Catalyst Utilized Patents (Class 570/165)
  • Patent number: 7064240
    Abstract: The process for producing perfluorocarbons according to the present invention is characterized in that in the production of a perfluorocarbon by contacting an organic compound with a fluorine gas, the organic compound is contacted with the fluorine gas at a temperature of from 200 to 500° C. and the content of an oxygen gas within the reaction system is controlled to 2% by volume or less based on the gas components in the reaction starting material, whereby a perfluorocarbon reduced in the content of impurities is produced. According to the process for producing perfluorocarbons of the present invention, high-purity perfluorocarbons extremely suppressed in the production of impurities such as oxygen-containing compound can be obtained. The perfluorocarbons obtained by the production process of the present invention contain substantially no oxygen-containing compound and therefore, can be effectively used as an etching or cleaning gas for use in the process for producing a semiconductor device.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: June 20, 2006
    Assignee: Showa Denko K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi
  • Patent number: 7060165
    Abstract: The present invention involves processes that utilize an olefinic compound, in particular, hexafluoropropene (HFP) or chlorotrifluoroethene (CFC-1113) as extracting agents in the purification of pentafluoroethane (HFC-125). These processes can utilize recovered HFP as a precursor for the production of heptafluoropropane (HFC-227) or other derivatives.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: June 13, 2006
    Assignee: PCBU Services, Inc.
    Inventors: Stephan M. Brandstater, Mitchel Cohn, Victoria E. Hedrick, Yuichi Iikubo
  • Patent number: 7053252
    Abstract: The invention relates to a process for preparing 1,1,1-trifluoro-2,2-dichloroethane (F123). This process consists in placing 1,1,1-trifluoro-2-chloroethane (F133a) in contact with chlorine in the presence of hydrogen fluoride and a fluorination catalyst. F133a may be obtained by fluorination of trichloroethylene, and the F123 may be subsequently fluorinated to F125.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: May 30, 2006
    Assignee: Atofina
    Inventors: Béatrice Boussand, Eric Jorda
  • Patent number: 7045668
    Abstract: A process for production of high-purity hexafluoroethane, wherein a mixed gas containing hexafluoroethane and chlorotrifluoromethane is reacted with hydrogen fluoride in a gas phase in the presence of a fluorination catalyst at 200-450° C., for fluorination of the chlorotrifluoromethane, or wherein pentafluoroethane containing chlorine compounds with 1-3 carbon atoms is reacted with hydrogen in a gas phase in the presence of a hydrogenation catalyst at 150-400° C., and the product is then reacted with fluorine in a gas phase in the presence of a diluent gas.
    Type: Grant
    Filed: August 6, 2002
    Date of Patent: May 16, 2006
    Assignee: Showa Denko K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi
  • Patent number: 6955789
    Abstract: The present invention relates to a reactor suitable for liquid-phase fluorination and provided, as heating means, with at least one element fixed to the cover so as to be immersed to the bottom of the vessel, characterized in that the parts of said reactor that are liable to be in contact with the reaction medium, other than the heating element, are coated with a tetrafluoroethylene/hexafluoropropylene copolymer and in that the part of the heating element liable to be in contact with the reaction medium is made of silicon carbide.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: October 18, 2005
    Assignee: ARKEMA
    Inventors: Michel Devic, Philippe Bonnet, Eric Lacroix
  • Patent number: 6930215
    Abstract: 1,1,1,3,3-pentafluoropropane is produced by reaction between 1,1,1,3,3-pentachloropropane and hydrogen fluoride in the presence of a hydrofluorination catalyst. The 1,1,1,3,3-pentachloropropane may advantageously be obtained by reaction between vinyl chloride and tetrachloromethane in the presence of a telomerization catalyst and of a nitrile.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: August 16, 2005
    Assignee: Solvey (Societe Anonyme)
    Inventors: Vincent Wilmet, Francine Janssens, Jean-Paul Schoebrechts
  • Patent number: 6900362
    Abstract: A process for the production of HFC-227ea from HF and HFP is provided. This process takes advantage of an azeotropic composition of HF and HFC-227ea in order to produce HFC-227ea essentially free of HF and recycle unreacted HF back to the reactor. The recycle of said azeotropic composition, also allows the use of HFC-227ea as a diluent to aid in control of reactor temperature for a highly exothermic reaction.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: May 31, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralph Newton Miller, Mario J. Nappa, Donald J. Toton
  • Patent number: 6891074
    Abstract: A process for the production of a hydrofluoroalkane, which process comprises contacting a hydrochlorofluoroethane of formula CClXYCFHZ, wherein X and Y are each independently chlorine or fluorine and Z is chlorine, fluorine or hydrogen, in the liquid phase with hydrogen fluoride and a fluorination catalyst and recovering a hydrofluoroalkane from the resulting products.
