Production Of Hydrocarbon Mixture From Refuse Or Vegetation Patents (Class 585/240)
  • Publication number: 20150027184
    Abstract: A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H2, CH4, CO, CO2, ammonia and hydrogen sulfide.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventors: Terry L. MARKER, Larry G. FELIX, Martin B. LINCK, Michael J. ROBERTS
  • Publication number: 20150031927
    Abstract: A fuel and method for conversion of sesquiterpenes to high density fuels. The sesquiterpenes can be either extracted from plants or specifically produced by bioengineered organisms from waste biomass. This approach allows for the synthesis of high performance renewable fuels.
    Type: Application
    Filed: November 14, 2012
    Publication date: January 29, 2015
    Inventors: Benjamin G. Harvey, Heather A. Meylemans
  • Patent number: 8940949
    Abstract: A process for the conversion of biomass to hydrocarbon products such as transportation fuels, kerosene, diesel oil, fuel oil, chemical and refinery plant feeds. The instant process uses a hydrocarbon or synthesis gas co-feed and hot pressurized water to convert the biomass in a manner commonly referred to as hydrothermal liquefaction.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: January 27, 2015
    Inventor: Gary Peyton Miller
  • Patent number: 8940060
    Abstract: Methods and apparatuses for forming a low-metal biomass-derived pyrolysis oil are provided. In an embodiment, a method for forming a low-metal biomass-derived pyrolysis oil includes washing biomass comprising a water-soluble metal component therein with wash water that is substantially free of water-soluble metals. The washed biomass and water containing water-soluble metal are separated after washing the biomass. The washed biomass is pyrolyzed in a pyrolysis process to form a pyrolysis vapor stream. A portion of the pyrolysis vapor stream is condensed to form a condensate. The wash water is derived from the washed biomass. In an embodiment of an apparatus, the apparatus comprises a washing stage, a biomass dryer, a pyrolysis reactor, a quenching system comprising a primary condenser and a secondary condenser, and a return line that connects the quenching system to the washing stage.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Lance Awender Baird, Stefan Muller, Barry A. Freel
  • Publication number: 20150024277
    Abstract: An object of the present invention is to provide a carbonaceous material for a non-aqueous electrolyte secondary battery having excellent output characteristics and exhibiting excellent cycle characteristics, and a negative electrode using the same. The problem described above is solved by a carbonaceous material for a non-aqueous electrolyte battery having a true density of 1.4 to 1.7 g/cm3, an atom ratio (H/C) of hydrogen atoms to carbon atoms of at most 0.1, as determined by elemental analysis, an average particle size Dv50 of 3 to 35 ?m, a ratio Dv90/Dv10 of 1.05 to 3.00, and a degree of circularity of 0.50 to 0.95.
    Type: Application
    Filed: February 6, 2013
    Publication date: January 22, 2015
    Inventors: Mayu Komatsu, Yasuhiro Tada, Naohiro Sonobe
  • Publication number: 20150020441
    Abstract: A preferred embodiment of the present invention is directed generally to a composition of matter and, more specifically, to a composition comprising a petroleum substitute produced from renewable, herbaceous plant-based sources through a solvent extraction process. The plant sources are typically hydrocarbon-bearing plants capable of producing significant quantities of liquid terpenes such that the process of extracting hydrocarbons from the plant material is economically viable. In a preferred embodiment of the invention, the plant species is Euphorbia tirucalli, a species that contains relatively large quantities of relatively low molecular weight hydrocarbons. A raw plant biomass is milled and formed into a batt of plant material having generally uniform properties. Naturally occurring hydrocarbons found in the plant material are then extracted using an organic solvent extraction process.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Applicant: PHYTOLEUM TECHNOLOGIES GROUP, L.L.C.
