Pt-group Metal Containing Patents (Class 585/482)
  • Patent number: 11648544
    Abstract: Disclosed are a bifunctional catalyst and a preparation method therefor, the bifunctional catalyst being suitable to produce high-value aromatic hydrocarbons by subjecting alkylaromatic hydrocarbons to a disproportionation/transalkylation/dealkylation reaction while suppressing aromatic loss or subjecting C8 aromatic hydrocarbons to an isomerization reaction while suppressing xylene loss.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: May 16, 2023
    Assignee: SK Innovation Co., Ltd.
    Inventors: Sang Il Lee, Ji Hoon Lee, Young Eun Cheon
  • Patent number: 10822291
    Abstract: Processes and apparatuses for producing a C8 aromatic isomer product are provided. The processes comprise introducing a raffinate product stream comprising C8 aromatic isomers to an isomerization unit to provide an isomerized stream. The isomerized stream is separated to provide a first stream comprising C8 naphthenes and C7 aromatic hydrocarbons and a second stream comprising C8 aromatic isomers. The first stream is passed to an extractive distillation column to provide a recycle feedstream comprising the C8 naphthenes and an extract stream comprising the C7 aromatic hydrocarbons. The recycle feedstream is passed to the isomerization unit.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: November 3, 2020
    Assignee: UOP LLC
    Inventors: Jason T. Corradi, Patrick C. Whitchurch, Abhishek M. Pednekar, Leonid Bresler, Anton N. Mlinar
  • Patent number: 8889940
    Abstract: The subject invention comprises a hydrocarbon-conversion process using a zeolitic catalyst comprising very low concentrations of non-zeolitic material and featuring a gradient in crystallinity decreasing from the outer portion to the center and an intrusion pore volume of at least 0.6 cc/gram. The catalyst is particularly effective in a xylene-isomerization process comprising ethylbenzene conversion.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: November 18, 2014
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Hui Wang, Richard R. Willis
  • Patent number: 8835705
    Abstract: The process concerns ethylbenzene conversion and xylene isomerization with a catalyst pretreated by sulfiding.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: September 16, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Chunshe Cao, Jeffrey L. Andrews, Michel Molinier
  • Patent number: 8791313
    Abstract: The invention concerns a process for the isomerization of aromatic compounds containing 8 carbon atoms per molecule in the presence of a catalyst comprising at least one zeolite with structure type EUO, wherein said process is operated in the presence of water in the feed at the end of a catalyst activation period.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: July 29, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Christophe Bouchy, Eric Sanchez
  • Patent number: 8431760
    Abstract: The present invention comprises a hydrocarbon-conversion process using an improved MgMxAPSO-31 molecular sieve which demonstrates a favorable combination of conversion and selectivity in aromatics conversion. The sieve comprises at least two divalent elements with narrow specific concentration limits in the framework structure having defined crystal characteristics. The element Mx may comprise one or more of manganese, cobalt, nickel, iron and zinc.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: April 30, 2013
    Assignee: UOP LLC
    Inventors: Hayim Abrevaya, Julio C. Marte, John E. Bauer
  • Patent number: 8309778
    Abstract: The present invention provides a catalyst comprising metallic Pt and/or Pd supported on a binder-free zeolite for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock, wherein the amount of metallic Pt and/or Pd is of 0.01-0.8 wt %, preferably 0.01-0.5 wt % on the basis of the total weight of the catalyst, and the binder-free zeolite is selected from the group consisting of mordenite, beta zeolite, Y zeolite, ZSM-5, ZSM-11 and composite or cocrystal zeolite thereof. The present invention also provides a process for producing light aromatic hydrocarbons and light alkanes from hydrocarbonaceous feedstock using said catalyst.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: November 13, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Deju Wang, Zhongneng Liu, Xueli Li, Minbo Hou, Zheming Wang, Jianqiang Wang
  • Patent number: 8304593
    Abstract: The present invention comprises a hydrocarbon-conversion process using an improved MgAPSO-31 molecular sieve which demonstrates a favorable combination of conversion and selectivity in aromatics conversion. The sieve has a specific combination of crystal configuration, being limited in diameter and length, specified crystallinity as measured by an X-Ray Diffraction Index (XRDI), and a narrow range of magnesium content.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: November 6, 2012