    Type: Grant
    Filed: September 3, 2001
    Date of Patent: May 10, 2005
    Assignee: Ineos Fluor Holdings Limited
    Inventors: Clive Robert Giddis, Paul Hendry Stewart
  • Patent number: 6858762
    Abstract: A liquid phase process is disclosed for producing halogenated alkane adducts of the formula CAR1R2CBR3R4 (where A, B, R1, R2, R3, and R4 are as defined in the specification) which involves contacting a corresponding halogenated alkane, AB, with a corresponding olefin, CR1R2?CR3R4 in a dinitrile or cyclic carbonate ester solvent which divides the reaction mixture into two liquid phases and in the presence of a catalyst system containing (i) at least one catalyst selected from monovalent and divalent copper; and optionally (ii) a promoter selected from aromatic or aliphatic heterocyclic compounds which contain at least one carbon-nitrogen double bond in the heterocyclic ring. When hydrochlorofluorocarbons are formed, the chlorine content may be reduced by reacting the hydrochlorofluorocarbons with HF. New compounds disclosed include CF3CF2CCl2CH2CCl3, CF3CCl2CH2CH2Cl and CF3CCl2CH2CHClF. These compounds are useful as intermediates for producing hydrofluorocarbons.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: February 22, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralph Thomas Baker, Ralph Newton Miller, Viacheslav Alexandrovich Petrov, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 6849772
    Abstract: 1,1-Difluoroethane containing less than 10 mg/kg of vinyl chloride is obtained by treatment, with hydrogen fluoride, of a crude 1,1-difluoroethane containing less than 1 mol of hydrogen chloride per mole of 1,1-difluoroethane.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: February 1, 2005
    Assignee: Solvay (Societe Anonyme)
    Inventors: Charles-Marie Anciaux, Vincent Wilmet, Dominique Lecroc
  • Patent number: 6846963
    Abstract: In a process for producing 1,1,1,3,3-pentafluoropropane which has a liquid-phase reaction step for fluorination of 1,1,1,3,3-pentahalopropane (wherein at least one of halogen atoms is not fluorine) with HF in the presence of antimony pentahalide catalyst in a reactor to obtain a reaction mixture comprising 1,1,1,3,3-pentafluoropropane and the antimony pentahalide catalyst, the fluorination is conducted at a reaction temperature less than 50° C.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: January 25, 2005
    Assignee: Daikin Industries, Ltd.
    Inventors: Tatsuo Nakada, Seiji Takubo, Toshikazu Yoshimura, Takashi Shibanuma
  • Patent number: 6844475
    Abstract: A process for producing 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) from 1,1,1-3,3-pentachloropropane (HCC-240fa) by its reaction with hydrogen fluoride, the reactants are reacted in a liquid phase reaction at a temperature of less than 150° C. in the presence of a Lewis acid catalyst or mixture of Lewis acid catalysts, and hydrogen chloride and HCFC-1233zd formed in the reaction are continuously removed and the HCFC-12333zd is isolated.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: January 18, 2005
    Assignee: Honeywell International Business Machines
    Inventors: Hseuh Sung Tung, Kevin D. Ulrich, Daniel C. Merkel
  • Patent number: 6841706
    Abstract: Hydrofluorination catalyst based on a chromium oxide which is poor in ammonium salts.
