Using Catalyst Containing Metal Bonded To Or Complexed With C, C-containing Compound, Or H Patents (Class 585/511)
  • Patent number: 10702861
    Abstract: The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Additionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: July 7, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Jerzy Klosin, Kara A. Milbrandt, Scott D. Boelter, David R. Wilson, Mari S. Rosen, Dean M. Welsh, Peter M. Margl, Kyoung Moo Koh, David M. Pearson, Rafael Huacuja
  • Patent number: 10575543
    Abstract: Provided herein is 5-(2-(1-ethoxyethoxy)propan-2-yl)-2-methyl-2-vinyltetrahydrofuran and its use as a flavor and aroma modifier in foods and beverages.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: March 3, 2020
    Assignee: Firmenich SA
    Inventors: Gary B. Womack, Matthew Sillick
  • Patent number: 10544069
    Abstract: The invention describes a method for dimerization of ethylene implementing a step for treatment of raw effluent by neutralization, at the outlet of the reactor, of the catalyst for dimerization of ethylene into but-1-ene by a particular alcohol.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: January 28, 2020
    Assignee: IFP Energies Nouvelles
    Inventors: Lionel Magna, Aurelie Camarata
  • Patent number: 10508065
    Abstract: Methods of preparing oligomers of an olefin are provided. The methods can include providing an alkylaluminum compound and irradiating the alkylaluminum compound with microwave radiation to provide an irradiated alkylaluminum compound. The methods can further include mixing the irradiated alkylaluminum compound with a chromium compound, a pyrrole compound, and a zinc compound to provide a catalyst composition. The methods can further include contacting an olefin with the composition to form oligomers of the olefin. The olefin can include ethylene, and the oligomers of the olefin can include 1-hexene.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: December 17, 2019
    Assignee: PUBLIC JOINT STOCK COMPANY “SIBUR HOLDING”
    Inventors: Timur Mikhailovich Zilbershtein, Denis Alekseevich Lenev, Maxim Vladimirovich Lipskikh
  • Patent number: 10421066
    Abstract: The invention describes a novel catalytic composition comprising at least one nickel precursor A with at least one diphosphinamine ligand B1 of formula (R1)(R?1)P—N(R3)—P(R2)(R?2) or an iminobisphosphine ligand B2 of formula (R3)N?P(R1)(R?1)—P(R2)(R?2) or an iminobisphosphine ligand B?2 of formula (R3)N?P(R2)(R?2)—P(R1)(R?1). The invention also describes the use of said catalytic composition in a method for the oligomerisation of olefins.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: September 24, 2019
    Assignees: IFP Energies Nouvelles, Universiteit Van Amsterdam
    Inventors: Pierre-Alain Breuil, Pierre Boulens, Joost Reek, Helene Olivier-Bourbigou
  • Patent number: 10376869
    Abstract: The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Additionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: August 13, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Jerzy Klosin, Kara A. Milbrandt, Scott D. Boelter, David R. Wilson, Mari S. Rosen, Dean M. Welsh, Peter M. Margl, Kyoung Moo Koh, David M. Pearson, Rafael Huacuja
  • Patent number: 10344044
    Abstract: The present disclosure relates to a ligand compound, a catalyst system for oligomerization, and a method for olefin oligomerization using the same. The catalyst system for oligomerization using the ligand compound according to the present disclosure has excellent catalytic activity, exhibits high selectivity to 1-hexene and 1-octene, and greatly reduces the production of the by-products, thereby enabling efficient preparation of alpha-olefin.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: July 9, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Eun Ji Shin, Yong Ho Lee, Jin Young Park, Seok Pil Sa, Ki Soo Lee, Seul Ki Im
  • Patent number: 10173948
    Abstract: The present disclosure relates to a method for oligomerization of olefins. The method for oligomerization of olefins according to the present disclosure not only provides excellent catalytic activity and stable process operation, but also exhibits high selectivity to 1-hexene or 1-octene by using a catalyst system including an activity modifier.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: January 8, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Seul Ki Im, Yong Ho Lee, Eun Ji Shin, Ki Soo Lee, Jin Young Park, Seok Pil Sa, Yoon Ki Hong
  • Patent number: 10112876
