For Fuel Use Only Patents (Class 585/14)
  • Patent number: 8779224
    Abstract: An integrated process for producing gasoline blending components and aromatic hydrocarbons which comprises: (a) contacting a lower alkane feed with an aromatic hydrocarbon conversion catalyst to produce an aromatic reaction product mixture which is comprised of benzene and/or toluene and/or xylene, C9 aromatic products, C10 aromatic products including naphthalene and, optionally, C11+ aromatic products, (b) separating and recovering the aromatic reaction product mixture, (c) separating and recovering benzene, (d) optionally separating recovering toluene and/or xylene, and (e) separating and recovering the C9 aromatic products and the C10 aromatic products which boil at a lower temperature than naphthalene from the naphthalene and the C10 aromatic reaction products which boil at a higher temperature than naphthalene and any C11+ aromatic products.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: July 15, 2014
    Assignee: Shell Oil Company
    Inventors: Yajnanarayana Halmuthur Jois, Ann Marie Lauritzen, Ajay Madhav Madgavkar
  • Publication number: 20140194657
    Abstract: A computer implemented blend control system and method for preparation of a hydrocarbon blend from a plurality of components drawn from respective component tanks have been disclosed. The system, in accordance with the present disclosure includes at least one sensing and analyzing means adapted to sense and analyze a first attribute of at least one of the components for obtaining first attribute data. The system further includes, at least one optimizing means having a data storage means for storing attribute based model data. The optimizing means receives the first attribute data and transmits the received first attribute data to a comparator means which computes an optimized proportion data between each of the component streams to enable selective drawing of each of the component streams in accordance with the optimized proportion data for preparing the hydrocarbon blend.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 10, 2014
    Applicant: Reliance Industries Limited
    Inventors: Anil Wadhwa, Ashish Ranjan Jha, Chandra Saravanan, Asit Kumar Das, Pinakiranjan Sankarprasad Patra, Sukumar Mandal, Praveen Kumar Chinthala, Gopal Ravichandran, Sudhirkumar Raojibhai Patel, Anand Raj Rajan, Ashok Swamisharan Pathak, Saumya Srivastava
  • Patent number: 8772557
    Abstract: Processes are disclosed that achieve a high conversion of lignin to aromatic hydrocarbons, and that may be carried out without the addition of a base. Depolymerization and deoxygenation, the desired lignin convention steps to yield aromatic hydrocarbons, are carried by contacting a mixture of lignin and a solvent (e.g., a lignin slurry) with hydrogen in the presence of a catalyst. A preferred solvent is a hydrogen transfer solvent such as a single-ring or fused-ring aromatic compound that beneficially facilitates depolymerization and hinders coke formation. These advantages result in favorable overall process economics for obtaining fuel components and/or chemicals from renewable sources.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: July 8, 2014
    Assignee: UOP LLC
    Inventors: John Qianjun Chen, Mark Blaise Koch
  • Publication number: 20140187828
    Abstract: A moderate fraction of a carbohydrate derived component, and a kerosene composition comprising the moderate fraction, the moderate fraction having at least one C4+ compound, wherein: the moderate fraction exhibits: a mean percentage of 99% or more biobased material, as determined by C14 testing; and, a final boiling point in the range of from 200 to 320° C.; and, the moderate fraction comprises: a first quantity of one or more branched carbohydrate derived C4+ alkanes; a second quantity of one or more straight chain carbohydrate derived C4+ alkanes; a concentration of one or more substituted carbohydrate derived C5+ cycloalkanes comprising substituents selected from the group consisting of branched C3-4 alkyls and straight chain C1-4 alkyls, at least some of the substituted carbohydrate derived C5+ cycloalkanes comprising fused cycloalkanes.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 3, 2014
    Applicants: VIRENT, INC., SHELL OIL COMPANY
    Inventors: JOANNA MARGARET BAULDREAY, PAUL GEORGE BLOMMEL, RANDY DOUGLAS CORTRIGHT, RICHARD JOHN PRICE
  • Publication number: 20140187827