    Type: Grant
    Filed: October 11, 1999
    Date of Patent: January 11, 2005
    Assignee: Solvay (Societe Anonyme)
    Inventors: Vincent Wilmet, Georges Lejeune
  • Patent number: 6841705
    Abstract: A method of producing difluoromethane (HFC-32), which includes firstly reacting methylene chloride with hydrogen fluoride in gas phase at 280 to 340° C. in the presence of a fluorination catalyst to produce chlorofluoro methane, and secondly reacting the chlorofluoro methane with hydrogen fluoride in liquid phase at 60 to 80° C. in the presence of an antimony chloride catalyst. The method is advantageous in that HFC-32 is produced in high yield under mild reaction conditions using a relatively small amount of energy.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: January 11, 2005
    Assignee: Ulsan Chemical Co., Ltd.
    Inventors: Iikubo Yuichi, Hae Seok Ji, Ook Jae Cho
  • Patent number: 6787678
    Abstract: Disclosed are improved fluorination processes and fluorine-containing compositions which involve introducing to one or more fluorination process compositions a water reactive agent in an amount and under conditions effective to decrease the amount of water in that composition. The water reactive agent is preferably introduced to the fluorination process at a location downstream of the fluorination reaction, in amounts and under conditions effective to produce a relatively lower concentration of water in the composition, and preferably throughout the fluorination process.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: September 7, 2004
    Assignee: Honeywell International Inc.
    Inventors: Hsueh Sung Tung, Jason T. Stuck
  • Patent number: 6784327
    Abstract: A process for the production of a fluorinated organic compound, characterized by fluorinating an organic compound having a hydrogen atoms using IF5; and a novel fluorination process for fluorinating an organic compound having a hydrogen atoms by using a fluorinating agent containing IF5 and at least one member selected from the group consisting of acids, bases, salts and additives.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: August 31, 2004
    Assignee: Daikin Industries, Ltd.
    Inventors: Norihiko Yoneda, Tsuyoshi Fukuhara, Kazuhiro Shimokawa, Kenji Adachi, Satoshi Oishi
  • Patent number: 6755942
    Abstract: The invention relates to azeotropic compositions of halogenated propanes with HF.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: June 29, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Ralph Thomas Baker, Ralph Newton Miller, Viacheslav Alexandrovich Petrov, Velliyur Nott Mallikarjuna Rao, Allen Capron Sievert
  • Publication number: 20040102660
    Abstract: Methods and materials are provided for the production of essentially isomerically pure perhalogenated and partially halogenated compounds. One embodiment of the present invention provides a process for the production of essentially isomerically pure CFC-216aa. Other embodiments include processes for the production of CFC-217ba and HFC-227ea. Particular embodiments of the present invention provide separation techniques for the separation of chlorofluorocarbons from HF, from other chlorofluorocarbons, and the separation of isomers of halogenated compounds. Still other embodiments of the present invention provide catalytic synthetic techniques that demonstrate extended catalyst lifetime. In other embodiments, the present invention provides catalytic techniques for the purification of isomeric mixtures.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 27, 2004
    Inventors: Yuichi Iikubo, Stephen Owens, Mitchel Cohn, Stephan M. Brandstadter, Vicki E. Hedrick, Janet K. Boggs, John Qian, Julie Sacarias
  • Patent number: 6723887
    Abstract: A process for vapor phase fluorination of methylene chloride with anhydrous hydrogen fluoride (AHF) in the presence of a coprecipitated chromia-alumina impregnated with zinc salt as catalyst, removing HCl and heavier components by distillation, subjecting HFC-32 rich cut to a further step of fluorination in the presence of a fluorination catalyst.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: April 20, 2004
    Assignee: SFR Limited
    Inventors: Rajasekaran Ramanathan, Rajdeep Anand, Anurag Jain, Jampani Madhusudana Rao
  • Patent number: 6720464
    Abstract: Octafluoropropane is produced by a process comprising a step (1) of reacting hexafluoropropene with hydrogen fluoride in a gas phase at a temperature of from 150 to 450° C. in the presence of a fluorination catalyst to obtain 2H-heptafluoropropane and a step (2) of reacting 2H-heptafluoropropane obtained in step (1) with fluorine gas in a gas phase at a temperature of from 250 to 500° C. in the absence of a catalyst to obtain octafluoropropane. High-purity octafluoropropane is obtained which can be used in a process for producing a semiconductor device.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: April 13, 2004
    Assignee: Showa Denko K.K.