    Abstract: The present invention relates to a process for the oligomerization of ethylene, comprising: a) oligomerization of ethylene in a reactor in the presence of solvent and catalyst; b) transferring reactor overhead effluent to an externally located cooling device and recycling condensed effluent into the reactor; c) transferring the reactor bottom effluent to a series of fractionation columns and, in the following order, i) optionally separating a C4 fraction, ii) separating a C6 fraction, iii) simultaneously separating C8 and C10 fractions and recycling thereof into the reactor , and iv) separating residues comprising ?C12 fractions, spent catalyst polymer material and quench media, from the process, wherein the solvent is separated in any of the steps i)-iv)and/or in an additional step.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: October 30, 2018
    Assignee: SAUDI BASIC INDUSTRIES CORPORATION
    Inventors: Shahid Majeed Azam, Abduljelil Iliyas, Abdullah Mohammad Alqahtani, Shehzada Khurram, Anina Wöhl, Wolfgang Müller, Marco Harff, Andreas Meiswinkel, Heinz Bölt
  • Patent number: 9969828
    Abstract: Linear low density polyethylene (LLDPE) is produced from an ethylene-only feed over a tandem catalyst system consisting of a phenoxy-imine titanium trimerization catalyst and a silylene-linked cyclopentadienyl/amido titanium polymerization catalyst co-supported on the same methylaluminoxane/silica particles. The level of 1-hexene incorporation in the LLDPE can be controlled by varying the ethylene pressure. Tandem, co-silica-supported ethylene trimerization and ethylene/1-hexene copolymerization catalysts produce linear low density polyethylene (LLDPE) from an ethylene-only feedstock. The percentage 1-hexene incorporation in the LLDPE may be varied by adjusting the amounts of the two catalysts on the silica support.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: May 15, 2018
    Assignees: California Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Dinesh C. Aluthge, Aaron Sattler, Mamdouh Al-Harthi, Jay A. Labinger, John E. Bercaw
  • Patent number: 9637509
    Abstract: Provided are ligand compounds selected from among N-(diphenylphosphino)-1,1-diphenyl-N-(4-phenylbutan-2-yl)phosphinamine and N4,N4-bis(diphenylphosphino)-N1,N1-diethylpentane-1,4-diamine, a catalyst system for olefin oligomerization, and a method for olefin oligomerization using the same. The catalyst system for olefin oligomerization has excellent catalytic activity, and yet, exhibits high selectivity to 1-hexene or 1-octene, thus enabling more efficient preparation of alpha-olefin.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: May 2, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Eun Ji Shin, Yong Ho Lee, Seok Pil Sa, Ki Soo Lee
  • Patent number: 9586874
    Abstract: The invention relates to the production of olefin oligomers by a method of oligomerization of olefins, and, in particular, to a method of isolating olefin oligomerization products and decomposing the oligomerization catalyst residues. The method of isolating products of an oligomerization reaction of olefins including a terminal double bond, in which the reaction is carried out by the action of a catalyst having chromium compounds, a nitrogen-containing ligand and organoaluminum compounds, includes a step of isolating independent olefin products and a step of treating catalyst residues. Further, the method includes the following sequential steps: a) isolating at least one liquid product of the oligomerization reaction of olefins from an output stream of an oligomerization reactor; b) treating a residue with an aqueous solution of an acid; and c) separating an organic layer and an aqueous layer.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 7, 2017
    Assignee: Public Joint Stock Company “Sibur Holding”
    Inventors: Timur Mikhailovich Zilbershtein, Maxim Vladimirovich Lipskikh, Vladislav Alexandrovich Kardash, Vladlena Vladimirovna Suvorova
  • Patent number: 9518138
    Abstract: A liquid random copolymer of ethylene and alpha-olefin prepared by using specific metallocene catalyst and ionic compound and a method for preparing the same are disclosed. The liquid random copolymer has high viscosity index and shear stability so that it is useful as synthetic lubricants. The liquid random copolymer of ethylene and alpha-olefin (1) comprises 60 to 40 mol % of ethylene units and 40 to 60 mol % of alpha-olefin unit having 3 to 20 carbon atoms, (2) has number average molecular weight (Mn) of 500 to 10,000 and a molecular weight distribution (Mw/Mn, Mw is the weight average molecular weight) of 3 or less measured by Gel Permeation Chromatography (GPC) (3) has Kinematic Viscosity at 100° C. of 30 to 5,000, (4) has pour point of 30 to ?45° C., and (5) has Bromine Number of 0.1 or less.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: December 13, 2016
    Assignee: DAELIM INDUSTRIAL CO., LTD.