    Abstract: The present invention describes a method of making a jet fuel composition comprising: providing a mineral-based kero/jet-type distillate component having certain enumerated physico-chemical properties, typically an off-spec jet fuel; providing a deoxygenated and dewaxed renewable component derived from triglycerides and/or fatty acids and having an isoparaffin to normal paraffin ratio from about 2:1 to about 6:1 and an aromatics content less than about 1 vol %; and blending from about 75 vol % to about 97 vol % of the mineral-based distillate components with from about 3 vol % to about 25 vol % of the renewable component to form an on-spec blended jet fuel composition.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 3, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David J. Abdallah, Dennis H. Hoskin, Roger G. Gaughan, Paul P. Wells, Mike T. Noorman, Gary James Johnston, Marc-Andre Poirier, Gregory P. Rockwell
  • Patent number: 8766022
    Abstract: A method for increasing the cetane number of a fuel composition containing a Fischer-Tropsch derived fuel component, in order to reach a target cetane number X, is provided by adding to the composition a concentration c of an ignition improver, wherein c is lower than the concentration which theory would predict needed to be added in order to achieve the target. The ignition improver is preferably 2-ethylhexyl nitrate and the fuel composition suitably a diesel or kerosene fuel. A fuel composition for use in a compression ignition engine, which has a cetane number of 85 or greater, and contains a Fischer-Tropsch derived fuel component and an ignition improver is also disclosed.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: July 1, 2014
    Assignee: Shell Oil Company
    Inventors: Richard Hugh Clark, Richard James Stradling, Robert Wilfred Matthews Wardle
  • Patent number: 8754274
    Abstract: The present invention concerns a procedure to produce bio-fuels of natural origin from organic wastes. In particular the present invention concerns a procedure to obtain bio-fuels starting from the organic fraction of waste comprising a phase of extraction with a solvent of said organic fraction and a separation of said bio-fuel from said solvent.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: June 17, 2014
    Assignee: Università delgi Studi di Milano
    Inventor: Fabrizio Adani
  • Patent number: 8747491
    Abstract: A fuel composition having a boiling range of between 95 to 440 degrees Fahrenheit wherein the fuel composition has (a) a total sum of n-paraffins and naphthenes content of at least 7 volume percent.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: June 10, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: William J. Cannella, Vittorio Manente
  • Patent number: 8748678
    Abstract: A synthetic fuel formula using a blend of High Density Synthetic (HDS) (e.g. Decalin and Tetralin), and Low Density Synthetic (LDS) (e.g. Synthetic Paraffinic Kerosene—SPK) is disclosed. This HDS and LDS blend has been shown to be useful as a jet, rocket and diesel fuel of standard density, and under low temperature conditions. The inventions described herein relate to 100% synthetic hydrocarbon fuels derived from various carbonaceous materials such as, but not limited to, biomass, municipal waste, natural gas, and coal. This 100% synthetic fuel can be universally used for both jet and diesel fuels. It meets Joint Battlefield Use Fuel of the Future (J-BUFF), or Single Battlefield Fuel (SBF) strategic requirements. The commercial advantage of the present invention is that it can be prepared from commercial available fuel stocks or co-processed using currently available chemical processes.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 10, 2014
    Inventors: Roy Cameron Knight, Lori L. Onjukka, Rolf L. Onjukka, Yvonne Mae Parrack
  • Patent number: 8748679
    Abstract: A method for producing synthetic fluids from TGFA's harvested from genetically modified seed crops in which all of the fatty acids in the TGFA's from the seeds of a crop have the same carbon atom chain length, preferably C12 or C14, and the synthetic fluids produced by the method. The TGFA's are hydroprocessed to cleave the fatty acids from the glycol backbone and to hydrodeoxygenate and isomerize the fatty acids to form single carbon chain length isoparaffins having a controlled degree of branching with minimum cracking. Controlled mixtures of hydrocarbon components, in which each hydrocarbon component of the mixture has a different single carbon atom chain length, are produced.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: June 10, 2014
    Assignee: Accelergy Corporation
    Inventor: Rocco A. Fiato
  • Patent number: 8748677
    Abstract: Methods and systems for blending multiple batches of mixed hydrocarbons into fuel streams downstream of the refinery are provided that do not compromise the octane value of the fuel and do not cause the volatility of the fuel to exceed volatilities imposed by government regulation.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: June 10, 2014
    Assignee: Sunoco Partners Marketing & Terminals L.P.