    Inventors: Hiromoto Ohno, Toshio Ohi
  • Publication number: 20040030204
    Abstract: Process for obtaining a hydrofluoroalkane which is purified of organic impurities, according to which the hydrofluoroalkane containing organic impurities is subjected to at least one purification treatment chosen from
    Type: Application
    Filed: May 12, 2003
    Publication date: February 12, 2004
    Inventors: Vincent Wilmet, Francine Janssens, Lionel Casaubon Seignour, Philippe Krafft, Alain Lambert, Olivier Buyle
  • Publication number: 20040024271
    Abstract: Process for the preparation of a hydro(chloro)fluoroalkane according to which a halogenated precursor of the hydro(chloro)fluoroalkane is reacted with hydrogen fluoride in the presence of a catalyst comprising chromium (Cr) and at least one other metal selected from the group consisting of aluminium, barium, bismuth, calcium, cerium, copper, iron, magnesium, strontium, vanadium and zirconium.
    Type: Application
    Filed: November 25, 2002
    Publication date: February 5, 2004
    Inventors: Vincent Wilmet, Francine Janssens
  • Patent number: 6686509
    Abstract: A method for producing an &agr;,&agr;-difluorocycloalkane at high purity with good efficiency, which comprises a step of treating a fluorocycloalkene with hydrogen fluoride wherein the fluorocycloalkene has one fluorine atom directly bonded to a carbon atom of carbon—carbon unsaturated double bond, more preferably, a step of directly adding the hydrogen fluoride to a reaction mixture obtained by treating the cycloalkanone with the de-oxygen fluorinating agent.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: February 3, 2004
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kouki Fukumura, Hiroshi Sonoda, Hidetoshi Hayashi, Masahiko Kusumoto
  • Publication number: 20040019244
    Abstract: 1,1,1,3,3-pentafluoropropane is produced by reaction between 1,1,1,3,3-pentachloropropane and hydrogen fluoride in the presence of a hydrofluorination catalyst. The 1,1,1,3,3-pentachloropropane may advantageously be obtained by reaction between vinyl chloride and tetrachloromethane in the presence of a telomerization catalyst and of a nitrile.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 29, 2004
    Inventors: Vincent Wilmet, Francine Janssens, Jean-Paul Schoebrechts
  • Patent number: 6673264
    Abstract: The invention relates to azeotropic and azeotrope-like mixtures of 1,1,1,3,3-pentafluorobutane (HFC-365) and hydrogen fluoride and a process for separating the azeotrope-like mixtures. The compositions of the invention are useful as an intermediate in the production of HFC-365. The latter is useful as a nontoxic, zero ozone depleting fluorocarbon useful as a solvent, blowing agent, refrigerant, cleaning agent and aerosol to propellant.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: January 6, 2004
    Assignee: Honeywell International Inc.
