B-containing Catalyst Patents (Class 585/525)
  • Patent number: 9796645
    Abstract: This invention is directed to a poly alpha olefin (PAO) composition formed in a first oligomerization, wherein at least portions of the PAO have properties that make them highly desirable for a subsequent oligomerization. A preferred process for producing this PAO uses a single site catalyst at high temperatures without adding hydrogen to produce a low viscosity PAO with excellent Noack volatility at high conversion rates. This PAO comprises a dimer product with at least 25 wt % tri-substituted vinylene olefins wherein said dimer product is highly desirable as a feedstock for a subsequent oligomerization. This PAO also comprises trimer and optionally higher oligomer products with outstanding properties that make these products useful as lubricant basestocks following hydrogenation.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: October 24, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Craig J. Emett, Mark P. Hagemeister, Wenning W. Han, Bruce A. Harrington, Phillip T. Matsunaga, Charles J. Ruff, Kevin B. Stavens, Margaret M. Wu
  • Patent number: 9688791
    Abstract: A polyisobutylene having a total content of vinylidene double bonds of more than 50 mol % and a number-average molecular weight of 500 to 10 000 daltons, where at least 10% of all the vinylidene double bonds in the polyisobutylene are part of one or more side chains composed of at least 2 carbon atoms from the main polyisobutylene chain. Such a polyisobutylene is suitable for production of fuel and lubricant additives.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: June 27, 2017
    Assignee: BASF SE
    Inventors: Thomas Wettling, Stefan Hirsch, Markus Brym, Markus Weis
  • Patent number: 8993775
    Abstract: The present invention refers to the synthesis of precatalysts and the use of such precatalysts in ethylene oligomerization reactions for the selective production of alpha-olefins. More specifically, it refers to the preparation and use of coordination compounds containing polydentate ligands comprising Group 6 and 10 transition metal compounds, in particular chromium (III) and nickel (II). Such catalytic precursors present high catalytic activity and selectivity for the production of alpha-olefins.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 31, 2015
    Assignees: Petroleo Brasileiro S.A.—Petrobras, Universidade Federal do Rio Grande do Sul-UFRGS
    Inventors: Osvaldo de Lazaro Casagrande Junior, Carlos Rene Klotz Rabello, Lucilene Losch de Oliveira, Ana Helena Dias Pereira dos Santos, Roberta Campedelli, Adao Lauro Bergamo
  • Patent number: 8865959
    Abstract: A process for the preparation of oligomeric poly alpha-olefins includes oligomerizing low molecular weight PAO oligomer in the presence of a Lewis acid catalyst such as promoted aluminum trichloride or boron trifluoride under oligomerization conditions. The low molecular weight PAO oligomers used as a feed or feed component of the present process are the light olefinic by-product fractions including the dimers and light fractions from the metallocene-catalyzed PAO oligomerization process which are characterized by a molecular weight of 150 to 600 and a terminal olefin (vinylidene) content of at least 25%.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Abhimanyu Onkar Patil, Margaret May-Som Wu, Norman Yang
  • Patent number: 8598394
    Abstract: The present invention relates to poly alpha-olefins (PAO's) which exhibit superior Noack volatility at low pour points. The poly alpha-olefin is prepared from an olefin feed comprised of a blend of octene, decene, and dodecene, the feed comprising at least 10 weight % octene and at least 30 weight % dodecene. The process includes both synthesis and distillation of the olefin and oligomerization olefin. The oligomerized olefin feed yields at least 50% low viscosity PAO having a nominal viscosity at 100° C. of about 4 cSt.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Maria Caridad Brillantes Goze, Phil Surana, Norman Yang
  • Patent number: 8455416
    Abstract: The present invention relates to a low viscosity lubricant process, product, and composition characterized by low Noack volatility, low pour point, useful low temperature viscometrics, and high viscosity index and more particularly concerns a PAO composition having a kinetic viscosity at 100° C. in the range of about 4 cSt.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: June 4, 2013
    Assignee: Ineos USA LLC
    Inventors: Vahid Bagheri, Lionel D. Moore, Peter M. Digiacinto, Michel Sanchezrivas
  • Patent number: 8222457
    Abstract: A coordination compound of an element of the boron group, the production of the compound and methods of using the compound as an additive, stabilizer, catalyst, co-catalyst, activator for catalyst systems, conductivity improver, and electrolyte.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: July 17, 2012
    Assignee: Chemetall GmbH
    Inventors: Wolfram Lerner, Jens Röder, Hannes Vitze, Matthias Wagner, Ulrich Wietelmann
  • Publication number: 20120178939
    Abstract: The present invention refers to the synthesis of precatalysts and the use of such precatalysts in ethylene oligomerization reactions for the selective production of alpha-olefins. More specifically, it refers to the preparation and use of coordination compounds containing polydentate ligands comprising Group 6 and 10 transition metal compounds, in particular chromium (III) and nickel (II). Such catalytic precursors present high catalytic activity and selectivity for the production of alpha-olefins.