    Inventors: Jae Hoon Uhm, Sang-Deok Mun, Jin-Hun Ju, Hee-Sun Bae, Sah-Mun Hong, Byung-Keel Sohn
  • Patent number: 9499455
    Abstract: The invention concerns a process for the selective dimerization of ethylene to 1-butene employing a catalytic composition comprising at least one alkoxy or aryloxy titanium compound, at least one additive selected from ether type compounds and at least one aluminium compound.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: November 22, 2016
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Lionel Magna, Helene Olivier-Bourbigou
  • Patent number: 9475738
    Abstract: Disclosed herein are methods and apparatus for deactivating a catalyst composition in an reaction product stream. One such method and apparatus contact the catalyst composition with a catalyst-deactivating composition and a diluent in a vapor phase of a product-receiving vessel, wherein the boiling point of the diluent is at least 5.0° C. greater than the boiling point of the catalyst-deactivating composition. Also disclosed are oligomerization systems for producing oligomers.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 25, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael W. Weber, James R. Lattner, Michael J. Veraa
  • Patent number: 9394212
    Abstract: In a process for the cooligomerization of olefins, an olefin starting material comprising olefins having n carbon atoms and olefins having 2n carbon atoms is reacted over an olefin oligomerization catalyst to give a reaction product. The process is carried out under such conditions that the conversion of olefins having 2n carbon atoms is less than 10%. Both the cooligomer having 3n carbon atoms and the olefin having 2n carbon atoms which has been separated off from the reaction product have a high hydroformylatability.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: July 19, 2016
    Assignee: BASF SE
    Inventors: Wolfgang Rohde, Qiang Miao, Stefan Bitterlich, Gauthier Luc Maurice Averlant, Hans-Guenter Wagner, Beatrice Röβler-Feigel
  • Patent number: 9315636
    Abstract: The present disclosure relates to soluble, multi-ligand-substituted metal compounds with improved stability as well as compositions made from them and methods of their use.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 19, 2016
    Assignee: AZ ELECTRONIC MATERIALS (LUXEMBOURG) S.A.R.L.
    Inventors: Huirong Yao, M. Dalil Rahman, Salem K. Mullen, JoonYeon Cho, Clement Anyadiegwu, Munirathna Padmanaban
  • Patent number: 9278894
    Abstract: Provided is a process for preparing oligomers from an alkane. The process comprises (a) contacting an alkane under dehydrogenation conditions in the presence of a dehydrogenation catalyst such as an iridium catalyst complex comprising iridium complexed with a benzimidiazolyl-containing ligand to form olefins, and (b) contacting the olefins prepared in step (a) under oligomerization conditions with an oligomerization catalyst such as a nickel, platinum or palladium metal catalyst complex comprising the metal complexed with a nitrogen containing bi- or tridentate ligand to prepare oligomers of the olefins, and hydrogenating the olefin oligomers. In one embodiment, the ligands of the catalyst complexes in step (a) and step (b) can be the same.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 8, 2016
    Assignees: Chevron U.S.A. Inc., Rutgers, The State University of New Jersey
    Inventors: Alan Stuart Goldman, Robert Timothy Stibrany, William L. Schinski
  • Patent number: 9175020
    Abstract: Lithium diphenylphosphide solutions in a solvent, e.g., diethoxymethane (DEM), that are more stable than when tetrahydrofuran (THF) is used as a solvent. Methods of producing them are also disclosed.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: November 3, 2015
    Assignee: Rockwood Lithium Inc.