    Inventors: Hang T. Pham, Rajiv R. Singh, Hsueh S. Tung
  • Patent number: 6660893
    Abstract: A process for separating and recovering hydrogen fluoride from a mixture with an organic compound especially a fluorine-containing compound by extraction with a solution of an alkali metal fluoride in hydrogen fluoride, phase separation and recovery. A process for producing a fluorine-containing organic compound by fluorinating a starting material with hydrogen fluoride and similarly recovering hydrogen fluoride from the product stream. The solution may be anhydrous or aqueous.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: December 9, 2003
    Assignee: Ineca Fluor Holdings Limited
    Inventors: Paul Nicholas Ewing, Charles John Shields, Christopher Roberts
  • Patent number: 6639115
    Abstract: The invention relates to the synthesis of difluoromethane by gas-phase catalytic fluorination of methylene chloride. To lengthen the lifetime of the catalyst the operation is carried out in the presence of chlorine.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: October 28, 2003
    Assignee: Atofina
    Inventors: Benoit Requieme, Sylvain Perdrieux, Bernard Cheminal, Eric Lacroix, Andre Lantz
  • Patent number: 6635790
    Abstract: The subject of the invention is a continuous process for the manufacture of difluoromethane (F32) from methylene chloride (F30) and hydrogen fluoride in the presence of chlorine, in the gas phase, over a fluorination catalyst. According to the invention, the gas flow exiting from the reactor is subjected to a distillation in order to separate, at the top, a flow containing virtually all the HCl and at least 90% of the F32 produced by the reaction and, at the bottom, a flow containing at least 90% of the unconverted reactants (F31, F30 and HF) and the latter flow is recycled directly to the reactor, without any purification operation.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: October 21, 2003
    Assignee: Atofina
    Inventors: Dominique Garrait, Emmanuel Guiraud
  • Patent number: 6555086
    Abstract: Processes for separating and recovering hydrogen fluoride from a gaseous mixture of an organic compound and hydrogen fluoride are disclosed. The processes include contacting the gaseous mixture with a solution of an alkali metal fluoride in hydrogen fluoride, separating a gas phase depleted in hydrogen fluoride and containing the organic compound from a liquid phase, and recovering hydrogen fluoride from the liquid phase.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: April 29, 2003
    Assignee: Ineos Fluor Holdings Limited
    Inventors: Paul Nicholas Ewing, Charles John Shields, Robert Elliott Low
  • Patent number: 6548720
    Abstract: A process is disclosed for producing the pentfluropropenes of the formula CF3CX═CF2, where X is H or Cl. The process involves hydrodehalogenating CF3CCl2CF3 with hydrogen at an elevated temperature in the vapor phase over a catalyst comprising an elemental metal, metal oxide, metal halide and/or metal oxyhalide (the metal being copper, nickel, chromium and the halogen of said halides and said oxyhalides being fluorine and/or chlorine. Processes for producing the hydrofluorocarbons CF3CH2CHF2, CF3CHFCF3 and CF3CH2CF3 are also disclosed which involve (a) hydrodehalogenating CF3CCl2CF3 with the hydrogen as indicated above to produce a product comprising CF3CCl═CF2, CF3CH═CF2, HCl and HF; and (b) either reacting the CF3CCl═CF2 and/or CF3CH═CF2 produced in (a) in the vapor phase with hydrogen to produce CF3CH2CHF2, reacting CF3CCl═CF2 produced in (a) with HF to produce CF3CHFCF3, or reacting the CF3CH═CF2produced in (a) with HF to produce CF3CH2CF3.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: April 15, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: William H. Manogue, V. N. Mallikarjuna Rao, Allen Capron Sievert, Steven H. Swearingen
  • Patent number: 6521199
    Abstract: Hydrogen fluoride adducts and ammonium fluorides are used for fluorinating acid chlorides and halocarbon compounds such as chloroalkanes or chloronated ethers. The used adducts can be regenerated and then reused in the fluorination reactions.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: February 18, 2003
    Assignee: Solvay Fluor und Derivate GmbH
    Inventors: Max Braun, Stefan Palsherm
  • Publication number: 20020183569
    Abstract: A process for the preparation of 142 is provided, wherein 140 is fluorinated in the gas phase with HF in the presence of a fluorination catalyst. 142 is a known foam blowing agent.
    Type: Application
    Filed: July 26, 2002
    Publication date: December 5, 2002
    Inventors: Michael S. Bolmer, Bin Chen, Maher Y. Elsheikh
  • Patent number: 6489523
    Abstract: The present invention intends to provide a process for producing CF3CF3 with good profitability using CF3CHF2 containing a compound having chlorine atom within the molecule, and use thereof. In the process of the present invention, a gas mixture containing CF3CHF2 and a compound having chlorine atom within the molecule is reacted with hydrogen fluoride in the presence of a fluorination catalyst, thereby converting CClF2CF3 as a main impurity into CF3CF3, and CF3CHF2 containing CF3CF3 is reacted with fluorine gas in the gaseous phase in the presence of a diluting gas.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: December 3, 2002
    Assignee: Showa Denko K.K.