    Inventor: Stephen Daniel Matthews
  • Patent number: 8936927
    Abstract: Processes are provided for starting up of anaerobic, deep tank fermentation systems used in the anaerobic bioconversion of hydrogen and carbon monoxide in a gaseous substrate stream to oxygenated organic compounds such as ethanol. In the processes injectors using a motive liquid are used to introduce gas substrate into the deep tank fermentation reactor where at least one of: (i) adjusting the gas to liquid flow ratio through an injector, (ii) changing the rate of liquid flow through an injector, and (iii) adjusting the carbon monoxide mole fraction in the gas feed by admixture with at least one other gas, wherein the mass transfer of carbon monoxide to an aqueous menstruum in the reactor is controlled to obtain the robust growth of the microorganism while maintaining the carbon monoxide concentration below that amount which is unduly adverse to the microorganism.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 20, 2015
    Assignee: Coskata, Inc.
    Inventors: Robert Hickey, Richard E. Tobey, Shih-Perng Tsai
  • Patent number: 8936654
    Abstract: A biomass pyrolysis product is quenched by direct cooling with a cold quench fluid and initial product separation is performed based on boiling point and solubility in the quench fluid. A properly chosen quench fluid may act as a selective solvent, thus providing dilution of unstable precursors of pyrolytic lignin or other heavy by-products, and/or separation of certain undesirable pyrolysis oil components such as water and light acids.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: January 20, 2015
    Assignee: Phillips 66 Company
    Inventors: Alexandru Platon, Ronald E. Brown, Daren E. Daugaard
  • Patent number: 8932455
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 13, 2015
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard
  • Patent number: 8933281
    Abstract: Processes and reactor systems are provided for the conversion of oxygenated hydrocarbons to hydrocarbons, ketones and alcohols useful as liquid fuels, such as gasoline, jet fuel or diesel fuel, and industrial chemicals. The process involves the conversion of mono-oxygenated hydrocarbons, such as alcohols, ketones, aldehydes, furans, carboxylic acids, diols, triols, and/or other polyols, to C4+ hydrocarbons, alcohols and/or ketones, by condensation. The oxygenated hydrocarbons may originate from any source, but are preferably derived from biomass.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: January 13, 2015
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Paul G. Blommel
  • Patent number: 8933282
    Abstract: Methods, compositions and systems using isoprene from a bioisoprene composition derived from renewable carbon for production of a variety of hydrocarbon fuels, fuel additives, and additives for fine chemistry and other uses is described.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: January 13, 2015
    Assignee: Danisco US Inc.
    Inventor: Joseph C. McAuliffe
  • Patent number: 8933285
    Abstract: Methods are provided for producing a jet fuel composition from a feedstock comprising a natural oil. The methods comprise reacting the feedstock with a low-weight olefin in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product. The methods further comprise hydrogenating the metathesized product under conditions sufficient to form a jet fuel composition.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: January 13, 2015
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Melvin L. Luetkens, Jr., Steven A. Cohen, Chander Balakrishnan
  • Publication number: 20150011811
    Abstract: Disclosed is a system and method for cooling and relieving pressure of the bottom product produced by the fluidized-bed gasification of biomass, brown coal, or hard coal having a high ash content. With such a method and system, an economic solution for cooling and pressure expansion of the bottom product produced is to be ensured, which is achieved by the bottom product leaving the fluidized bed at a maximum of 1500° C. and a pressure of up 40 bar, being fed to an intermediate store, then being fed from the intermediate store to a pressure tank having a cooling system, and then being fed to a pressure release system.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 8, 2015
    Applicant: ThyssenKrupp Industrial Solutions AG
    Inventors: Domenico Pavone, Ralf Abraham, Dobrin Toporov
  • Publication number: 20150011809
    Abstract: A method for synthesizing cyclic hydrocarbons with linear hydrocarbon side chains from a renewable source, or biomass by naturally occurring or bioengineered fungal strains, or hydrodistillation of plants.