    Type: Application
    Filed: September 30, 2011
    Publication date: July 12, 2012
    Applicants: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS, PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Osvaldo de Lazaro Casagrande Junior, Carlos Rene Klotz Rabello, Lucilene Losch de Oliveira, Ana Helena Dias Pereira dos Santos, Roberta Campedelli, Adao Lauro Bergamo
  • Patent number: 8207390
    Abstract: A low viscosity poly(alpha-olefin) (PAO) is produced by contacting one or more C3 to C24 alpha-olefins with an unbridged, substituted bis-cyclopentadienyl transition metal compound, a non-coordinating anion activator, and an alkyl-aluminum compound. The molar ratio of transition metal compound to activator is 10:1 to 0.1:1 and the molar ratio of alkyl aluminum compound to transition metal compound is 1:4 to 4000:1. The transition metal compound has either (a) at least one non-isoolefin substitution on both cyclopentadienyl rings, or (b) at least two substitutions on at least one cyclopentadienyl ring. The PAO is comprised of at least 50 mole % of C3 to C24 alpha-olefins, has a Mw/Mn between 1 and 1.4, and a kinematic viscosity at 100° C. of 20 cSt or less.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: June 26, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang
  • Publication number: 20120095273
    Abstract: Disclosed are an ?-olefin oligomer including 90 mol % or more of an ?-olefin unit having 6 or more carbon atoms and having a small amount of a dimer component, in which a mass ratio of a dimer, a trimer and a tetramer is specified and which does not follow the Schulz-Flory distribution, and a process for producing the same.
    Type: Application
    Filed: April 7, 2010
    Publication date: April 19, 2012
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Takenori Fujimora, Yutaka Minami, Takuji Okamoto
  • Publication number: 20110319689
    Abstract: A process for producing hydrocarbon products, including: a) operating a process unit comprising a liquid catalyst in a first mode; b) adjusting a molar ratio of olefin to HCl; and c) operating in a second mode; wherein the first mode and the second mode are different, and the first mode and the second mode are selected from a distillate mode and a lubricant mode. Also, a process for making distillate and lubricant, including: adjusting a molar ratio of olefin to HCl in an oligomerization reactor to provide product selectivity; wherein decreasing the molar ratio provides a higher amount of distillate and increasing the molar ratio provides a higher amount of lubricant. Additionally, a process unit, having: a) an oligomerization reactor; and b) a control system that enables the reactor to be operated in a distillate mode and in a lubricant mode; and wherein the reactor can switch between modes.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 29, 2011
    Inventor: Sven Ivar Hommeltoft
  • Patent number: 7989670
    Abstract: This invention relates to processes to produce liquid poly-alpha-olefins (PAOs) having a kinematic viscosity at 100° C. of more than 20 cSt in the presence of a metallocene catalyst with a non-coordinating anion activator and hydrogen.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: August 2, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang, Steven P. Rucker
  • Patent number: 7868111
    Abstract: The present invention provides a method for producing ?-olefin polymer, comprising polymerizing ?-olefins in the presence of a halogen atom-containing acid catalyst by use of an aliphatic hydrocarbon having 3-12 carbon atoms, which contains 5 to 95 mass % of ?-olefin, as a raw material; removing catalyst residue and halogen-containing compounds by bringing a product in the polymerization step into contact with an aluminum atom-containing inorganic solid treatment agent with or without deactivating the catalyst; and separating the ?-olefin polymer. According to this method, the catalyst residue and other halogen-containing compounds can be removed, without relying on aqueous deactivation and separation steps using an alkaline aqueous solution or the like, from a polymerization reaction product obtained by polymerization in the presence of a halogen-containing acid catalyst by use of an ?-olefin-containing liquid hydrocarbon as a raw material.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: January 11, 2011