    Inventor: Keith D. Buchanan
  • Patent number: 8741126
    Abstract: The subject of the present disclosure is an aviation gasoline composition that is lead-free and free of oxygenated compounds meeting the specifications of the ASTM standard comprising isopentane, isooctane, and (alkyl)aromatics. The aviation gasoline composition according to the disclosure may be obtained simply and economically from a mixture of hydrocarbon bases usually available in a refinery.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: June 3, 2014
    Assignee: Total Marketing Services
    Inventor: Pascale Demoment
  • Publication number: 20140135539
    Abstract: An olefinic composition has a moderate concentration of Type 2 C8 olefins. The oligomerate composition has hydrocarbon molecules with minimal branching which make excellent diesel and can also be readily cracked to propylene. Consequently, oligomerate product can be sent to the diesel pool or fed or recycled to an FCC unit to increase production of propylene.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 15, 2014
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Wayne E. Rathbun, Todd M. Kruse, Hung A. Pham
  • Publication number: 20140130403
    Abstract: Methods and systems for blending multiple batches of mixed hydrocarbons into fuel streams downstream of the refinery are provided that do not compromise the octane value of the fuel and do not cause the volatility of the fuel to exceed volatilities imposed by government regulation.
    Type: Application
    Filed: February 21, 2013
    Publication date: May 15, 2014
    Applicant: Sunoco Partners Butane Blending LLC
    Inventor: Keith D. Buchanan
  • Patent number: 8722947
    Abstract: The present invention provides a gas oil composition for use in a diesel engine containing an FT synthetic base oil and having a sulfur content of 5 ppm by mass or less, an oxygen content of 100 ppm by mass or less, a bulk modulus of 1250 MPa or greater and 1450 MPa or less, a saybolt color of +22 or greater, a lubricity of 400 ?m or less, an initial boiling point of 140° C. or higher and an end point of 380° C. or lower in distillation characteristics, wherein: (1) the cetane number in a fraction range of lower than 200° C. is 20 or greater and less than 40; (2) the cetane number in a fraction range of 200° C. or higher and lower than 280° C. is 30 or greater and less than 60; and (3) the cetane number in a fraction range of 280° C. or higher is 50 or greater.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: May 13, 2014
    Assignee: Nippon Oil Corporation
    Inventor: Hideaki Sugano
  • Publication number: 20140128644
    Abstract: An unleaded aviation fuel blend. The fuel blend is provided by blending an unleaded aviation gasoline base fuel which may include iso-octane and iso-pentane, and an effective amount of a selected alkyl benzene to improve the functional engine performance to avoid harmful detonation sufficient to meet or exceed selected standards for detonation performance requirements in full scale aircraft piston spark ignition engines designed for use with Grade 100LL avgas. Advantageous alkylated benzenes include those having a meta-ring position between alkyl groups. Alkyl groups may be provided at least in part by methyl groups. In an embodiment, the alkyl benzene may include 1,3-dimethylbenzene. In an embodiment, two or more alkylated benzenes may be provided. In an embodiment, 1,3,5-trimethylbenzene may be provided. Suitable alkylated benzenes may include a mixture of xylene isomers. Selected aromatic amines, such as m-toluidine, may also be added to increase motor octane number.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Inventor: George W. BRALY
  • Patent number: 8715371
    Abstract: A domestic heating fuel composition, comprising (a) a paraffinic hydrocarbon composition comprising at least 90 wt % normal paraffins and/or iso-paraffins comprising from 6 to 24 carbon atoms, wherein the weight ratio of iso-paraffins to normal-paraffins is below 6 to 1, and (b) at least one compound having a C/H molar ratio of above 0.8 and soluble in component (a) at ambient conditions, wherein the component (b) is present in the fuel composition in an amount effective to increase the responsiveness of a yellow/red flame detector to a required threshold level.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: May 6, 2014
    Assignee: Shell Oil Company
    Inventors: Christiane Behrendt, Ingrid Maja Guenther, Frank Juergen Haase, Valeria Loreti
  • Patent number: 8715374
    Abstract: A methodology for separation and subsequent handling of FAME fractions of biodiesel, comprising of the steps, providing a biodiesel containing several different FAME fractions mixed together, the biodiesel being at a first temperature wherein at the first temperature none of the FAME fractions of the biodiesel have crystallized; bringing the biodiesel to a first crystallizing temperature, wherein when the biodiesel reaches the first crystallizing temperature, a first FAME fraction remains in a non-crystallized, liquid phase while the remaining FAME fractions crystallize; and separating the liquid first FAME fraction from the remaining crystallized FAME fractions.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: May 6, 2014
    Assignee: Green Fuels Research, Ltd.