    Inventors: Hiromoto Ohno, Kazunari Kaga, Toshio Ohi
  • Patent number: 6479718
    Abstract: An improved liquid phase process is provided for the fluorination of perchloroethylene to 1,1-dichloro-2,2,2-trifluoroethane in the presence of an antimony catalyst.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: November 12, 2002
    Assignee: Atofina Chemicals, Inc.
    Inventors: Maher Y. Elsheikh, Jonathan M. Tracy, John A. Wismer
  • Patent number: 6472573
    Abstract: A method of preparation for 1,1,1,3,3-pentafluoropropane (HFC-245fa) wherein the first process gives mainly 1,3,3,3-tetrafluoropropene (1234ze) by reacting 1-chloro-3, 3,3,-trifluoropropene (1233zd) with hydrogen fluoride in the gas phase and subsequently the second process gives 1,1,1,3,3-pentafluoropropane (HFC-245fa) by reacting 1,3,3,3-tetrafluoropropene (1234ze), separated as a component that does not contain hydrogen chloride from crude products obtained by the first process, with hydrogen fluoride in the gas phase. To provide a process that is capable of preparing economically HFC-245fa which does not require the separation of HFC-245fa and 1233zd.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: October 29, 2002
    Assignee: Daikin Industries, Ltd.
    Inventors: Akinori Yamamoto, Noriaki Shibata, Tatsuo Nakada, Takashi Shibanuma
  • Patent number: 6452057
    Abstract: Halohydrocarbons comprising at least 3 carbon atoms are obtained by batchwise reaction between a haloalkane and an olefin in the presence of a catalyst and a co-catalyst. The addition of at least some of the co-catalyst is carried out gradually. At least some of the co-catalyst is recovered with a view to its re-use.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: September 17, 2002
    Assignee: Solvay (Societe Anonyme)
    Inventors: Alain Lambert, Véronique Mathieu, Charles-Marie Anciaux
  • Patent number: 6437201
    Abstract: An improved process for the manufacture of CF3CHF2 by contacting 1,2-dichloro-1,1,2-trifluoroethane (CClF2CHClF) or 1-chloro-1,1,2,2-tetrafluoroethane (CHF2CClF2) or mixtures of CF3CHCl2 and CClF2CHClF or mixtures of CF3CHClF and CHF2CClF2 with HF in the presence of a Cr2O3 catalyst prepared by pyrolysis of ammonium dichromate, the reaction being conducted under controlled conditions whereby the production of CF3CHF2 is maximized, and the formation of chloropentafluoroethane (CF3CClF2) and other perhalo derivatives is minimized. The subject hydrogen-containing compound is useful as a blowing agent, propellant, refrigerant, fire extinguishing agent, or sterilant carrier gas.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: August 20, 2002
    Assignee: Ineos Fluor Holdings Limited
    Inventors: Paul Nicholas Ewing, Richard Llewellyn Powell, Michael Anthony Davies, Christopher John Skinner
  • Patent number: 6433233
    Abstract: A method of preparing pentafluoroethane wherein chlorine-containing carbon compounds are fluorinated in the presence of chromium catalysts that are in an amorphous state and wherein the main component is chromium compounds with the addition of at least one metal element selected from the group composed of indium, gallium, cobalt, nickel, zinc and aluminum and the average valence of the chromium in said chromium compounds is not less than +3.5 but not more than +5.0. And said chromium catalysts and a preparation method thereof. A method of preparing pentafluoroethane wherein the total yield of chlorofluoroethane by-products can be decreased without significantly deteriorating the generation activity of the pentafluoroethane and compounds which can be recycled in the reaction system. And to provide catalysts for this fluorination and a preparation method thereof.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: August 13, 2002
    Assignee: Daikin Industries, Ltd.