    Type: Application
    Filed: April 11, 2013
    Publication date: January 8, 2015
    Applicant: US GOVERNMENT AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventor: US Government As Represented By The Secretary Of The Navy
  • Patent number: 8927795
    Abstract: A process for controlling the simultaneous production of hydrocarbons with boiling points in both the diesel fuel range and the aviation fuel range from renewable feedstocks originating from plants or animals other than petroleum feedstocks is described. The hydrocarbon product can be adjusted by changing the feedstocks without requiring different process equipment.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: January 6, 2015
    Assignee: UOP LLC
    Inventors: Michael J. McCall, Timothy A. Brandvold
  • Patent number: 8927793
    Abstract: Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: January 6, 2015
    Assignee: UOP LLC
    Inventors: Joseph Anthony Kocal, Timothy A. Brandvold
  • Patent number: 8927794
    Abstract: A process for regenerating a coked catalytic cracking catalyst which the carbon-containing deposits on the catalyst contains at least 1 wt % bio-carbon, based on the total weight of carbon present in the carbon-containing deposits is provided. Such coked catalytic cracking catalyst is contacted with an oxygen containing gas at a temperature of equal to or more than 550° C. in a regenerator to produce a regenerated catalytic cracking catalyst, heat and carbon dioxide.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: January 6, 2015
    Assignee: Shell Oil Company
    Inventors: Andries Quirin Maria Boon, Johan Willem Gosselink, John William Harris, Andries Hendrik Janssen, Colin John Schaverien, Nicolaas Wilhelmus Joseph Way
  • Patent number: 8927796
    Abstract: This invention discloses a process for making high viscosity index lubricating base oils having a viscosity index of at least 110 by co-feeding a ketone or a beta-keto-ester feedstock with a lubricant oil feedstock directly to a hydrocracking unit to produce a hydrocracked stream. Then at least a portion of the hydrocracked stream is treated under hydroisomerization conditions to produce a high viscosity index lubricating base oil. The process may involve bypassing a hydrotreating or hydrofinishing step, which may result in improved efficiency and economics in producing high viscosity index lubricating base oils.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 6, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stephan Joseph Miller, Sven Ivar Hommeltoft, Saleh Ali Elomari
  • Publication number: 20150005551
    Abstract: A method is provided that involves contacting a feed stream including a biorenewable feedstock and adulterants with a catalyst in a fixed bed hydroprocessing reactor to produce a hydroprocessed product with less adulterants than the feed stream.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 1, 2015
    Applicant: Syntroleum Corporation
    Inventors: Peter Z. Havlik, Ramin Abhari, E. Gary Roth, H. Lynn Tomlinson
  • Publication number: 20150005549
    Abstract: The present application generally relates to methods to prepare a fuel from a liquid biomass by first producing the liquid biomass from a solid biomass by a thermal process, and then processing the liquid biomass with a petroleum fraction in the presence of a catalyst.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Barry A. Freel, Robert G. Graham
  • Publication number: 20150005522
    Abstract: Methods for processing algal oils are provided. In an embodiment, a method for removing a contaminant from an oil includes contacting the oil with a base to form an intermediate solution. Further, the method includes contacting the intermediate solution with an acid to form an acidic solution. The method separates the acidic solution into an oil portion and an aqueous waste portion including the contaminant.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Applicant: UOP LLC
    Inventors: Francis Stephen Lupton, Praneeth Edirisinghe
  • Publication number: 20150005548
    Abstract: The present application generally relates to methods to increase the gasoline and/or light cycle oil yield of a fluidized catalytic cracker processing a petroleum fraction by injecting a stream comprising a renewable fuel oil into a riser of a fluidized catalytic cracker, and the resulting fuels therefrom.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Barry A. Freel, Robert G. Graham
  • Patent number: 8921629
    Abstract: Biofuels can be produced via an organic phase hydrocatalytic treatment of biomass using an organic solvent that is partially miscible with water. An organic hydrocarbon-rich phase from the hydrocatalytically treated products can be recycled to form at least a portion of the organic phase.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: December 30, 2014
    Assignee: Shell Oil Company