    Inventor: Duane Johnson
  • Publication number: 20140116367
    Abstract: Unleaded aviation gasoline. An aviation gasoline fuel blend includes an unleaded aviation gasoline base fuel, with an effective amount of selected alkyl benzenes to improve the functional engine performance to avoid harmful detonation sufficient to meet or exceed selected standards for detonation performance requirements in full scale aircraft piston spark ignition engines designed for use with Grade 100LL avgas. Selected alkyl benzenes such as 1,3-dimethylbenzene, and/or 1,3,5-trimethylbenzene, or other mixtures thereof, may be used. Suitable alkylated benzenes may include a mixture of xylene isomers. Aromatic amines, such as m-toluidine, may also be added to increase MON. Base fuels may be a high quality aviation alkylate, or may be a commercial iso-octane, or a mixture of high quality aviation alkylate enhanced by commercial iso-octane, and may include iso-pentane or butane or both iso-pentane and butane in sufficient quantity to provide appropriate vapor pressure for the final fuel blend.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 1, 2014
    Inventor: George W. BRALY
  • Patent number: 8702822
    Abstract: Methods and reactors for producing a fuel are disclosed herein. In some embodiments, the method uses a biomass feedstock and alkane and/or alcohol feedstock, which can be contacted with a metal-containing catalyst to form products including a bio-oil. In some embodiments, oxygen-containing functional groups can be removed from a bio-oil using one or more zeolite thin films.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 22, 2014
    Assignee: Regents of the University of Minnesota
    Inventors: Aditya Bhan, Michael Tsapatsis, Lanny D. Schmidt, Paul J. Dauenhauer
  • Patent number: 8704018
    Abstract: We provide an extracted conjunct polymer naphtha (45), comprising a hydrogenated conjunct polymer naphtha, from a used ionic liquid catalyst, having a final boiling point less than 246° C. (475° F.), a Bromine Number of 5 or less, and at least 30 wt % naphthenes. We also provide a blended alkylate gasoline (97) comprising the extracted conjunct polymer naphtha (45), and integrated alkylation processes to make the extracted conjunct polymer naphtha (45) and the blended alkylate gasoline (97). We also provide a method to analyze alkylate products, by determining an amount of methylcyclohexane in the alkylate products (80).
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye Kyung Cho Timken, Izadyar Dalvand, Douglas Robert Cyr, Michael Tung-hai Cheng, Huping Luo, Shawn Shlomo Winter, Michael Sean Driver, Donald Henry Mohr
  • Patent number: 8697924
    Abstract: Liquid fuel compositions comprising one or more C4+ compounds derived from a water soluble oxygenated hydrocarbon.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 15, 2014
    Assignees: Shell Oil Company, Virent, Inc
    Inventors: Joanna Margaret Bauldreay, Paul George Blommel, Randy Douglas Cortright, Richard John Price
  • Patent number: 8686202
    Abstract: The present invention provides high-octane fuel, and a method of producing same. These fuels may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100 LL aviation fuel (known as AvGas), as well as high-octane, rocket, diesel, turbine engine fuels, as well as two-cycle, spark-ignited engine fuels.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: April 1, 2014
    Assignee: Swift Fuels, LLC
    Inventors: John J. Rusek, Mary-Louise R. Rusek, Jonathon D. Ziulkowski, Justin D. Zink
  • Patent number: 8686206
    Abstract: Synthetic fuels are produced from synthesis gas in a four-stage reactor system with a single recycle loop providing the requisite thermal capacity to moderate the high heat release of the reactions and to provide the reactants and reaction environments for the efficient operation of the process. The first stage converts a portion of the synthesis gas to methanol, the second stage converts the methanol to dimethylether, the third stage converts the methanol and dimethylether to fuel and the fourth stage converts the high melting point component, durene, and other low volatility aromatic components such as tri- and tetra-methylbenzenes to high octane branched paraffins.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: April 1, 2014
    Assignee: Primus Green Energy Inc.