    Inventors: Jeffrey Allen McCall, Mark J. Hintze
  • Publication number: 20150148572
    Abstract: Processes for the effective dimerization and oligomerization of a mixed butenes feed using an ion exchange resin based catalyst are provided. The dimerization and oligomerization processes produce highly branched C8 and C8+ olefins (e.g., C12, C16 and C20 olefins) which could be used as superior fuel blending component for higher energy contents, higher octane value, higher octane sensitivity and lower RVP.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Saudi Arabian Oil Company
    Inventors: Wei Xu, Miao Sun
  • Publication number: 20150126790
    Abstract: A process (10) for oligomerising a hydrocarbon to form at least one co-monomer product (22) includes feeding a hydrocarbon reactant and organic liquid diluent solvent (32) into an oligomerisation reactor (12). The organic liquid diluent solvent has a normal boiling point below the normal boiling point of 1-hexene but above ?20° C., or the organic diluent solvent is in the form of a solvent admixture with at least 70% by mass of the solvent admixture constituting organic diluent solvents having a normal boiling point below the normal boiling point of 1-hexene but above ?20° C. The oligomerisation reactor (12) holds at least one co-monomer product formed in the oligomerisation reactor admixed with a catalyst system (25) introduced into the oligomerisation reactor (12). The catalyst system (25) includes a catalyst dissolved in at least one catalyst solvent.
    Type: Application
    Filed: May 8, 2013
    Publication date: May 7, 2015
    Inventors: Denise Louisette Venter, Kenny Tenza, Palesa Nongodlwana, Matthew James Overett, Kevin Blann, Nicolaus Ladislaus Stark, Craig McGregor, Richard Neil Walsh
  • Publication number: 20150045603
    Abstract: This invention relates to a catalyst system for selective oligomerization of ethylene, which includes (i) a chromium compound; (ii) a ligand having a P—C—C—P backbone structure; and (iii) an activator, thus preparing 1-hexene and/or 1-octene with high activity and selectivity.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 12, 2015
    Inventors: Tack Kyu Han, Min Seon Jung, Dong Chul Shin, Ho Seong Lee, Sung Seok Chae, Jong Sok Han
  • Publication number: 20140364669
    Abstract: Provided is a production process for ?-olefin which does not comply the Shultz-Flory distribution and which is excellent in the yields of ?-olefins of 1-hexene up to 1-tetradecene each having 6 to 14 carbon atoms, particularly a yield of 1-octene. The above production process is characterized by polymerizing ethylene using (A) a specific chromium compound, (B) a specific aminophosphine ligand compound and (C) a promoter.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 11, 2014
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Yasushi Shiraki, Masahiko Kuramoto, Takuji Okamoto
  • Publication number: 20140357918
    Abstract: The present invention generally relates to a process that prepares polyethylenes, poly-?-olefins or poly(co-ethylene-?-olefin) having backbone weight average molecular weights less than 2500 daltons. The process uses a metal-ligand complex as a precatalyst and can be carried out at temperatures ranging from 30° C. to 300° C. The relatively low molecular weight of the products enables improved viscosity control for a wide variety of applications.