    Assignee: Nippon Oil Corporation
    Inventors: Toshio Okada, Yoshihiro Gohshi, Tamiko Suga
  • Patent number: 7652186
    Abstract: The invention relates to a method of making a PAO characterized by a low viscosity, low Noack volatility, and excellent cold temperature properties, using a promoter system comprising an alcohol and an ester. The products comprise trimers obtained by fractionating a hydrogenated bottoms product from an oligomerization process using said promoter system.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: January 26, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Maria C. B. Goze, Anatoly I. Kramer, Pramod J. Nandapurkar, Norman Yang
  • Patent number: 7652185
    Abstract: A process for reducing boron trifluoride usage and emissions associated with PAO manufacture, the process comprising distilling a portion of the crude PAO product containing a boron trifluoride-organic catalyst at a temperature sufficient to cause the boron trifluoride-organic catalyst to dissociate to produce an overhead stream comprising uncomplexed boron trifluoride and an uncomplexed organic catalyst component, contacting the uncomplexed boron trifluoride and uncomplexed organic catalyst component in a condenser column having an internal structure that increases the recombination of the uncomplexed boron trifluoride and uncomplexed organic catalyst component to form a recycle boron trifluoride-organic catalyst.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: January 26, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Norman Yang, Shakeel Tirmizi
  • Patent number: 7601255
    Abstract: A process for reducing the level of residual catalyst comprising one or more alkylhalide, alkoxyhalide, metal halide, metal oxyhalide, alkyl metal, alkoxy metal, boron compound and coordinated metal compound wherein the metal is a Group III, Group IV, Group V, Group VI and/or Group VIII metal, from a crude organic product (e.g., polyolefins, alkylated aromatic compounds, alkylated amines, etc.) comprising the residual catalyst is provided, the process comprising contacting the crude organic product with a solid adsorbent in an adsorbent system.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: October 13, 2009
    Assignee: Chemtura Corporation
    Inventors: Vilan Kosover, Jesus R. Fabian, Daniel C. Knowles, Mitchel Cohn
  • Patent number: 7592497
    Abstract: The invention relates to a method of making a PAO from mixtures comprising 1-decene and 1-dodecene, characterized by a low viscosity and excellent cold temperature properties, using a promoter system comprising an alcohol. In embodiments, the product has properties similar to those obtainable using a feed of solely 1-decene.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: September 22, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Norman Yang, Pramod Jayant Nandapurkar
  • Patent number: 7544850
    Abstract: Disclosed herein is a method of making a PAO using tetradecene and particularly mixtures comprising 1-hexene, 1-decene, 1-dodecene, and 1-tetradecene, characterized by a low viscosity and excellent cold temperature properties, using a promoter system comprising an alcohol and an ester. In embodiments, the product has properties similar to those obtainable using a feed of solely 1-decene.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: June 9, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Maria Caridad Brillantes Goze, Pramod Jayant Nandapurkar, Norman Yang
  • Patent number: 7485764
    Abstract: A process for the preparation of polyisobutene containing at least 75 mol % of terminal vinylidene groups, in which isobutene or an isobutene-containing hydrocarbon mixture is polymerized in the liquid phase in the presence of a boron trifluoride complex catalyst having the composition a(BF3):b(Co1):c(Co2) where Co1 is at least one tertiary alcohol, Co2 is at least one compound selected from water, primary alcohols, secondary alcohols, dialkyl ethers, alkanecarboxylic acids and phenols, the ratio c:b is from 0.9 to 1.8 and the ratio (b+c):a is from 0.9 to 3.0, is described.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: February 3, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Peter Rath, Stephan Hueffer, Gabriele Lang, Arno Lange, Eckard Schauss
  • Patent number: 7456329