    Inventors: Howard L. Fang, Moshe Ben-Reuven, Richard E. Boyle, Robert M. Koros
  • Patent number: 8674150
    Abstract: The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: March 18, 2014
    Assignee: Penn State Research Foundation
    Inventors: Ayusman Sen, Weiran Yang
  • Publication number: 20140073821
    Abstract: The present invention provides a method for producing a C heavy oil composition which unlikely forms sludge, has excellent ignitability and combustibility, and enable the stable operation of a combustion device such as an external combustion device, a diesel device, and a gas turbine device. The method of the present invention is comprises method for producing a C heavy oil composition with a bicyclic aromatic hydrocarbon content of 10 percent by volume or more and 45 percent by volume or less, comprising blending a cracked reformed base oil with a total aromatic content of 80 percent by volume or more and a 15° C. density of 0.90 to 1.20 g/cm3 in an amount of 1 percent by volume or more and 45 percent by volume or less on the basis of the total mass of the composition.
    Type: Application
    Filed: May 14, 2012
    Publication date: March 13, 2014
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yuta Mitsui, Katsuhiko Haji, Yasuyuki Iwasa, Shinichiro Yanagawa
  • Patent number: 8669405
    Abstract: More stable and valuable bio-oil compositions produced from biomasses are provided. Particularly, various embodiments of the present invention provide for a bio-oil composition that has chemical and physical properties that make it more cost effective and useful as a fuel without having to undergo deoxygenating processes such as hydrotreating.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: March 11, 2014
    Assignee: KiOR, Inc.
    Inventors: Maria Magdalena Ramirez Corredores, Vicente Sanchez, Xiaowei Tong
  • Patent number: 8669402
    Abstract: A fuel composition for a homogenous charge compression ignition engine includes a combination of a gasoline fuel and a diesel fuel, the combination having a derived cetane number of from about 19.9 to 45 as determined in accordance with ASTM method D6890. A method for making the fuel composition provides for blending presently available gasoline fuel and diesel fuel together in a ratio to obtain the desired fuel composition.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: March 11, 2014
    Assignees: ExxonMobil Research and Engineering Company, Caterpillar Inc.
    Inventors: Paul W. Bessonette, Charles H. Schleyer, Kevin P. Duffy
  • Publication number: 20140066671
    Abstract: The present invention provides high-octane fuel, and a method of producing same. These fuels may be formulated to have a wide range of octane values and energy, and may effectively be used to replace 100 LL aviation fuel (known as AvGas), as well as high-octane, rocket, diesel, turbine engine fuels, as well as two-cycle, spark-ignited engine fuels.
    Type: Application
    Filed: December 3, 2012
    Publication date: March 6, 2014
    Inventor: Swift Fuels, LLC
  • Patent number: 8663453
    Abstract: A crude product composition is provided comprising hydrocarbons that have a boiling range distribution between about 30° C. and 538° C. (1,000° F.) at 0.101 MPa, the hydrocarbons comprising iso-paraffins and n-paraffins with a weight ratio of the iso-paraffins to n-paraffins of at most 1.4.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: March 4, 2014
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Publication number: 20140046101
    Abstract: Catalytic processes for converting carboxylic acids obtained from biomass and other natural or industrial sources into paraffinic or olefinic hydrocarbons through decarboxylation, along with products formed from such hydrocarbons, in which the carbon chain length, the ratio of carbon-14 to carbon-12, and the ratio of odd number to even number of carbons in the chain are among factors which are indicative or otherwise useful for the detection of hydrocarbons formed by undergoing the claimed processes.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicant: University of Louisville Research Foundation, Inc.