    Assignee: UOP LLC
    Inventors: Hayim Abrevaya, Julio C. Marte, Stephen T. Wilson, Susan C. Koster, John E. Bauer, Wharton Sinkler, Ben A. Wilson, Lance L. Jacobsen
  • Patent number: 8273935
    Abstract: This invention is drawn to a process for isomerizing a non-equilibrium mixture of xylenes and ethylbenzene using a catalyst comprising a zeolite having specific particle-size characteristics, a platinum-group metal and a silica binder. A relatively minimal amount of hydrogen is supplied to the process on a once-through basis, resulting in low saturation of aromatics while achieving effective xylene isomerization with reduced processing costs.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: September 25, 2012
    Assignee: UOP LLC
    Inventors: James E Rekoske, Patrick C Whitchurch, Robert B Larson
  • Patent number: 8247630
    Abstract: A process for isomerizing ethylbenzene into xylenes such as para-xylene using a zeolitic catalyst system based on low Si/Al2 MTW-type zeolite that preferably is substantially free of mordenite. The catalyst may be bimetallic where the two metals are platinum and tin.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: August 21, 2012
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, John E. Bauer, E. Alejandro Leon-Escamilla, Gregory F. Maher, Robert B. Larson
  • Patent number: 8138385
    Abstract: Xylene and ethylbenzene isomerization process is catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the isomerization of xylenes and ethylbenzene.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: March 20, 2012
    Assignee: UOP LLC
    Inventors: Paula L Bogdan, Deng-Yang Jan, Christopher P Nicholas, Jaime G Moscoso
  • Patent number: 8128805
    Abstract: A catalyst for the hydrogenation, hydroisomerisation, hydrocracking and/or hydrodesulfurisation, of hydrocarbon feedstocks, the catalyst consisting of a substantially binder free bead type support material obtained through a sol-gel method, and a catalytically active component selected from precious metals, the support comprising 5 to 50 wt. % of at least one molecular sieve material and 50 to 95 wt. % of silica-alumina.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: March 6, 2012
    Assignee: BASF Corporation
    Inventor: Marius Vaarkamp
  • Patent number: 8097764
    Abstract: A xylene isomerization process includes introducing gas comprising hydrogen and a base to a reaction zone in which a catalyst comprising a Group VIII metal and a zeolite support resides. In one embodiment, the base may be formed in situ within the reaction zone from nitrogen and hydrogen that are introduced to the reaction zone. In another embodiment, the base is introduced directly to the reaction zone. The conditions in the reaction zone are effective to reduce the catalyst. A stream comprising C8 aromatics, e.g., xylenes and ethylbenzene may then be fed to the reaction zone containing the reduced catalyst. The reaction zone may be operated at conditions effective to isomerize the xylenes and hydrodealkylate the ethylbenzene. The xylene loss during the isomerization of the xylenes is lowered as a result of using the catalyst reduced in the presence of the gas comprising a base and hydrogen.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: January 17, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Scott H. Brown, Tin-Tack Peter Cheung
  • Patent number: 8058496
    Abstract: Xylene and ethylbenzene isomerization process is catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the isomerization of xylenes and ethylbenzene.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: November 15, 2011
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Deng-Yang Jan, Christopher P. Nicholas, Jaime G. Moscoso
  • Patent number: 8022263
    Abstract: This invention is drawn to a process for isomerizing a non-equilibrium mixture of xylenes and ethylbenzene using a catalyst comprising a zeolite having specific particle-size characteristics, a platinum-group metal and a silica binder. A relatively minimal amount of hydrogen is supplied to the process on a once-through basis, resulting in low saturation of aromatics while achieving effective xylene isomerization with reduced processing costs.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: September 20, 2011
    Assignee: UOP LLC
    Inventors: James E. Rekoske, Patrick C. Whitchurch, Robert B. Larson
  • Patent number: 7982083