    Type: Application
    Filed: November 28, 2012
    Publication date: December 4, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Jerzy Klosin, Pulikkottil J. Thomas
  • Publication number: 20140316088
    Abstract: The present invention provides, among other things, novel compounds and methods for metathesis reactions. In some embodiments, a provided compound has the structure of formula I or II. In some embodiments, the present invention provides compounds and methods for Z-selective olefin metathesis.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 23, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Richard Royce Schrock, Michael R. Reithofer
  • Patent number: 8816146
    Abstract: Methods for dimerizing alpha-olefins utilizing immobilized buffered catalysts wherein a buffered ionic liquid is mixed with an organometallic complex of the formula: where M is selected from the group of Ti, Zr, Hg, Ni, and V and R and R? are selected from the group consisting of hydrogen, alkyl, aryl, alkenyl, alkynyl, alkyloxy, substituted aryl, and halogens, are provided.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: August 26, 2014
    Assignee: Phillips 66 Company
    Inventors: Tanja Englmann, Christine Denner, Helmut G. Alt, Roland Schmidt, Matthias Dötterl
  • Patent number: 8778827
    Abstract: The present invention relates to a catalyst composition comprising: (a) a binuclear chromium(II) complex; (b) a ligand of the general structure (A) R1R2P—N(R3)—P(R4)—N(R5)—H or (B) R1R2P—N(R3)—P(R4)—N(R5)—PR6R7, wherein R1, R2, R3, R4, R5, R6 and R7 are independently selected from halogen, amino, trimethylsilyl, C1-C10-alkyl, aryl and substituted aryl, wherein the PNPN- or PNPNP-unit is optionally part of a ring system; and (c) an activator or co-catalyst, as well as to a process for oligomerization of ethylene.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: July 15, 2014
    Assignees: Saudi Basic Industries Corporation, Linde AG
    Inventors: Vugar Aliyev, Mohammed Al-Hazmi, Fuad Mosa, Peter M. Fritz, Heinz Bölt, Anina Wöhl, Wolfgang Müller, Florian Winkler, Anton Wellenhofer, Uwe Rosenthal, Bernd H. Müller, Marko Hapke, Normen Peulecke
  • Publication number: 20140171712
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized that has been designated UZM-43. These zeolites are similar to previously known ERS-10, SSZ-47 and RUB-35 zeolites but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes. Catalysts made from these zeolites are useful in hydrocarbon conversion reactions.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: UOP LLC
    Inventors: Deng-Yang Jan, Jaime G. Moscoso, Paula L. Bogdan
  • Patent number: 8722953
    Abstract: The invention relates to a process for preparing substituted or unsubstituted 1,7-diolefins by hydrodimerizing non-cyclic olefins having at least two conjugated double bonds in the presence of a reducing agent and of a catalyst, wherein the catalyst used is a metal-carbene complex.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: May 13, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Volker Brehme, Manfred Neumann, Frank Bauer, Elke Fiebig-Bauer, Franz Rudolf Bauer, Johanna Elisabeth Bauer, Dirk Roettger
  • Patent number: 8716488
    Abstract: The present invention refers to novel ruthenium- and osmium-based catalysts for olefin metathesis reactions, particularly to catalysts having stereoselective properties. Z-selectivity is obtained by utilizing two mono-anionic ligands of very different steric requirement. In olefin metathesis reactions these catalysts selectively provide the Z-isomer of disubstituted olefinic products.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: May 6, 2014
    Assignee: Bergen Teknologioverforing AS
    Inventors: Vidar R. Jensen, Giovanni Occhipinti, Frederick Rosberg Hansen
  • Patent number: 8664460
    Abstract: The application discloses novel processes for the oligomerization of unsaturated hydrocarbons, and more specifically the use of selected ionic liquids containing Indium (III) Chloride in the oligomerization of unsaturated hydrocarbons, which allows for selection of the oligomers formed.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: March 4, 2014
    Assignee: The Queen's University of Belfast
    Inventors: Martyn John Earle, Johanna Kärkkäinen, Natalia V. Plechkova, Alina Tomaszowska, Kenneth Richard Seddon
  • Patent number: 8658750
    Abstract: Disclosed herein is a method for separating from the reactor effluent of an olefin oligomerization procedure those catalyst materials and polymeric by-products which can cause difficulties in the downstream processing of such effluent. Polymer by-products and catalyst in the effluent are separated from reaction products by flash vaporization utilizing an in-situ hot solvent which is contacted with the effluent and serves as the heating medium to promote this flash vaporization step. Subsequent processing of a liquid portion of the effluent which is left after flash vaporization involves recovery of catalyst and polymeric by-products therefrom in a steam stripping vessel. Also disclosed is a multiple reactor system which can be used for continuous trimerization of ethylene to 1-hexene while at the same time washing polymeric by-products from one of the reactors in the series using a wash oil solvent.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Michael W. Weber, Jimmy L. Tardy, Howard G. Large, Peter N. Loezos, Randy L. Foster, Jason D. Davis