    Inventors: Joseph Broun Powell, Kimberly Ann Johnson
  • Patent number: 8921627
    Abstract: A process has been developed for producing diesel boiling range fuel from renewable feedstocks such as plant oils and animal oils, fats, and greases. The process involves treating a renewable feedstock by hydrogenating and deoxygenating to provide a hydrocarbon fraction useful as a diesel or aviation boiling range fuel or fuel blending component. If desired, the hydrocarbon fraction can be isomerized to improve cold flow properties. A portion of the hydrogenated and deoxygenated feedstock is used as a non-flashing liquid quench stream to control the temperature of the hydrogenation and deoxygenation reactor.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 30, 2014
    Assignee: UOP LLC
    Inventors: Paul A. Sechrist, Robert L. Bunting, Jr., Nicholas W. Bridge
  • Patent number: 8921628
    Abstract: A process for biomass catalytic cracking is described herein. More specifically, the process comprises heating the cellulosic biomass to a conversion temperature in presence of a mixed metal oxide catalyst represented by the formula (X1O).(X2O)a.(X3YbO4), wherein X1, X2 and X3 are alkaline earth elements selected from the group of Mg, Ca, Be, Ba , and mixture thereof, and Y is a metal selected from the group of Al, Mn, Fe, Co, Ni, Cr, Ga, B, La, P and mixture thereof.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: December 30, 2014
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 8920630
    Abstract: A system comprising a riser reactor comprising a gas oil feedstock and a first catalyst under catalytic cracking conditions to yield a riser reactor product comprising a cracked gas oil product and a first used catalyst; a intermediate reactor comprising at least a portion of the cracked gas oil product and a second catalyst under high severity conditions to yield a cracked intermediate reactor product and a second used catalyst; wherein the intermediate reactor feedstock comprises at least one of a fatty acid and a fatty acid ester.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: December 30, 2014
    Assignee: Shell Oil Company
    Inventors: George A. Hadjigeorge, Weijian Mo, Colin John Schaverien
  • Patent number: 8916735
    Abstract: Techniques, systems, apparatus and material are described for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: December 23, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20140371496
    Abstract: The present invention provides an improved method for solvent liquefaction of biomass to produce liquid products such as transportation fuel. The method uses a novel solvent combination that promotes liquefaction relatively quickly, and it reduces the need to transport large amounts of hydrogen or hydrogen-carrying solvents. It operates at lower pressure than previous methods, does not require a catalyst or hydrogen gas or CO input, and provides very high conversion of biomass into a bio-oil that can be further processed in a petroleum refinery. It also beneficially provides a way to recycle a portion of the crude liquefaction product for use as part of the solvent combination for the biomass liquefaction reaction.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 18, 2014
    Applicant: CHEVRON U.S.A. INC.
    Inventors: James Floyd STEVENS, JR., Michelle K. YOUNG, Daniel D. EUHUS, Alexander Bruce COULTHARD, Douglas G. NAAE, Kerry Kennedy SPILKER, Jason Christopher HICKS, Subhasis BHATTACHARYA, Paul M. SPINDLER
  • Patent number: 8912374
    Abstract: Process for producing paraffinic hydrocarbons, the process comprising the following steps: (a) contacting hydrogen and a feedstock comprising triglycerides, diglycerides, monoglycerides and/or fatty acids with a hydrogenation catalyst under hydrodeoxygenation conditions; and (b) contacting the whole effluent of step (a) with a hydroprocessing catalyst comprising sulphided Ni and sulphided W or Mo as hydrogenation components on a carrier comprising amorphous silica-alumina and/or a zeolitic compound under hydro-isomerization conditions.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: December 16, 2014
    Assignee: Shell Oil Company
    Inventors: Auke Antoinette Van Heuzen, Hans De Lang, Patrick Moureaux, Donald Reinalda, Marcello Stefano Rigutto
  • Patent number: 8912376
    Abstract: The invention relates to a process for upgrading a pyrolysis oil comprising the following steps: —hydrodeoxygenation treatment (10) of the pyrolysis oil (12) and separation of the effluent (16) obtained into a light aqueous fraction (18) and a heavy organic fraction (20), or separation of the pyrolysis oil into an aqueous fraction and a lignin-rich fraction, —pre-reforming (22) of said aqueous fraction (18) and treatment of the effluent (26) obtained in an SMR unit (28) in order to produce hydrogen (34), —hydrotreatment (40) and/or catalytic cracking and/or visbreaking of said heavy organic fraction (20).