    Inventors: Takashi Kanemura, Takashi Shibanuma
  • Patent number: 6403524
    Abstract: A chromia-based fluorination catalyst in which the chromia is at least partially crystalline and which may contain a zinc or a compound thereof, the production of the catalyst by sintering amorphous chromia and its use in fluorination processes.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: June 11, 2002
    Assignee: Imperial Chemical Industries PLC
    Inventors: John David Scott, Michael John Watson, Graham Ramsbottom
  • Patent number: 6403847
    Abstract: One or more materials selected from 1,1,1,3,3-pentachloropropane, 1,1,3,3-tetrachloropropene and 1,3,3,3-tetrachloropropene are used as the specific materials described above. Before submitting the materials and HF to a fluorination reaction, almost all water is removed from them. To continuously manufacture useful intended products efficiently as well as to prevent deactivation of the catalyst and the accumulation of organic substances with high boiling points when manufacturing said useful 1,1,1,3,3-pentafluoropropane and/or 1-chloro-3,3,3-trifluoropropene, by fluorinating the specific materials with HF in the presence of a catalyst.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: June 11, 2002
    Assignee: Daikin Industries Ltd.
    Inventors: Tatsuo Nakada, Takashi Shibanuma, Noriaki Shibata
  • Patent number: 6399841
    Abstract: Hydrogen fluoride is separated from its mixtures with 1,1,1,3,3-pentafluorobutane by extraction using an organic solvent containing a 1,1,1,3,3-chloro(fluoro)butane.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: June 4, 2002
    Assignee: Solvay (Societe Anonyme)
    Inventors: Alain Lambert, Vincent Wilmet
  • Patent number: 6392106
    Abstract: A process for producing 1,1,1,2,2-pentafluoroethane by fluorinating with hydrogen fluoride at least one of 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane as a starting material, the process being characterized by separating the reaction mixture resulting from the fluorination into a product portion A mainly containing 1,1,1,2,2-pentafluoroethane and a product portion B mainly containing 2,2-dichloro-1,1,1-trifluoroethane, 2-chloro-1,1,1,2-tetrafluoroethane and hydrogen fluoride, removing a fraction mainly containing 2,2-dichloro-1,1,1,2-tetrafluoroethane from the product portion B, and recycling the rest of the product portion B as part of feedstocks for fluorination. According to the process of the invention, the amount of CFC-115 contained in the target HFC-125 can be remarkably reduced through a simplified procedure.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: May 21, 2002
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoru Kono, Toshikazu Yoshimura, Takashi Shibanuma
  • Patent number: 6376727
    Abstract: Disclosed are azeotropic compositions comprising CF3CHFCF3 and HF. Also disclosed are compositions and a process for producing compositions comprising (c1) CF3CHFCF3, CF3CH2CF3, or CHF2CH2CF3, and (c2) at least one saturated halogenated hydrocarbon and or ether having the formula: CnH2n+2−a−bClaFbOc wherein n is an integer from 1-4, a is an integer from 0-2n+1, b is an integer from 1-2n+2a, and c is 0 or 1, provided that when c is 1 then n is an integer from 2-4, and provided that component (c2) does not include the selected component (c1) compound, wherein the molar ratio of component (c2) to component (c1) is between about 1:99 and a molar ratio of HF to component (c1) in an azeotrope or azeotrope-like composition of component (c1) with HF.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: April 23, 2002
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: V. N. Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 6369285
    Abstract: Halohydrocarbons containing at least 3 carbon atoms are obtained by reaction between a haloalkane and an olefin in the presence of a catalyst in a reaction medium which is essentially free of water.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 9, 2002
    Assignee: Solvay (Societe Anonyme)
    Inventors: Véronique Mathieu, Charles-Marie Anciaux
  • Patent number: 6339178
    Abstract: The subject of the invention is the manufacture of 1,1,1-trifluoroethane by fluorination or 1-chloro-1,1-difluoroethane with anhydrous hydrofluoric acid. The reaction is carried out in the liquid phase and in the presence of a fluorination catalyst.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: January 15, 2002
    Assignee: Atofina
    Inventors: Andre Lantz, Sylvain Perdrieux, Dominique Garrait, Laurent Wendlinger
  • Patent number: 6329560
    Abstract: A method for producing a hydrogen-containing fluorinated hydrocarbon includes supplying HF to a gap between an inner reactor made of a material resistant to the reaction and an outer container made of a material resistant to HF; supplying HF to the inner reactor; supplying a halogenated hydrocarbon selected from a chlorinated alkene and a hydrogen-containing chlorinated alkane to the inner reactor; and reacting HF with halogenated hydrocarbon in the presence of a fluorination catalyst in the inner reactor to obtain the reaction product containing the hydrogen-containing fluorinated hydrocarbon.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: December 11, 2001
    Assignee: Daikin Industries, Ltd.