  • Patent number: 8637721
    Abstract: The present invention relates to a catalyst composition and a process for di-, tri- and/or tetramerization of ethylene, wherein the catalyst composition comprises a chromium compound, a ligand of the general structure (A) R1R2P—N(R3)—P(R4)—N(R5)—H or (B) R1R2P—N(R3)—P(R4)—N(R5)—PR6R7, or any cyclic derivatives of (A) and (B), wherein at least one of the P or N atoms of the PNPN-unit or PNPNP-unit is member of a ring system, the ring system being formed from one or more constituent compounds of structures (A) or (B) by substitution and a co-catalyst or activator.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: January 28, 2014
    Assignees: Saudi Basic Industries Corporation, Linde AG
    Inventors: Peter M. Fritz, Heinz Bölt, Anina Wöhl, Wolfgang Müller, Florian Winkler, Anton Wellenhofer, Uwe Rosenthal, Bernd H. Müller, Marko Hapke, Normen Peulecke, Mohammed Hassan Al-Hazmi, Vugar O. Aliyev, Fuad Mohammed Mosa
  • Publication number: 20140018565
    Abstract: A silicon-bridged Cp-Ar transition metal complex serves as a catalytic component capable of efficiently and highly selectively producing 1-hexene through trimerization reaction of ethylene. The transition metal complex is represented by formula (1): wherein M represents a transition metal atom of Group 4 of the Periodic Table of the Elements; X1, X2, X3, R1, R2, R3, R4, R5, R6, R7, R8, and R9 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, and an aralkyloxy group having 7 to 20 carbon atoms, and wherein each of the groups may have a halogen atom as a substituent.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 16, 2014
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Taichi Senda, Masaya Tanimoto
  • Publication number: 20140012056
    Abstract: Disclosed is a method for producing 1-hexene that is capable of reducing the amount of by-product polymers when 1-hexene is produced through the trimerization reaction of ethylene. The method for producing 1-hexene comprises the following steps 1 and 2: step 1: the step of preparing a catalytic component by bringing a transition metal complex represented by any one of formulae (1-1) to (1-3) into contact with a specific organic aluminum compound in the absence of ethylene; and step 2: the step of trimerizing ethylene in the presence of a catalyst obtainable by bringing the catalytic component obtained in step 1 into contact with a specific boron compound.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 9, 2014
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Takayuki Hishiya, Takahiro Hino, Taichi Senda
  • Patent number: 8604141
    Abstract: Ruthenium and osmium carbene compounds that are stable in the presence of a variety of functional groups and can be used to catalyze olefin metathesis reactions on unstrained cyclic and acyclic olefins are disclosed. Also disclosed are methods of making the carbene compounds. The carbene compounds are of the formula where M is Os or Ru; R1 is hydrogen; R is selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, and substituted or unsubstituted aryl; X and X1 are independently selected from any anionic ligand; and L and L1 are independently selected from any neutral electron donor. The ruthenium and osmium carbene compounds of the present invention may be synthesized using diazo compounds, by neutral electron donor ligand exchange, by cross metathesis, using acetylene, using cumulated olefins, and in a one-pot method using diazo compounds and neutral electron donors.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Peter Schwab, Sonbinh T. Nguyen
  • Patent number: 8586812
    Abstract: Processes for upgrading condensate in a first hydrocarbon stream to provide distillate material may involve ionic liquid catalyzed olefin oligomerization of olefins in the first hydrocarbon stream to provide a first distillate enriched stream, dechlorination of the first distillate enriched stream, hydroprocessing at least one of a second and a third hydrocarbon stream to provide a second distillate enriched stream, and separation of a distillate product from the first and second distillate enriched streams.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: November 19, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung C. Timken, Bi-Zeng Zhan
  • Publication number: 20130303818
    Abstract: A method for producing an unsaturated dimer by reacting an ?-olefin having 6 to 14 carbon atoms in an agitated vessel, wherein a metallocene-based catalyst is used as a reaction catalyst; and the supply flow rate of hydrogen (VH) to the vessel is 0.2 to 1.2 [(NL/hr) per L of olefin] and the agitation power (Pv) is 0.18 KW/m3 or more of the time of reaction.