    Abstract: A catalyst is described which comprises at least one zeolite with structure type EUO, at least one zeolite having channels the opening to which is defined by a ring of 10 oxygen atoms (10 MR), at least one zeolite having channels the opening to which is defined by a ring of 12 oxygen atoms (12 MR) and at least one porous mineral matrix. Said catalyst optionally also contains at least one group VIII metal. The catalyst of the invention is used in a process for isomerizing a feed comprising aromatic compounds containing 8 carbon atoms per molecule.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: July 19, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Eric Sanchez, Sylvie Lacombe
  • Patent number: 7939701
    Abstract: One exemplary embodiment can be an ion-exchanged xylene isomerization catalyst. The ion-exchanged xylene isomerization catalyst can include: about 1-about 99%, by weight, of at least one of MFI, MEL, EUO, FER, MFS, MTT, MTW, TON, MOR, and FAU zeolite; about 1-about 99%, by weight, of a binder having an aluminum phosphate; and no more than about 350 ppm, by weight, of a noble metal based on the weight of the catalyst. Generally, the catalyst has a quotient of (CO area)/(weight % of the noble metal) of no more than about 0.10.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: May 10, 2011
    Assignee: UOP LLC
    Inventors: Patrick C. Whitchurch, Paula L. Bogdan, Terrence E. Deak, Dimitri A. Trufanov
  • Patent number: 7893309
    Abstract: A process is described for isomerising an aromatic cut containing at least one aromatic compound containing eight carbon atoms per molecule, comprising bringing said cut into contact with a catalyst containing a zeolite with structure type EUO, said catalyst having been prepared using a process comprising at least the following steps: i) synthesizing at least one zeolite with structure type EUO having an overall Si/Al atomic ratio in the range 5 to 45; ii) dealuminating the zeolite obtained at the end of said step i) using at least one treatment with an aqueous solution of a mineral acid or an organic acid, such that at least 10% by weight of the aluminium atoms are extracted from said zeolite from said step i); iii) forming said dealuminated zeolite with a matrix; iv) depositing at least one metal from group VIII of the periodic table of the elements, the order of carrying out said steps iii) and iv) being inconsequential following on from said step ii).
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: February 22, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Eric Sanchez
  • Patent number: 7872166
    Abstract: A process for isomerizing a feed comprising at least one aromatic compound containing eight carbon atoms per molecule is carried out in the presence of a catalyst comprising at least one modified zeolite with structure type EUO, at least one binder and at least one metal from group VIII of the periodic table, said catalyst having been prepared using a process which comprises the following in succession: a) a step for treatment of a zeolite with structure type EUO in the presence of at least one molecular compound containing at least one silicon atom, during which said compound, with a diameter greater than the maximum pore opening diameter in said zeolite, is deposited in the gas phase on the outer surface of said zeolite; b) at least one heat treatment step; c) forming said zeolite with a binder; d) at least one step for introducing at least one metal from group VIII of the periodic table onto a support based on said modified and formed zeolite.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: January 18, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Ngi Suor Gnep, Emmanuelle Guillon, Sylvie Lacombe, Laurent Simon, Pierre Moreau, Patrick Magnoux
  • Patent number: 7851665
    Abstract: A catalyst is described comprising at least one zeolite with structure type EUO, at least one zeolite with structure type NES, at least one metal selected from metals from groups IIIA, VIIB, VIIB and VIII and at least one porous mineral matrix. The catalyst of the invention is used in a process for isomerizing a feed comprising aromatic compounds containing 8 carbon atoms per molecule.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: December 14, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Emmanuelle Guillon, Eric Sanchez, Sylvie Lacombe
  • Publication number: 20100179360
    Abstract: A process for converting ethylbenzene, by which ethylbenzene in a feedstock containing C8 aromatic hydrocarbon is converted to benzene at a high degree of conversion is disclosed. The process for converting ethylbenzene includes bringing a C8 aromatic hydrocarbon mixed feedstocks containing ethylbenzene into contact with an acid type catalyst containing at least one metal selected from the group consisting of the metals belonging to Group VII and Group VIII in the presence of H2 to convert ethylbenzene to benzene. The feedstock contains C9-C10 aromatic hydrocarbons including ethyltoluene, and the ethyltoluene is converted to toluene together with the conversion of ethylbenzene.