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: December 16, 2014
    Assignee: Total Raffinage Marketing
    Inventor: Alexandre Preau
  • Patent number: 8912375
    Abstract: A process and hydrodeoxygenation catalyst for producing high-quality diesel and naphtha fuels from a feedstock that contains oxygen containing components derived from renewable organic material in which the hydrodeoxygenation catalyst is a supported Mo catalyst and in which the support has a bimodal porous structure. The hydrodeoxygenation catalyst has a Mo content of 0.1 to 20 wt %. The support is alumina, silica, titania or combinations thereof, and the support has a bimodal porous structure with pores with a diameter larger than 50 nm that constitute at least 2 vol % of the total pore volume.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: December 16, 2014
    Assignee: Haldor Topsoe A/S
    Inventors: Rasmus Gottschalck Egeberg, Kim Grøn Knudsen, Niels Jørgen Blom, Jens A. Hansen
  • Patent number: 8911514
    Abstract: Hydrotreating methods and hydrotreating systems are provided herein. In an embodiment, a hydrotreating method includes heating a petroleum-based diesel feed. The heated petroleum-based diesel feed is introduced to a hydrotreating process. An unheated carbonaceous feed is introduced to the hydrotreating process separate from the heated petroleum-based diesel feed. The heated petroleum-based diesel feed and the unheated carbonaceous feed are co-processed in the hydrotreating process. In an embodiment of a hydrotreating system, the hydrotreating system includes a hydrotreating unit, and a heating apparatus, with the heating apparatus heating petroleum-based diesel feed prior to introduction to the hydrotreating unit. The unheated carbonaceous feed source is in fluid communication with the hydrotreating unit for introducing an unheated carbonaceous feed to the hydrotreating unit separate from the petroleum-based diesel feed.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Soumendra M. Banerjee, Richard K. Hoehn
  • Patent number: 8907150
    Abstract: A method of producing from a biomass mesitylene-isopentane fuel is provided. A biomass may be fermented to form acetone. The acetone is converted in a catalytic reactor to mesitylene and mesityl oxide. The mesitylene is separated in a phase separator and the organic face containing mesityl oxide is sent to a dehydration reactor, then to a demethylation reactor, and finally to a hydrogenation reactor from which isopentane is recovered. This isopentane is then mixed with the mesitylene to form the final mesitylene-isopentane fuel. The catalytic reaction with acetone employs catalysts of either niobium, vanadium or tantalum.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: December 9, 2014
    Assignee: Swift Fuels, LLC
    Inventor: John J. Rusek
  • Publication number: 20140357909
    Abstract: The invention relates to a process for preparing a hydroconversation catalyst consisting of a modified zeolite Y, comprising the steps of a treatment of a modified zeolite Y by suspension thereof in a basic pH solution, stopping the previous treatment by neutralization of the modified zeolite Y containing solution with an acid-containing solution; filtering and washing the recovered modified zeolite Y solid, drying and optionally calcining the modified zeolite Y solid, placing the modified zeolite Y solid of step d) in contact, with stirring, in an ion exchange solution and optional steaming and/or calcining the modified zeolite Y type compound for obtaining the catalyst containing a modified zeolite Y.