    Type: Application
    Filed: January 11, 2012
    Publication date: November 14, 2013
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Junichi Inagaki, Masashi Machida, Masaki Okano, Minako Tsuji
  • Patent number: 8536391
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 17, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Publication number: 20130225892
    Abstract: Disclosed is a method for producing an unsaturated hydrocarbon compound wherein an ?-olefin is dimerized by using a catalyst system composed of a metallocene compound (A) and an oxygen-containing organometallic compound modified with a halogen-containing compound (B). By this method, an unsaturated hydrocarbon compound having unsaturated double bonds in a high ratio, in particular the one having a terminal vinylidene group can be produced efficiently.
    Type: Application
    Filed: April 8, 2013
    Publication date: August 29, 2013
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventor: Idemitsu Kosan Co., Ltd.
  • Publication number: 20130217941
    Abstract: The invention describes a process for oligomerization of olefins into compounds or into a mixture of compounds of general formula CpH2p with 4?p?80 that employs a catalytic composition that comprises at least one organometallic complex of an element of group IV that is selected from among titanium, zirconium, or hafnium, whereby said organometallic complex contains at least one alkoxy-type ligand that is functionalized by a heteroatom that is selected from among nitrogen, oxygen, phosphorus or sulfur, or by an aromatic group.
    Type: Application
    Filed: March 28, 2013
    Publication date: August 22, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventor: IFP ENERGIES NOUVELLES
  • Patent number: 8487153
    Abstract: Methods for dimerizing alpha-olefins utilizing immobilized buffered catalysts wherein a buffered ionic liquid is mixed with an organometallic complex of the formula: where X is a halogen, n=2 or 3, M=Ti, V, Cr, Mn, Fe, Co and Ni and R1, R2, R3 and R4 are selected from the group consisting of hydrogen, alkyl, aryl, alkenyl, alkynyl, alkyloxy, substituted aryl, and X are provided. A method for dimerizing alpha-olefins utilizing the immobilized buffered catalysts and a co-catalyst is also provided.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: July 16, 2013
    Assignee: Phillips 66 Company
    Inventors: Matthias Dötterl, Roland Schmidt, Tanja Englmann, Christine Denner, Helmut G. Alt
  • Patent number: 8471086
    Abstract: We provide a process for producing hydrocarbon products. The process includes operating a process unit comprising a liquid catalyst in a first mode, adjusting a molar ratio of olefin to HCl, and operating the process unit in a second mode. The first mode and the second mode are different, one being a distillate mode and the other being a lubricant mode. Increasing the molar ratio of olefin to HCl provides a higher amount of a lubricant.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: June 25, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Sven Ivar Hommeltoft
  • Publication number: 20130150642
    Abstract: This disclosure provides for new catalyst systems and new methods for preparing and using the catalyst systems for generating a trimerization product. In an aspect, the new catalyst systems comprise a chromium carboxylate that is prepared by anhydrous metathesis. In another aspect, the catalyst system comprise a chromium carboxylate that is prepared by anhydrous metathesis and a metal pyrrolide compound. The catalyst systems imparts improved performance and/or reduced catalyst system cost to an olefin trimerization process.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Orson L. Sydora, Ronald D. Knudsen, Eduardo J. Baralt
  • Patent number: 8461406
    Abstract: According to the present invention there is provided a process for producing an oligomeric product by the oligomerisation of at least one olefinic compound including: A) providing an activated oligomerisation catalyst comprising the combination of: i) a source of a transition metal; ii) a ligating compound of the formula (R1)mX1(Y)X2(R2)n iii) a metal containing activator; and (iv) at least one olefinic compound; B) diluting the activated oligomerisation catalyst of A with an introduced liquid medium; and C) contacting the at least one olefinic compound to be oligomerised with the diluted activated catalyst of B to produce an oligomeric product.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: June 11, 2013