    Inventors: Tatsuo Nakada, Noriaki Shibata, Takashi Shibanuma
  • Patent number: 6329559
    Abstract: A process is disclosed for the manufacture of CF3CF═CF2, and optionally a least one compound selected from CF3CH2CF3 and CF3CHFCHF2. The process involves contacting a reactor feed including a precursor stream of at least one halogenated propane of the formula CX3CH2CHyX(3−y) and/or halogenated propene of the formula CX3CH═CHyX(2−y), where each X is Cl or F and y is 0, 1 or 2 (provided that the average fluorine content of the precursor stream is no more than 5 fluorine substituents per molecule) with HF and Cl2 in a chlorofluorination reaction zone containing a fluorination catalyst and operating at a temperature between about 150° C. and 400° C.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: December 11, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Allen Capron Sievert, V. N. Mallikarjuna Rao, Francis J. Walczak
  • Patent number: 6281395
    Abstract: A process is disclosed for the manufacture of CF3CHFCF3 containing less than 0.01 ppm (CF3)2C═CF2. The process involves (a) contacting hexafluoropropene in the vapor phase at a temperature of less than about 260° C. with hydrogen fluoride in the presence of a selected fluorination catalyst or produce a product containing less than 10 parts (CF3)2C═CF2 per million parts of CF3CHFCF3; and (b) treating the product of (a) as necessary to remove excess (CF3)2C═CF2. Suitable catalysts include: (i) an activated carbon treated to contain from about 0.1 to about 10 weight % added alkali or alkaline earth metals, (ii) three dimensional matrix porous carbonaceous materials, (iii) supported metal catalysts comprising trivalent chromium, and (iv) unsupported chrome oxide prepared by the pyrolysis of (NH4)2Cr2O7.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: August 28, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mario Joseph Nappa, V. N. Mallikarjuna Rao, Allen Capron Sievert
  • Patent number: 6274780
    Abstract: A process is disclosed for changing the fluorine content of halogenated hydrocarbons containing from 1 to 6 carbon atoms, in the presence of a multiphase catalyst. The process involves producing the catalyst by heating a single phase solid catalyst precursor having the formula (NH3)6Cr2−xMxF6 (where x is in the range of 0.1 to 1 and M is at least one metal selected from the group consisting of Al, Sc, V, Fe, Ga and In) to about 400° or less to produce a multiphase composition wherein a phase containing crystalline M fluoride is homogeneously dispersed with a phase containing chromium fluoride. Also disclosed are multiphase catalyst compositions consisting essentially of chromium fluoride and a crystalline fluoride of at least one metal selected from the above group (provided the atom percent of Cr is at least equal to the atom percent of the crystalline fluoride metals). Phases of the crystalline fluorides are homogeneously dispersed with phases of the chromium fluoride.
    Type: Grant
    Filed: July 9, 1996
    Date of Patent: August 14, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: V. N. Mallikarjuna Rao, Munirpallam A. Subramanian
  • Patent number: 6242659
    Abstract: The invention relates to the synthesis of difluoromethane by gas-phase catalytic fluorination of methylene chloride. To lengthen the lifetime of the catalyst the operation is carried out in the presence of chlorine.
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: June 5, 2001
    Assignee: Elf Atochem, S.A.
    Inventors: Benoit Requieme, Sylvain Perdrieux, Bernard Cheminal, Eric Lacroix, Andre Lantz