    Type: Application
    Filed: March 28, 2007
    Publication date: July 15, 2010
    Applicant: Toray Industries, Inc., a corporation of Japan
    Inventors: Ryoji Ichioka, Eiichi Minomiya, Shinobu Yamakawa
  • Patent number: 7745677
    Abstract: One exemplary embodiment can be an extruded C8 alkylaromatic isomerization catalyst. The extruded catalyst can include: about 2-about 20%, by weight, of an MTW zeolite; about 80-about 98%, by weight, of a binder including an alumina; about 0.01-about 2.00%, by weight, of a noble group metal calculated on an elemental basis; and about 100 ppm-less than about 1000 ppm, by weight, of at least one alkali metal calculated on an elemental basis. Generally, the weight percents of the MTW zeolite, the binder, the noble group metal, and the at least one alkali metal are based on a weight of the extruded catalyst.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: June 29, 2010
    Assignee: UOP LLC
    Inventors: Patrick C. Whitchurch, Paula L. Bogdan, John E. Bauer
  • Patent number: 7745678
    Abstract: A process for isomerizing alkyl aromatic hydrocarbons using a catalyst comprising a zeolite and a platinum group metal component is described. The zeolite comprises a new family of zeolites designated UZM-8HS which are derived from UZM-8 zeolites by treating the UZM-8 with a fluoro-silicate salt, an acid, etc. The UZM-8HS zeolites have unique x-ray diffraction patterns.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: June 29, 2010
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Mathias P. Koljack, John E. Bauer, Paula L. Bogdan, Gregory J. Lewis, Susan C. Koster, Michael G. Gatter, Jaime G. Moscoso
  • Patent number: 7601881
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a phosphorus component, and at least one platinum-group metal component which is preferably platinum. The catalyst has a structure other than a heteropoly anion structure.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Feng Xu
  • Patent number: 7525008
    Abstract: A process for isomerizing ethylbenzene into xylenes such as para-xylene using a zeolitic catalyst system based on low Si/Al2 MTW-type zeolite that preferably is substantially free of mordenite. The catalyst may be bimetallic where the two metals are platinum and tin.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: April 28, 2009
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, John E. Bauer, E. Alejandro Leon-Escamilla, Gregory F. Maher, Robert B. Larson
  • Patent number: 7495137
    Abstract: This invention is drawn to a process for isomerizing a non-equilibrium mixture of alkylaromatics in two sequential zones, the first zone operating in the absence of hydrogen using a platinum-free catalyst and the second zone using a catalyst comprising a molecular sieve and a platinum-group metal component to obtain an improved yield of para-xylene from the mixture relative to prior art processes.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: February 24, 2009
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Gregory F. Maher, James A. Johnson, John E. Bauer
  • Patent number: 7446237
    Abstract: Catalysts comprise a combination of molecular sieve having a pore diameter of from about 4 to 8 angstroms and a catalytically-effective amount of molybdenum hydrogenation component and a sufficient amount of at least one platinum group metal hydrogenation component to enhance the isomerization activity of the catalyst.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: November 4, 2008
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, Patrick C. Whitchurch, Robert B. Larson, James E. Rekoske
  • Patent number: 7425660
    Abstract: Catalysts comprising a combination of molecular sieve having a pore diameter of from about 4 to 8 angstroms and a catalytically-effective amount of molybdenum hydrogenation component in an amorphous aluminum phosphate binder provide processes for isomerizing xylene and dealkylating ethylbenzene in feed streams that exhibit stability, selectivity and low ring loss.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: September 16, 2008
    Assignee: UOP LLC
    Inventors: Robert B. Larson, James E. Rekoske, Patrick C. Whitchurch, Paula L. Bogdan
  • Patent number: 7368620
    Abstract: This invention is drawn to a process for isomerizing a non-equilibrium mixture of alkylaromatics in two sequential zones, the first zone operating in the absence of hydrogen using a platinum-free catalyst and the second zone using a catalyst comprising a molecular sieve and a platinum-group metal component to obtain improved yield of para-xylene from the mixture relative to prior art processes.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: May 6, 2008