    Inventors: Paul Ratnasamy, Sanjay Wagle, Gregory Dicosola
  • Patent number: 8648226
    Abstract: The present invention provides a process for producing gasoline components from syngas. Syngas is converted to one or more of methanol, ethanol, mixed alcohols, and dimethyl ether, followed by various combinations of separations and reactions to produce gasoline components with oxygenates, such as alcohols. The syngas is preferably derived from biomass or another renewable carbon-containing feedstock, thereby providing a biorefining process for the production of renewable gasoline.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 11, 2014
    Assignee: Range Fuels, Inc.
    Inventors: Shakeel H. Tirmizi, John D. Winter, David T. Gallaspy
  • Publication number: 20140039230
    Abstract: We provide an extracted conjunct polymer naphtha (45), comprising a hydrogenated conjunct polymer naphtha, from a used ionic liquid catalyst, having a final boiling point less than 246° C. (475° F.), a Bromine Number of 5 or less, and at least 30 wt % naphthenes. We also provide a blended alkylate gasoline (97) comprising the extracted conjunct polymer naphtha (45), and integrated alkylation processes to make the extracted conjunct polymer naphtha (45) and the blended alkylate gasoline (97). We also provide a method to analyze alkylate products, by determining an amount of methylcyclohexane in the alkylate products (80).
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: Hye Kyung Cho Timken, Izadyar Dalvand, Douglas Robert Cyr, Michael Tung-hai Cheng, Huping Luo, Shawn Shlomo Winter, Michael Sean Driver, Donald Henry Mohr
  • Patent number: 8628592
    Abstract: The present invention provides a gas oil composition that can achieve environment load reduction, low temperature properties and low fuel consumption all together and is suitably used in a winter season. The gas oil composition comprises an Ft synthetic base oil in an amount of 60 percent by mass or more on the basis of the total mass of the composition and has a sulfur content of 5 ppm by mass or less, an aromatic content of 10 percent by volume or less, an oxygen content of 100 ppm or less, an end point of 360° C. or lower, an insoluble content after an oxidation stability test of 0.5 mg/100 mL or less, an HFRR wear scar diameter (WS1.4) of 400 ?m or smaller and a specific relation in normal paraffin contents and the total content thereof.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 14, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventor: Hideaki Sugano
  • Patent number: 8624068
    Abstract: The present invention provides a gas oil composition for use in a diesel engine with a geometric compression ratio of 16 or less, equipped with a supercharger and an EGR, containing an FT synthetic base oil and having a sulfur content of 5 ppm by mass or less, an oxygen content of 100 ppm by mass or less, a bulk modulus of 1250 MPa or greater and 1450 MPa or less, a saybolt color of +22 or greater, a lubricity of 400 ?m or less, an initial boiling point of 140° C. or higher and an end point of 380° C. or lower in distillation characteristics, and the following characteristics (1) to (3) in each fraction range wherein: (1) the cetane number in a fraction range of lower than 200° C. is 40 or greater and less than 60; (2) the cetane number in a fraction range of 200° C. or higher and lower than 280° C. is 60 or greater and less than 80; and (3) the cetane number in a fraction range of 280° C. or higher is 50 or greater.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: January 7, 2014
    Assignee: Nippon Oil Corporation
    Inventor: Hideaki Sugano
  • Patent number: 8623104
    Abstract: The present invention provides a gas oil composition that can achieve environment load reduction, low temperature properties and low fuel consumption all together and is suitably used in a winter season. The gas oil composition comprises an Ft synthetic base oil in an amount of 60 percent by mass or more on the basis of the total mass of the composition and has a sulfur content of 5 ppm by mass or less, an aromatic content of 10 percent by volume or less, an oxygen content of 100 ppm or less, an end point of 360° C. or lower, an insoluble content after an oxidation stability test of 0.5 mg/100 mL or less, an HFRR wear scar diameter (WS1.4) of 400 ?m or smaller and a specific relation in normal paraffin contents and the total content thereof.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: January 7, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventor: Hideaki Sugano
  • Patent number: 8623103
    Abstract: The present invention provides a gas oil composition that can achieve environment load reduction, low temperature properties and low fuel consumption all together and is suitably used in a winter season. The gas oil composition comprises an FT synthetic base oil in an amount of 60 percent by mass or more on the basis of the total mass of the composition and has a sulfur content of 5 ppm by mass or less, an aromatic content of 10 percent by volume or less, an oxygen content of 100 ppm or less, an end point of 360° C. or lower, an insoluble content after an oxidation stability test of 0.5 mg/100 mL or less, an HFRR wear scar diameter (WS1.4) of 400 ?m or smaller and a specific relation in normal paraffin contents and the total content thereof.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: January 7, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventor: Hideaki Sugano
  • Publication number: 20130340324
    Abstract: A fuel system (10) comprising a fluid blender (14) in fluid communication with a source of a first fuel composition and a source of a second fuel composition via at least one inlet (32, 34). The blender (14) is operable to receive at least the first fuel composition and/or second fuel composition via the at least one inlet (32, 34), and output a resultant fuel composition comprising the received fuel compositions via at least one outlet (36). The at least one outlet (36) is in fluid communication with an engine fuel injection device (38).