    Type: Application
    Filed: October 24, 2012
    Publication date: December 4, 2014
    Applicant: TOTAL RAFFINAGE FRANCE
    Inventors: Delphine Minoux, Nadiya Danilina
  • Patent number: 8900360
    Abstract: A bio-resource resin for use as a replacement for a portion of asphalt in asphalt compositions includes a bio-oil derived from animal waste and including hydrocarbons; and a compatibilizing agent. The bio-oil is derived from animal waste by subjecting the animal waste to a conversion process selected from a hydrothermal conversion process and a thermochemical conversion process. This bio-resource resin can be employed as a substitute for a portion of asphalt in common asphalt compositions, and the compatibilizing agent improves the chemical compatibility between the bio-oil and the asphalt.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: December 2, 2014
    Assignee: Imperial Commodities Corp.
    Inventor: James E. Nevin
  • Publication number: 20140345341
    Abstract: An IBTL system having a low GHG footprint for converting biomass to liquid fuels in which a biomass feed is converted to liquids by direct liquefaction and the liquids are upgraded to produce premium fuels. Biomass residues from the direct liquefaction, and optionally additional biomass is pyrolyzed to produce structured biochar, hydrogen for the liquefaction and upgrading, and CO2 for conversion to algae, including blue green algae (cyanobacteria) in a photobioreactor (PBR). Produced algae and diazotrophic microorganisms are used to produce a biofertilizer that also contains structured biochar. The structured biochar acts as a nucleation agent for the algae in the PBR, as a absorption agent to absorb inorganics from the biomass feed to direct liquefaction or from the liquids produced thereby, and as a water retention agent in the biofertilizer.
    Type: Application
    Filed: May 23, 2014
    Publication date: November 27, 2014
    Applicants: Accelergy Corporation, Shanghai Advanced Research Institute of the Chinese Academy of Science
    Inventors: Rocco A. Fiato, Yuhan Sun, Mark Allen, Quanyu Zhao
  • Publication number: 20140350314
    Abstract: The present technology generally relates to a method for producing a naphtha product from a biorenewable feedstock. The method includes hydrotreating the biorenewable feedstock to produce a hydrocarbon product stream, hydrocracking hydrocarbons from the hydrocarbon product stream to produce a distribution of cracked hydrocarbons, and separating a biorenewable naphtha fraction from the distribution of cracked hydrocarbons.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventors: Ramin Abhari, H. Lynn Tomlinson, Gary Roth
  • Publication number: 20140349361
    Abstract: The present invention provides methods, reactor systems, and catalysts for increasing the yield of aromatic hydrocarbons produced while converting biomass to hydrocarbons. The invention includes methods of using catalysts to increase the yield of benzene, toluene, and mixed xylenes in the hydrocarbon product.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 27, 2014
    Applicant: Virent, Inc.
    Inventors: Paul Blommel, Andrew Held, Ralph Goodwin, Randy Cortright
  • Patent number: 8895790
    Abstract: A catalyst composition useful for producing olefins and aromatic compounds from a feedstock is formed from a fluidized catalytic cracking (FCC) catalyst and a ZSM-5 zeolite catalyst, wherein the amount of ZSM-5 zeolite catalyst makes up from 10 wt. % or more by total weight of the FCC catalyst and the ZSM-5 zeolite catalyst. The catalyst composition may be used in a method of producing olefins and aromatic compounds from a feedstock by introducing a hydrocarbon feedstock and the catalyst composition within a reactor, at least a portion of the reactor being at a reactor temperature of 550° C. or higher. The feedstock and catalyst composition are introduced into the reactor at a catalyst-to-feed (C/F) ratio of from 6 or greater.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 25, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Ravichander Narayanaswamy, Krishna Kumar Ramamurthy, P. S. Sreenivasan
  • Patent number: 8889932
    Abstract: Methods are provided for producing a jet fuel composition from a feedstock comprising a natural oil. The methods comprise reacting the feedstock with oxygen under conditions sufficient to form an oxygen-cleaved product. The methods further comprise hydrogenating the oxygen-cleaved product under conditions sufficient to form a jet fuel composition.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 18, 2014