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Gregory F. Maher, James A. Johnson, John E. Bauer
  • Patent number: 7326819
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element or yttrium component, which is preferably ytterbium, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: February 5, 2008
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Michelle J. Cohn
  • Patent number: 7297830
    Abstract: Reduced co-production of toluene and C9 and higher aromatics such as trimethylbenzene, methylethylbenzene, and diethylbenzene is achieved in processes for the isomerization of xylenes to close to equilibrium using a layered catalyst having a thin outer layer of molecular sieve and hydrogenation metal component on a core, wherein at least about 75 mass-% of the hydrogenation metal component is in the outer layer.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: November 20, 2007
    Assignee: UOP LLC
    Inventors: Paula L. Bogdan, James E. Rekoske, Robert B. Larson, Patrick C. Whitchurch, John E. Bauer, Michael H. Quick
  • Patent number: 7247762
    Abstract: A process for the isomerization of xylenes and the conversion of ethylbenzene to benzene and ethane using a catalyst system comprising two catalysts. The first catalyst is unselectivated and comprises: (a) an intermediate pore size zeolite, e.g., ZSM-5; (b) at least one hydrogenation component to deethylate ethylbenzene, e.g. Group VIII and/or Group VIIIB metal; and (c) an amorphous binder, said first catalyst requiring at least 50 minutes to sorb 30% of the equilibrium capacity of ortho-xylene at 120° C. and at an ortho-xylene partial pressure of 4.5±0.8 mm of mercury. The second catalyst comprises an intermediate pore size zeolite, e.g., ZSM-5, and requires less than 50 minutes to sorb 30% of the equilibrium capacity of ortho-xylene at 120° C. and at an ortho-xylene partial pressure of 4.5±0.8 mm of mercury. The amount of first catalyst present in the catalyst system is a volume greater than 55 percent based on the sum of the volumes of the first catalyst and second catalyst.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: July 24, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: David L. Stern
  • Patent number: 7166756
    Abstract: The present invention is directed at a process to isomerize C10+ hydrocarbon feedstreams by contacting a C10+ hydrocarbon feedstream with a steamed catalyst.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: January 23, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Madhav Acharya, David L. Stern
  • Patent number: 7015175
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element or yttrium component, which is preferably ytterbium, and at least one platinum-group metal component which is preferably platinum and a refractory-oxide binder having at least one platinum-group metal component dispersed thereon.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: March 21, 2006
    Assignee: UOP LLC
    Inventors: James G. Vassilakis, Richard R. Rosin, Steven A. Bradley, Ralph D. Gillespie, Michelle J. Cohn, Feng Xu
  • Patent number: 6881873
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element or yttrium component, which is preferably ytterbium, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: April 19, 2005
    Assignee: UOP LLC
    Inventors: Ralph D. Gillespie, Michelle J. Cohn
  • Patent number: 6858769
    Abstract: A catalyst for the selective oxidation of hydrogen has been developed. It comprises an inert core such as cordierite and an outer layer comprising a lithium aluminate support. The support has dispersed thereon a platinum group metal and a promoter metal, e.g. platinum and tin respectively. This catalyst is particularly effective in the selective oxidation of hydrogen in a dehydrogenation process.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 22, 2005
    Assignee: UOP LLC
    Inventors: Guy B. Woodle, Andrew S. Zarchy, Jeffery C. Bricker, Andrzej Z. Ringwelski
  • Patent number: 6822130
    Abstract: A catalyst composition comprising an alumina carrier, a Group VIII noble metal, and a halogen compound wherein the catalyst composition has total pore volume of more than 0.48 ml/g and wherein at least 50% of this total pore volume resides in pores with a diameter smaller than 12 nm. This catalyst composition has a higher activity in isomerization reactions, per gram of catalyst and per gram of Group VIII noble metal, than prior art catalyst compositions.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 23, 2004
    Assignee: Akzo Nobel N.V.