    Abstract: Polyolefins made in accordance with the present invention are produced by polymerizing an unsaturated olefin or combination of unsaturated olefins to produce an unsaturated polyolefin, isomerizing the unsaturated polyolefin in the presence of an acid catalyst under conditions to produce a substantially unsaturated-isomerized polyolefin, and hydrogenating the unsaturated-isomerized polyolefin to produce a saturated isomerized polyolefin. A lube oil comprising the inventive saturated isomerized polyolefin is also disclosed.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: November 25, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Norman Yang, Anatoly Ilich Kramer
  • Patent number: 7411104
    Abstract: A method for producing high reactive polybutene (HRPB), in which carbon-carbon double bond is positioned at an end of polybutene, is disclosed. The high reactive polybutene having 300˜5000 of number average molecular weight (Mn) can be produced from a raw material containing isobutene, wherein a polymerization reaction of the isobutene is carried out in the presence of a catalyst system including secondary alkylether, tertiary alcohol, and boron trifluoride, the amount of boron trifluoride is 0.05˜1.0 weight part per 100 weight part of isobutene, the mole ratio of a co-catalyst including secondary alkylether and tertiary alcohol:boron trifluoride is 1.0˜2.0:1, and the mole ratio of secondary alkylether:tertiary alcohol is 0.5˜1.2:1.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: August 12, 2008
    Assignee: Daelim Industrial Co., Ltd.
    Inventors: Hyun-Ki Yun, Byeong-Gyu Lim, Myeong-Seog Kim, Se-Saeng Oh, Jae-Hoon Uhm
  • Patent number: 7365152
    Abstract: A process is described for preparing polyisobutene having a low halogen content, in which isobutene is polymerized in the presence of a catalyst which comprises a halogenated Lewis acid, the catalyst is removed and/or deactivated, and the resulting polyisobutene is contacted with a zeolite of an average pore size of from 5 to 15 ?.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: April 29, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Peter Rath, Thomas Perner, Eckard Schauss
  • Publication number: 20080033225
    Abstract: This invention is directed to a process for producing olefin product from an oxygenate feed that includes dimethyl ether (DME). The process uses an olefin forming catalyst that contains a porous crystalline material, preferably a porous crystalline aluminosilicate molecular sieve material. The process produces high quantities of light olefin (i.e., ethylene, propylene, and mixtures thereof).
    Type: Application
    Filed: June 14, 2007
    Publication date: February 7, 2008
    Inventors: Richard B. Hall, Guang Cao, Christopher David William Jenkins, James R. Lattner, Michael J. Veraa, Thomas H. Colle
  • Patent number: 7291758
    Abstract: The present invention relates to a process for the production of highly reactive polyisobutenes with a content of terminal vinylidene groupings of greater than 80 mol % and an average molecular weight of 500 to 10,000 Dalton by cationic polymerization of isobutene or of isobutene and monomers copolymerizable with isobutene in the presence of solvent-stabilized transition metal complexes with weakly coordinated anions.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: November 6, 2007
    Assignee: Basf Aktiengesellschaft
    Inventors: Martin Bohnenpoll, Jürgen Ismeier, Oskar Nuyken, Mario Vierle, Dirk Kurt Schön, Fritz Kühn
  • Patent number: 7244870
    Abstract: Polyisobutenes in which at least 60 mol % of the polymer chains have at least one olefinically unsaturated terminal group are prepared by cationic polymerization of isobutene or isobutene-containing monomer mixtures in the condensed phase by a process in which the polymerization is carried out in the presence of an initiator system comprising i) a Lewis acid selected from covalent metal chlorides and semimetal chlorides and ii) at least one organic compound I having at least one functional group FG which forms a carbocation or a cationic complex with the Lewis acid under the polymerization conditions, where FG is selected from acyloxy, alkoxy and halogen, which are bonded to a secondary or tertiary carbon atom or to an allylic or a benzylic carbon atom, in a solvent inert toward the Lewis acid, the Lewis acid being used in less than the stoichiometric amount, based on the functional groups FG.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: July 17, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Arno Lange, Hans Peter Rath
