The reactant composition can include a multihydric alcohol compound and the product composition can include a carbonyl compound. The catalyst composition can include a metal effective to facilitate catalyst activation. Processes disclosed also include supplementing a dehydration catalyst with a promoter, and activating the supplemented catalyst in the presence of oxygen. Processes also include providing a supplemented dehydration catalyst to within a reactor, and exposing a multihydric alcohol compound to the dehydration catalyst, with the exposing forming coke within the reactor. Oxygen can be provided to the reactor to remove at least a portion of the coke.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventors: Thomas H. Peterson, Alan H. Zacher, Michel J. Gray, James F. White, Todd A. Werpy
  • Patent number: 6780812
    Abstract: A novel chiral lead catalyst comprising a lead compound of the following formula: Pb(ORf)2 (wherein Rf represents a fluorine-containing alkylsulfonyl group) and a chiral crown ether compound having the structure of the following formula: which is applicable in a variety of reactions, and enables simple reaction operations with high yield and high optical selectivity, is provided. Also provided is a method of asymmetric synthesis using the same.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: August 24, 2004
    Assignee: Japan Science and Technology Corporation
    Inventor: Shu Kobayashi
  • Patent number: 6479707
    Abstract: The present invention provides a process for producing 2-butanone and 2-butanol under comparatively mild conditions with a decreased number of steps by direct oxidization of a hydrocarbon, which is cheaper than butenes, as a raw material using molecular oxygen such as air. The process for producing 2-butanone and 2-butanol comprises directly oxidizing n-butane using molecular oxygen in the presence of aluminum phosphate containing transition metal atoms and a selectivity-improving agent, as required.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: November 12, 2002
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Hideki Omori, Kazuhiko Haba
  • Patent number: 6459000
    Abstract: The present invention provides a liquid phase process for the acylation of aromatic compound by an acylating agent of the formula (R5R6R7)—Y—Z to obtain the corresponding acylated compound using a solid catalyst comprising a metal oxide of the formula AOx with or without a catalyst support, wherein A is a metallic element selected from Ga, In, Ti, Fe and a mixture of two or more thereof, and x is the number of oxygen atoms required to fulfil the valance requirement of A, wherein the catalyst is pretreated with a dry gas comprising a hydrogen halide in the presence or absence of the aromatic compound to be acylated, contacting the hydrogen halide pretreated catalyst with a liquid reaction mixture comprising the aromatic compound and the acylating agent, cooling the reaction mixture, removing the catalyst from the reaction mixture and then separating the reaction products from the reaction mixture.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: October 1, 2002
    Assignee: Council of Scientific and Industrial Research
    Inventors: Vasant Ramchandra Choudhary, Suman Kumar Jana
  • Patent number: 6329554
    Abstract: Process for the continuous preparation of unsaturated ketones of the formula I where the dashed line can be an additional C—C bond, R1 is an alkyl, and R2 is an aliphatic hydrocarbon having from 1 to 37 carbons, a cycloalkyl or a cycloalkylalkyl, by reacting an unsaturated alcohol of the formula II  with an alkyl acetoacetate of the formula III where R3 is an alkyl having from 1 to 5 carbons, in the presence or organic aluminum compounds as catalyst.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: December 11, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Carsten Oost, Manfred Stroezel, Heinz Etzrodt, Dietmar Weller, Bernhard Bockstiegel, Klaus Reimer, Gerd Kaibel, Hagen Jaedicke
  • Patent number: 6307106
    Abstract: An improved process for preparing lower unsaturated ketones by reacting the corresponding &agr;,&bgr;-unsaturated alcohols with alkyl acetoacetates in a Carroll reaction in the presence of from 0.1 to 5 mol %, based on the alkyl acetoacetate to be reacted, of an organic aluminum compound as catalyst with elimination and continuous removal by distillation of the alkanol eliminated during the reaction from the alkyl acetoacetate in a reactor system with a fitted fractionation column, wherein A an &agr;,&bgr;-unsaturated alcohol which boils below 140° C. is introduced, in the absence of effective amounts of a solvent, together with the organic aluminum compound into the reaction vessel, B a reaction temperature which is as constant as possible between 170° C. and 250° C.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: October 23, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Carsten Oost, Manfred Stroezel, Heinz Etzrodt, Dietmar Weller, Gerd Kaibel, Hagen Jaedicke
  • Patent number: 6300524
    Abstract: The present invention relates to an improved process for preparing higher unsaturated ketones by reacting the corresponding &agr;,&bgr;-unsaturated alcohols with alkyl acetoacetates in a Carroll reaction , in a reactor system with fitted fractionation column, wherein A the &agr;,&bgr;-unsaturated alcohol is introduced into the reaction vessel together with the organic aluminum compound in the absence of effective amounts of a solvent, and the alkyl acetoacetate is metered into this mixture, B a reaction temperature which is as constant as possible at between 175° C. and 220° C., preferably between 180° C. and 200° C., is adjusted and C during the reaction the content of alkyl acetoacetate in the reaction mixture is adjusted to a value which is as constant as possible at between 1 and 3% by weight.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: October 9, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Carsten Oost, Manfred Stroezel, Heinz Etzrodt, Dietmar Weller, Udo Rheude, Gerd Kaibel, Thomas Krug, Luise Spiske, Hagen Jaedicke