    Inventor: Pieter Jan Nat
  • Patent number: 6660896
    Abstract: In a process for isomerizing a feed comprising ethylbenzene and a mixture of xylene isomers, the feed is first contacted under xylene isomerization conditions with a first catalyst composition to produce an intermediate product having a higher para-xylene concentration than the feed, and then the intermediate product is contacted under ethylbenzene isomerization conditions with a second catalyst composition. The second catalyst composition comprises a hydrogenation-dehydrogenation component and a molecular sieve having 10-membered ring pores and is effective to selectively isomerize at least part of the ethylbenzene in the intermediate product to para-xylene and thereby produce a further product having a para-xylene concentration greater than the equilibrium concentration of para-xylene at said ethylbenzene isomerization conditions.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: December 9, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Xiaobing Feng, Gary David Mohr, David L. Stern
  • Patent number: 6660897
    Abstract: A catalyst comprising at least one noble metal deposited on an acidic support, wherein the dispersion of the noble metal is less than 20%.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: December 9, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Nathalie Marchal-George, Eric Benazzi, Tivadar Cseri, Slavik Kasztelan
  • Patent number: 6635791
    Abstract: The present invention concerns a process for pretreating a catalyst used in hydrocarbon conversion processes, comprising the following steps: a) pretreating a catalyst containing at least one zeolite with structure type EUO and at least one hydrodehydrogenating metal in the presence of a hydrocarbon feed, at a temperature such that a catalyst comprising carbon is obtained; b) then treating the hydrocarbon feed and the catalyst at a temperature which is lower than the temperature applied in step a). The invention also concerns an activated catalyst and its use in a process for isomerizing aromatic compounds containing 8 carbon atoms.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: October 21, 2003
    Assignee: Institut Francais de Petrole
    Inventors: Julia Magne-Drisch, Jean-François Joly, Elisabeth Merlen, Fabio Alario
  • Publication number: 20030173252
    Abstract: The invention concerns a catalyst for the hydrogenation, hydroisomerisation, hydrocracking and/or hydrodesulfurisation, of hydrocarbon feedstocks, said catalyst consisting of a substantially binder free bead type support material obtained through a sol-gel method, and a catalytically active component selected from precious metals, the support comprising 5 to 50 wt. % of at least one molecular sieve material and 50 to 95 wt. % of silica-alumina.
    Type: Application
    Filed: February 5, 2003
    Publication date: September 18, 2003
    Inventor: Marius Vaarkamp
  • Patent number: 6541408
    Abstract: A zeolite catalyst suitable for use in shape-selective hydrocarbon conversion processes. The catalyst is modified by incorporation therein of a hydrogenation-dehydrogenation functional metal, followed by gradient selectivation with an organosilicon compound under conversion conditions, wherein the gradient selectivation conditions are characterized by a progressive temperature gradient. The use of a progressive temperature gradient during the in situ selectivation procedure unexpectedly yields a catalyst in which the hydrogenation-dehydrogenation function is stabilized, thereby enabling long duration hydrocarbon conversion processes with low by-product make.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: April 1, 2003
    Assignee: ExxonMobil Oil Corp.
    Inventors: Clarence D. Chang, Paul G. Rodewald, Jr.
  • Patent number: 6518472
    Abstract: A catalyst system suitable for the isomerization of a xylene and conversion of ethylbenzene in a feed containing xylene and ethylbenzene comprising a first catalyst having activity for the conversion of ethylbenzene, a second catalyst having hydrogenation activity and a third catalyst having activity for the isomerization of a xylene where the second catalyst is located in the system between the first and third catalysts relative to a flow of feed material through the catalyst system.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: February 11, 2003
    Assignee: BP Corporation North America Inc.
    Inventors: Allen I. Feinstein, Ruth Ann Doyle, Calvin T. Chew
  • Patent number: 6512155
    Abstract: An improved process is disclosed for ethylbenzene and xylene isomerization in a non-equilibrium mixture of xylenes and ethylbenzene. By addition of trace quantities of water to the reaction zone, equivalent isomerization is effected at lower temperatures wherein benefits could be realized in reduced losses and improved catalyst life.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: January 28, 2003
    Assignee: UOP LLC
    Inventors: James A. Johnson, Benjamin D. Riley, Sanjay B. Sharma, Patrick J. Silady, Gail L. Gray
  • Patent number: 6465705
    Abstract: The present invention relates to a process for isomerizing aromatic C8 cuts in the presence of a catalyst containing a mordenite which is slightly or not dealuminated and a binder. This mordenite is generally present at least in part in its acid form and its Si/Al atomic ratio is less than 20, preferably in the range 5 to 15, and more preferably in the range 5 to 10. The catalyst also contains at least one metal from group VIII of the periodic table, preferably selected from the group formed by palladium and platinum. Finally, the catalyst further contains at least one metal from group III of the periodic table, namely gallium, indium or thallium, preferably indium, and optionally at least one metal from group IV of the periodic table, namely germanium, tin or lead, preferably tin. The present invention also relates to the catalyst used in the isomerization process and to a process for its preparation.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: October 15, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Elisabeth Merlen, Fabio Alario
  • Patent number: 6448459
    Abstract: A process for the production of paraxilene comprises an adsorption stage (18) using toluene as a desorbent in a simulated moving bed of a feedstock previously depleted in ethylbenzene by distillation (3) or by adsortion, an isomerization stage (26) without hydrogen in liquid phase diluted with toluene from the raffinate produced, a distillation stage (27) of the raffinate that is isomerized to recover the toluene (29) that is recycled. The separated isomerate is introduced into a xylene distillation column (9). The separated ethylbenzene is isomerized separately in gas phase with hydrogen at higher temperature and is distilled (5, 2, 9) in the presence of a catalyst that comprises an EUO-structural-type zeolite, then recycled to adsorption stage (18).