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Matthew James Overett, Kevin Blann, Esna Killian, David Hedley Morgan, Hulisani Maumela, Annette Bollmann, John Thomas Dixon
  • Publication number: 20130144024
    Abstract: Disclosed herein is a method for separating from the reactor effluent of an olefin oligomerization procedure those catalyst materials and polymeric by-products which can cause difficulties in the downstream processing of such effluent. Polymer by-products and catalyst in the effluent are separated from reaction products by flash vaporization utilizing an in-situ hot solvent which is contacted with the effluent and serves as the heating medium to promote this flash vaporization step. Subsequent processing of a liquid portion of the effluent which is left after flash vaporization involves recovery of catalyst and polymeric by-products therefrom in a steam stripping vessel. Also disclosed is a multiple reactor system which can be used for continuous trimerization of ethylene to 1-hexene while at the same time washing polymeric by-products from one of the reactors in the series using a wash oil solvent.
    Type: Application
    Filed: March 9, 2010
    Publication date: June 6, 2013
    Inventors: James R. Lattner, Michael W. Weber, Jimmy L. Tardy, Howard G. Large, Peter N. Loezos, Randy L. Foster, Jason D. Davis
  • Patent number: 8404915
    Abstract: This invention relates to a method to selectively oligomerize olefins comprising contacting olefins with: 1) at least one diaryl-substituted diphosphine ligand; 2) a chromium metal precursor; and 3) optionally, one or more activators. In a particular embodiment, the method for selectively oligomerizing olefins includes trimerizing ethylene to selectively form 1-hexene.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: March 26, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Laughlin G. McCullough, Francis Charles Rix, John F. Walzer, Lily Joy Ackerman, Keith Anthony Hall, Gary Michael Diamond, Victor Oswaldo Nava-Salgado
  • Publication number: 20130066128
    Abstract: The present invention describes a novel catalytic composition comprising at least one nickel complex, said complex being obtained from a mixture comprising at least one nickel precursor A with at least one imino-imidazole ligand B and a method of oligomerization of olefins using said catalytic composition.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 14, 2013
    Applicant: IFP Energies nouvelles
    Inventors: Pierre-Alain BREUIL, Adrien BOUDIER, Lionel MAGNA, Helene OLIVIER-BOURBIGOU
  • Patent number: 8395007
    Abstract: A renewable biofuel based on a highly efficient batch catalysis methodology for conversion of 1-butene to a new class of potential jet fuel blends. By tuning the catalyst and then using the dimer produced, the carbon use is about 95% or greater.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: March 12, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael E. Wright, Benjamin G. Harvey, Roxanne L. Quintana
  • Publication number: 20130030233
    Abstract: The invention provides a catalyst system composed of: a) a support material selected from at least one of the following materials: silicon dioxide, aluminium oxide, magnesium oxide, zirconium oxide and mixed oxides thereof, carbon nanotubes; b) an ionic liquid; c) a catalytically active composition comprising nickel; d) an activator selected from the group of Lewis acids with alkylating properties. Additionally provided is the use of the catalyst systems of the invention in the oligomerization of unsaturated hydrocarbon mixtures.
    Type: Application
    Filed: August 12, 2010
    Publication date: January 31, 2013
    Applicant: EVONIK OXENO GmbH
    Inventors: Christian Boeing, Dietrich Maschmeyer, Markus Winterberg, Stefan Buchholz, Berthold Melcher, Marco Haumann, Peter Wasserscheid