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Melvin L. Luetkens, Jr., Steven A. Cohen
  • Patent number: 8889933
    Abstract: A process can include making a bio-diesel, a bio-naphtha, and optionally bio-propane from a complex mixture of natural occurring fats & oils. The complex mixture can be subjected to a refining treatment for removing a major part of non-triglyceride and non-fatty acid components to obtain refined oils. The refined oils can be subjected to a fractionation step to obtain a substantially unsaturated liquid triglyceride part (phase L), and a substantially saturated solid triglyceride part (phase S). The phase L can transformed into alkyl-esters as bio-diesel by a transesterification. The phase S can be transformed into substantially linear paraffin's as the bio-naphtha by an hydrodeoxygenation. Fatty acids can be obtained from the phase S and transformed into substantially linear paraffin's as the bio-naphtha by hydrodeoxygenation or decarboxylation. Fatty acids soaps can be obtained from the phase S that are transformed into substantially linear paraffin's as the bio-naphtha by decarboxylation.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: November 18, 2014
    Assignee: Total Research & Technology Feluy
    Inventors: Walter Vermeiren, Francois Bouvart, Nicolas Dubut
  • Patent number: 8888871
    Abstract: Renewable fuels are produced in commercial quantities and with enhanced efficiency by integrating a bio-oil production system with a conventional petroleum refinery so that the bio-oil is co-processed with a petroleum-derived stream in the refinery. The techniques used to integrate the bio-oil production system and conventional petroleum refineries are selected based on the quality of the bio-oil and the desired product slate from the refinery.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: November 18, 2014
    Assignee: KiOR, Inc.
    Inventors: Maria Magdalena Ramirez Corredores, Vicente Sanchez Iglesias
  • Publication number: 20140335586
    Abstract: Herein disclosed is a method comprising: converting at least a portion of the biomass into medium-chain fatty acids or carboxylic acids ranging from C4 to C9; reacting at least a portion of the medium-chain fatty acids or carboxylic acids in a ketonization reactor to produce a ketonization product; and reacting at least a portion of the ketonization product in a hydrodeoxygenation reactor to remove substantially all oxygen and produce a hydrodeoxygenation product comprising n-paraffins. Herein also disclosed is a system comprising: a fermentation unit to convert the biomass into medium-chain fatty acids or carboxylic acids ranging from C4 to C9; a ketonization reactor configured to receive at least a portion of the medium-chain fatty acids or carboxylic acids and to produce a ketonization product; and a hydrodeoxygenation reactor configured to receive at least a portion of the ketonization product and to produce a hydrodeoxygenation product comprising n-paraffins.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 13, 2014
    Applicant: EE-TERRABON BIOFUELS LLC
    Inventors: Jubo ZHANG, Cesar B. GRANDA
  • Publication number: 20140336427
    Abstract: Methods of and apparatuses for upgrading a hydrocarbon stream are provided. In an embodiment, a method of upgrading a hydrocarbon stream includes providing the hydrocarbon stream that includes a deoxygenated pyrolysis product. The hydrocarbon stream also includes a residual oxygen-containing compound content. The residual oxygen-containing compound content of the hydrocarbon stream is reduced to form an upgraded hydrocarbon stream.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 13, 2014
    Inventors: Lance Awender Baird, Douglas B. Galloway, Tom N. Kalnes
  • Patent number: 8884086
    Abstract: A process is described that permits the manufacture of renewable diesel while simultaneously manufacturing petroleum based jet fuel and/or diesel fuel. The process provides for the sulfiding of hydroprocessing catalyst used to hydroprocess sulfur deficient biomass derived feedstocks and permits the use of petroleum derived feedstock deactivated hydroprocessing catalyst in biomass derived feedstock service.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: November 11, 2014
    Assignee: BP Corporation North America Inc.