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: September 10, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Julia Magne-Drisch, Fabio Alario, Jean-François Joly, Ari Minkkinen, Elisabeth Merlen
  • Patent number: 6420305
    Abstract: A method for producting a solid acid catalyst is provided which produces a shaped material of a solid acid catalyst containing a sulfureous component but have a high activity and having a practically sufficient handleability and mechanical strength involves the steps of (a) fabricating a support containing a portion of zirconia and/or hydrated zirconia and a portion of alumina and/or hydrated alumina and having a peak diameter in the range of 0.05 to 1 &mgr;m in a pore diameter distribution of 0.05 to 10 &mgr;m; and having a sulfuerous component supported on the support or (b) fabricating a support containing a portion of zirconia and/or hydrated zirconia and a portion of alumina and/or hydrated alumina and including pores having a pore diameter of not less than 0.05 &mgr;m and not more than 1 &mgr;m occupying a pore volume of 0.05 to 0.5 ml/g and pores having a pore diameter of about 1 &mgr;m and not more than 10 &mgr;m occupying a pore volume of below 0.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: July 16, 2002
    Assignee: Japan Energy Corporation
    Inventors: Kenji Matsuzawa, Kohjiroh Aimoto, Kazuhiro Seki
  • Publication number: 20020082461
    Abstract: A process for the production of paraxylene is described that comprises an adsorption stage (18) that uses toluene as a desorbent in a simulated moving bed of a feedstock whose ethylbenzene was separated by distillation (line 3) or by adsorption, an isomerization stage (26) without hydrogen in liquid phase that is diluted with toluene from the raffinate produced, a distillation stage (27) of the raffinate that is isomerized to recover the toluene (line 29) that is recycled. The separated isomerate is introduced into a xylene distillation column (9) then recycled, in adsorption. The separated ethylbenzene is isomerized separately in gas phase with hydrogen at higher temperature and is distilled (5, 2, 9) in the presence of a catalyst that comprises an EUO-structural-type zeolite, then recycled in adsorption column (18). The pure paraxylene is collected as extract (line 22) then optionally purified by crystallization (17).
    Type: Application
    Filed: April 24, 2000
    Publication date: June 27, 2002
    Inventors: Julia Magne-Drisch, Fabio Alario, Jean-Francois Joly, Ari Minkkinen, Elisabeth Merlen
  • Patent number: 6388159
    Abstract: A process for isomerising xylene using a new family of related crystalline aluminosilicate zeolites has been developed. These zeolites are represented by the empirical formula: Mmn+Rrp+Al(1−x)ExSiyOz where M is an alkali or alkaline earth metal such as lithium and strontium, R is a nitrogen containing organic cation such as tetramethyl-ammonium and E is a framework element such as gallium.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: May 14, 2002
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Gregory J. Lewis, Jaime G. Moscoso, Mark A. Miller, Qianjun Chen
  • Patent number: 6355853
    Abstract: This invention is drawn to a process for isomerizing a non-equilibrium mixture of xylenes and ethylbenzene using a catalyst comprising a zeolite, a platinum-group metal and a silica binder, resulting in a greater yield of para-xylene at favorable conditions compared to processes of the known art.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: March 12, 2002
    Assignee: UOP LLC
    Inventors: Sanjay B. Sharma, Sergey V. Gurevich