  • Patent number: 6051741
    Abstract: A process for preparing .gamma.,.delta.-unsaturated ketones of the general formula I ##STR1## by reacting an allyl alcohol of the general formula II ##STR2## in which R.sup.1 is H or a hydrocarbon radical having 1 to 20 carbon atoms, with diketene or an alkyl acetoacetate of the general formula III ##STR3## in which R.sup.2 is alkyl having 1 to 4 carbon atoms in an unmodified or modified Carroll reaction in the presence of an aluminum catalyst, wherein aluminum compounds which are stable liquids at room temperature, or a mixture of such aluminum compounds, which comprise at least one radical formed from an alkyl acetoacetate and 1 or 2 alkoxy radicals, or else comprise exclusively radicals formed from alkyl acetoacetates, which are esterified with sec-butanol or isobutanol, or else are esterified with at least two different alcohols, are used as aluminum catalyst.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: April 18, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Heinz Etzrodt, Dietmar Weller, Carsten Oost, Hagen Jaedicke, Manfred Stroezel, Bernhard Bockstiegel, Lothar Laupichler, Klaus Reimer
  • Patent number: 5723679
    Abstract: A process for the production of methyl ethyl ketone by means of oxidative dehydrogenation of secondary butyl alcohol using an amorphous copper-silica catalyst prepared by a sol-gel route, in which an alkoxide or other suitable salt or complex of copper is reacted with an alkoxide of silicon in the absence of base, but in the presence of water or an alcohol; the resultant product is dried and calcined.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: March 3, 1998
    Assignee: Council of Scientific & Industrial Research
    Inventors: Alive Keshavaraja, James Violet Samuel, Arumugamangalam Venkataraman Ramaswamy
  • Patent number: 5426206
    Abstract: Methods are provided for preparing all four diastereomers of 2-alkyl-3-hydroxyalkanals, 2-alkyl-3-silyloxyalkanals, and the like, with high enantiocontrol, using non-aldol chemistry. The synthetic methods also provide novel, stereospecific routes to polypropinates and chiral 2-substituted-1,3 diols.
    Type: Grant
    Filed: November 24, 1993
    Date of Patent: June 20, 1995
    Assignee: The Regents of the University of California
    Inventors: Michael E. Jung, Derin C. D'Amico
  • Patent number: 5380755
    Abstract: The present invention provides alkyl and alkylbenzyl ethers of substituted hydroquinones and pharmaceutical compositions containing them. The present invention further provides methods of using these compounds and compositions to inhibit monoamine oxidase, particularly monoamine oxidase B. The present invention further provides methods for the treatment of diseases involving monoamine oxidase.
    Type: Grant
    Filed: July 24, 1992
    Date of Patent: January 10, 1995
    Assignee: The Du Pont Merck Pharmaceutical Company
    Inventors: Argyrios G. Arvanitis, Everett L. Scholfield
  • Patent number: 5227530
    Abstract: Conversion of alcohol to organic compounds which comprises contacting the alcohol with a heterogeneous catalyst composition comprising crystallineCu.sub.2-X Cr.sub.y Al.sub.6-y B.sub.4 O.sub.17 M.sub.m M'.sub.nwhere M is a divalent metal, M' is a monovalent metal, m is a number in a range from 0 to 0.8, n is a number in a range from 0 to 1.6, X is a number in a range from 0 to 10 0.8 and is equal to the sum of m and n/2, and y is a number in a range from 0.01 to 3, having a characteristic X-ray diffraction pattern.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: July 13, 1993
    Assignee: Amoco Corporation
    Inventors: Larry C. Satek, Patrick E. McMahon
  • Patent number: 5103066
    Abstract: The invention relates to a catalytic dehydrogenation of alcohols to produce ketones and/or aldehydes. The catalyst comprises a dehydrogenation metal and a non-acidic microporous crystalline material as a support. The support may contain indium, tin, thallium or lead, when the dehydrogenation metal is a Group VIII metal.
    Type: Grant
    Filed: December 10, 1990
    Date of Patent: April 7, 1992
    Assignee: Mobil Oil Corp.
    Inventor: Ralph M. Dessau
  • Patent number: 4983747
    Abstract: Disclosed is a process for the preparation of a perfluoroorganic compound, which comprises fluorinating a partially fluorinated or unfluorinated organic compound having carbon-to-fluorine bonds under mild conditions and then, contacting the resulting reaction mixture with a fluorine gas at a temperature of 110.degree. to 180.degree. C.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: January 8, 1991
    Assignee: Tokuyama Soda Kabushiki Kaisha
    Inventors: Masakatsu Nishimura, Naoya Okada, Yasuo Murata, Yasuhiko Hirai
  • Patent number: 4739122
    Abstract: A process to produce Methyl Amyl Ketone heterogeneously via the cross-aldol condensation reaction between a C.sub.3 (isopropanol or acetone feed) and a C.sub.4 (butanol or butyraldehyde feed). The catalyst, hydrogen reduced copper oxide on gamma alumina, produces both high reactivity and long catalyst lifetimes. The catalyst is successfully regenerated. Efficiencies to MAK range from 50 to 80 wt. % and efficiencies to useful products range from 75 to 95 wt. % depending on the composition of the feed and temperature. Temperatures range from 200.degree. to 262.degree. C.In general, this catalyst readily catalyzes the cross-aldol condensation reaction between aldehydes (or primary alcohols) and ketones (or secondary alcohols) to produce higher molecular weight ketones; likewise, this catalyst catalyzes the aldol condensation reaction between the same or different ketones to again produce higher molecular weight ketones.