    Inventor: John W. Shabaker
  • Patent number: 8882861
    Abstract: Disclosed herein are methods and processes for the recovery of oleaginous compounds from biomass and in particular biomass comprises photosynthetic microorganisms. Also disclosure are oleaginous compounds obtained using the disclosed methods.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 11, 2014
    Assignee: Sapphire Energy, Inc.
    Inventors: Richard J. Cranford, Alex M. Aravanis, Stilianos G. Roussis
  • Publication number: 20140325896
    Abstract: A process for converting a biomass material comprising a) pyrolyzing a biomass material to produce a biomass-derived pyrolysis product; b) providing a petroleum-derived hydrocarbon composition having a C7-asphaltenes content of equal to or more than 0.2 wt %, based on the total weight of the petroleum-derived hydrocarbon composition, which petroleum-derived hydrocarbon composition has a total acid number of equal to or more than 0.5 mg KOH/g and/or a density at 15.5° C. of equal to or more than 0.8 grams/ml and/or a viscosity at 37.8° C. of equal to or more than 500 centiStokes (cSt); c) mixing at least part of the biomass-derived pyrolysis product and at least part of the petroleum-derived hydrocarbon composition to produce a hydrocarbon-containing mixture; and d) dewatering the hydrocarbon-containing mixture to produce a dewatered hydrocarbon-containing mixture.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 6, 2014
    Applicant: SHELL OIL COMPANY
    Inventors: Johannes Pieter HAAN, Carolus Matthias Anna Maria MESTERS, Ivo Johannes DIJS, Arjen NIEUWHOF
  • Publication number: 20140330057
    Abstract: A process for converting a biomass material comprising a) pyrolyzing a biomass material to produce a biomass-derived pyrolysis product; b) mixing at least part of the biomass-derived pyrolysis product and a petroleum-derived hydrocarbon composition, which petroleum derived hydrocarbon composition has a C7-asphaltenes content of equal to or more than 0.2 wt %, based on the total weight of the petroleum-derived hydrocarbon composition, to produce a hydrocarbon-containing mixture; c) dewatering the hydrocarbon-containing mixture to produce a dewatered hydrocarbon-containing mixture; d) contacting the dewatered hydrocarbon-containing mixture with hydrogen in one or more ebullating bed reactors comprising a catalyst at a temperature in the range from 350 to 500° C. to produce a reaction product.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 6, 2014
    Applicant: SHELL OIL COMPANY
    Inventors: Ivo Johannes DIJS, Arjen NIEUWHOF, Johannes Pieter HAAN, Josiane Marie-Rose GINESTRA, Jozef Jacobus Titus SMITS, Colin John SCHAVERIEN, Leticia ESPINOSA ALONSO, Wouter SPIERING
  • Patent number: 8877015
    Abstract: A process and system is disclosed for optimizing a key parameter of a biomass feedstock that enhances bio-oil production. The process and system involves optimizing the values of the key parameter in multiple biomass feedstocks by regulating their feed rates and blending those feedstocks to produce a cumulative biomass feedstock with an optimal value for the key parameter. The key parameter in the biomass feedstocks is measured and the feed rates of the multiple biomass feedstocks are adjusted in order to produce a cumulative biomass feedstock exhibiting optimal values for the desired key parameter. The key parameters can include compositional properties, such as lignin content or mineral content, and/or fluidization properties of the biomass materials, such as density, particle cohesion force, or particle size.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 4, 2014
    Assignee: KiOR, Inc.
    Inventors: Robert Bartek, Steve Yanik
  • Patent number: 8877995
    Abstract: Pyrolysis fuels and methods for processing pyrolysis fuel are provided. In one embodiment, a method of processing pyrolysis fuel converts biomass to pyrolysis fuel including pyrolysis oil and char particles. Also, the method includes resizing a portion of the char particles so that substantially all resized char particles have a largest dimension no greater than about 5 microns.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: November 4, 2014
    Assignee: UOP LLC
    Inventors: Lance Awender Baird, Stanley Joseph Frey