    Type: Application
    Filed: May 17, 2013
    Publication date: December 26, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventor: Peter SWANN
  • Patent number: 8613851
    Abstract: The present invention is directed to a crude product composition comprising hydrocarbons having a boiling range distribution of from 30° C. to 538° C., the crude product composition having, per gram of crude product composition, from 0.01 grams to 0.2 grams of hydrocarbons having a boiling range distribution of at most 204° C., where olefins comprise at least 0.02 grams per gram of the hydrocarbons having a boiling range distribution of at most 204° C., and from 0.000001 grams to 0.05 grams of hydrocarbons having a boiling range distribution of greater than 538° C.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 24, 2013
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Publication number: 20130333652
    Abstract: Disclosed is an alternative fuel composition derived from the conversion of biomass at an elevated temperature, with conversion optionally in the presence of a catalyst, which is capable of reducing, and thereby improving, a low temperature property of a distillate. A process is also disclosed for mixing such renewable composition with the distillate.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 19, 2013
    Applicant: KIOR, INC.
    Inventors: Jeffrey C. Trewella, Daniel J. Strope, John Kasbaum, Stephen J. McGovern, Vicente Sanchez
  • Publication number: 20130338384
    Abstract: The present invention provides a process for the release of lipids from lipid-containing microalgae feedstock, comprising heating the lipid-containing microalgae feedstock to a temperature of more than 80 to 120° C. and at a pressure of from 1 to 5 bar (absolute).
    Type: Application
    Filed: December 19, 2011
    Publication date: December 19, 2013
    Inventors: Karin Bus, Johannes Pieter Haan, Johannes Leendert Willem Cornelis Den Boestert, Jose Luis Bravo
  • Patent number: 8608938
    Abstract: The present invention is directed to a crude composition comprising hydrocarbons having a boiling range distribution of from 30° C. to 538° C., the crude composition having, per gram of crude composition, from 0.01 grams to 0.2 grams of hydrocarbon having a boiling range distribution of at most 204° C., where benzene comprises at most 0.005 grams per gram of the hydrocarbons having a boiling range distribution of at most 204° C., and from 0.000001 grams to 0.05 grams of hydrocarbons having a boiling range distribution of greater than 538° C.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: December 17, 2013
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Publication number: 20130331621
    Abstract: A liquid fuel formed by the mixture of toluene, meta-xylene and n-hexane, in proportions of between 50 and 70% of toluene, between 10 and 20% of meta-xylene and between 20 and 30% of n-hexane.
    Type: Application
    Filed: February 24, 2011
    Publication date: December 12, 2013
    Applicant: SPARKNUM INTERNATIONAL, S.L.