    Type: Grant
    Filed: October 18, 1985
    Date of Patent: April 19, 1988
    Assignee: Union Carbide Corporation
    Inventor: John B. Letts
  • Patent number: 4727196
    Abstract: Higher carbonyl compounds are prepared from C.sub.1 to C.sub.8 cyclic or acyclic alcohols containing at least one active hydrogen atom bonded to the beta carbon atom or readily convertible thereto under the reaction conditions by reacting the alcohol in the presence as catalyst of ruthenium metal or an oxide thereof supported on a solid support.
    Type: Grant
    Filed: August 22, 1986
    Date of Patent: February 23, 1988
    Assignee: BP Chemicals Limited
    Inventors: Derek K. MacApline, Bruce L. Williams, Peter S. Williams
  • Patent number: 4472593
    Abstract: Isopropyl alcohol is dehydrogenated to acetone by contact with a catalyst having improved selectivity and activity which comprises a mixture of copper, zinc and chromium supported on an alpha alumina carrier.
    Type: Grant
    Filed: December 9, 1982
    Date of Patent: September 18, 1984
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Galeon W. Schoenthal, James D. Richardson
  • Patent number: 4453015
    Abstract: Secondary butyl alcohol is dehydrogenated to methyl ethyl ketone by contact with a catalyst having improved selectivity and activity which comprises a mixture of copper, zinc and chromium supported on an alpha alumina carrier.
    Type: Grant
    Filed: December 9, 1982
    Date of Patent: June 5, 1984
    Assignee: Shell Oil Company
    Inventors: Lynn H. Slaugh, Galeon W. Schoenthal, James D. Richardson
  • Patent number: 4421933
    Abstract: Process for the co-production of ketones and mono-olefins from secondary alcohols and conjugated di-olefins in which dehydrogenation of the secondary alcohol and hydrogenation of the conjugated di-olefin are effected by contacting a mixture of the secondary alcohol and the conjugated di-olefin with a heterogeneous copper-containing catalytic system. The process is very useful for the co-production of methyl ethyl ketone and n-butenes from sec-butanol and butadiene at low temperatures (e.g. between 90.degree. C. and 130.degree. C.).
    Type: Grant
    Filed: July 2, 1982
    Date of Patent: December 20, 1983
    Assignee: Shell Oil Company
    Inventors: Johannes A. M. Van Broekhoven, Christopher S. John
  • Patent number: 4380673
    Abstract: A secondary alcohol dissolved in a C.sub.12 to C.sub.20 paraffinic hydrocarbon substantially free of aromatics and of sulfur is dehydrogenated to the corresponding ketone at a temperature of 170.degree.-230.degree. C. in the presence of a catalyst of the Raney nickel type containing from 0.1 to 10% by weight of an additional metal consisting of copper, silver, gold, tin, lead, zinc, cadmium, indium or germanium, the ketone being preferably removed, as it is formed, from the reaction medium. A catalyst for use in the present process is provided.
    Type: Grant
    Filed: June 26, 1981
    Date of Patent: April 19, 1983
    Assignee: Institut Francais Du Petrole
    Inventors: Jean-Paul Bournonville, Roger Snappe, Jean Miquel, Germain Martino
  • Patent number: 4218571
    Abstract: Hydrogenation-dehydrogenation of suitable feedstock is provided wherein such feedstock is subjected to hydrogenation-dehydrogenation conditions in the presence of a catalytic amount of a solid containing, at least in part, a synthetic amorphous solid prepared by hydrolyzing and polymerizing in the presence of water a silane having the formula R(Si)X.sub.3, wherein R is a nonhydrolyzable organic group, X is a hydrolyzable group and (Si) is selected from the group consisting of ##STR1## and calcining the polymerized product, said silane being admixed with a second component, R'.sub.n MY.sub.m, wherein R' is selected from the group consisting of the same groups as R, Y is selected from the group consisting of the same groups as X and oxygen, M is at least one member selected from the group consisting of the elements of Groups IIIA, IVA, VA, IVB, VB, VIB, VIIB and VIII of the Periodic Table, m is any number greater than 0 and up to 8 and n is from 0 to any number less than 8.
    Type: Grant
    Filed: May 21, 1979
    Date of Patent: August 19, 1980
    Assignee: Mobil Oil Corporation
    Inventors: Thomas O. Mitchell, Darrell D. Whitehurst