    Inventor: Luis David Andrade Moreno
  • Patent number: 8597493
    Abstract: The invention relates to a Fischer-Tropsch derived aviation fuel, which fuel is used either as a fuel on its own or as a component in an aviation fuel blend, said fuel having an iso:n paraffins mass ratio above 3, at least 0.1 mass % naphthenes, <0.01 mass % polyaromatics, and <0.5 mass % aromatics.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: December 3, 2013
    Assignee: Sasol Technology (Pty) Ltd
    Inventors: Carl Louis Viljoen, Vivien Louise Van Zyl, Ernst Hendrik Van Tonder
  • Patent number: 8597380
    Abstract: Methods and systems for blending multiple batches of mixed hydrocarbons into fuel streams downstream of the refinery are provided that do not compromise the octane value of the fuel and do not cause the volatility of the fuel to exceed volatilities imposed by government regulation.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 3, 2013
    Assignee: Sunoco Partners Marketing & Terminals L.P.
    Inventor: Keith D. Buchanan
  • Patent number: 8591126
    Abstract: A device connects to a male network connector of a network conduit, and connects to a female network connector of the network conduit. The female network connector is capable of communicating with the male network connector. The device also measures outputs of the male network connector and the female network connector.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: November 26, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock, Timothy E. Lawter, Robert H. Mills, Gary E. Myrland
  • Patent number: 8586806
    Abstract: A method comprising providing a fatty acyl mixture comprising: (i) a C10-C16 acyl carbon atom chain content of at least 30 wt. % wherein at least 80% of the C10-C16 acyl carbon atom chains are saturated; and (ii) a C18-C22 acyl carbon atom chain content of at least 20 wt. % wherein at least 50% of the acyl C18-C22 carbon atom chains contain at least one double bond; hydrolyzing the mixture to yield a quantity of C10-C16 saturated fatty acids and C18-C22 unsaturated fatty acids; separating the C10-C16 saturated fatty acids from the C18-C22 unsaturated fatty acids; hydrotreating the C10-C16 saturated fatty acids to yield a quantity of diesel fuel blendstock; oligomerizing at least some of the C18-C22 unsaturated fatty acids to yield a quantity of C36+ fatty acid oligomers; and hydrotreating the C36+ fatty acid oligomers to yield a quantity of C36+ alkanes.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 19, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 8586805
    Abstract: A method comprising the steps of providing a fatty acyl mixture comprising: (i) a C10-C16 acyl carbon atom chain content of at least 30 wt. % wherein at least 80% of the C10-C16 acyl carbon atom chains are saturated; and (ii) a C18-C22 acyl carbon atom chain content of at least 20 wt. % wherein at least 50% of the acyl C16-C22 carbon atom chains contain at least one double bond; hydrolyzing at least some of the mixture to yield a quantity of C10-C16 saturated fatty acids and C18-C22 unsaturated fatty acids; oligomerizing at least some of the C18-C22 unsaturated fatty acids to yield a quantity of C36+ fatty acid oligomers; separating at least some of the C10-C16 saturated fatty acids from the C36+ fatty acid oligomers.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 19, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 8581013
    Abstract: The present invention generally relates to a method for producing a naphtha product from a renewable feedstock. The method includes hydrotreating the renewable feedstock to produce a hydrotreating unit heavy fraction that includes n-paraffins, and hydrocracking the hydrotreating unit heavy fraction to produce a hydrocracking unit product that includes the naphtha product. The method also includes separating the naphtha fraction and optionally recycling the hydrocracking unit heavy fraction through the hydrocracking unit. The present invention also relates to a biorenewable naphtha product suitable for use as feed stock for steam crackers and catalytic reforming units, and for use as fuel, or fuel blend stock.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: November 12, 2013
    Assignee: Syntroleum Corporation
    Inventors: Ramin Abhari, H. Lynn Tomlinson, Gary Roth
  • Publication number: 20130291430
    Abstract: In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass. Ketene and ketonization chemistry along with hydrogenation reactions are used to synthesize fuels and chemicals. In another embodiment, ketene used to form fuels and chemicals may be manufactured from acetic acid which in turn can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc.
    Type: Application
    Filed: March 28, 2013
    Publication date: November 7, 2013
    Applicant: Pioneer Energy
    Inventors: John T. Henri, Jan Zygmunt, Mark Bergren, Robert Zubrin