  • Patent number: 7217773
    Abstract: A process is described for preparing polyisobutene having a content of terminal vinylidene groups of at least 75 mol % by polymerizing isobutene or isobutenic hydrocarbon mixtures in the liquid phase in the presence of a boron trifluoride complex catalyst of the composition (BF3)a.L1b.L2c.L3d where L1 is water, a primary C1–C5-alkanol and/or a secondary C3–C5-alkanol, L2 is at least one aldehyde and/or one ketone, L3 is an ether having at least 5 carbon atoms, a secondary alkanol having at least 6 carbon atoms, a primary alkanol having at least 6 carbon atoms and/or a tertiary alkanol, the b:a ratio is in the range from 0.9 to 3.0, the c:a ratio is in the range from 0.01 to 0.5, and the d:a ratio is in the range from 0 to 1.0.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: May 15, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Peter Rath, Thomas Perner, Helmut Mach
  • Patent number: 7081557
    Abstract: Disclosed is a method for the oligomerization of olefins, wherein an olefin is brought into contact with a catalyst system that is obtained from a chromium source, a cycloalkylalkyl-substituted triazacyclohexane, especially a 1,3,5-tris-(cycloalkylalkyl)-1,3,5-triazacyclohexane and an activator such as an alkyl aluminum compound or an alkylalumoxane.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: July 25, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Ferenc Molnar, Heiko Maas, Martina Egen, Randolf Köhn
  • Patent number: 6951831
    Abstract: A catalyst composition for use in dimerizing, co-dimerizing or oligomerizing olefins comprises: at least one zero-valent nickel complex; at least one acid with formula H+X? in which X? represents an anion; and at least one ionic liquid with general formula Q+ A? in which A? is an anion identical to or different from X?. The composition can also comprise a nitrogen-containing ligand. It can be used in dimerizing, co-dimerizing, oligomerizing and in polymerizing olefins.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: October 4, 2005
    Assignee: Institut Francais du Petrole
    Inventors: Vincent Lecocq, Hélène Olivier-Bourbigou
  • Patent number: 6949688
    Abstract: The present invention relates to poly ?-olefins (PAO's) which exhibit superior Noack volatility at low pour points. Mixtures of 1-decene and 1-dodecene are polymerized using an alcohol promoted BF3 in conjunction with a combination of cocatalysts. The reaction mixture is distilled to remove the unreacted monomeric and dimeric species. The resulting product is then hydrogenated to saturate the oliogomers to provide a hydrogenated product which has a viscosity of 5 cSt. This product is distilled to provide PAO's of varying viscosity grades. The 4 cSt PAO is comprised mostly of trimers and tetramers while the 6 cSt product is comprised of trimers, tetramers, and pentamers.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: September 27, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Maria Caridad B. Goze, Norman Yang
  • Patent number: 6884858
    Abstract: A novel liquid phase polymerization process for preparing a polyolefin product having preselected properties is disclosed. The process includes the steps of providing a liquid feedstock which contains an olefinic component and a catalyst composition consisting of a stable complex of BF3 and a complexing agent therefor. The feedstock may comprise any one or more of a number of olefins including branched olefins such as isobutylene, C3 to C15 linear alpha olefins and C4 to C15 reactive non-alpha olefins. The feedstock and the catalyst composition are introduced into a residual reaction mixture recirculating in a loop reactor reaction zone provided in the tube side of a shell and tube heat exchanger at a recirculation rate sufficient to cause intimate intermixing of the residual reaction mixture, the added feedstock and the added catalyst composition.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: April 26, 2005
    Assignee: Texas Petrochemicals LP
    Inventors: C. Edward Baxter, Jr., Gilbert Valdez, Christopher Lobue, Timothy Lowry, Armen Abazajian
  • Patent number: 6869917
    Abstract: The present invention relates to a fully formulated lubicants comprising poly ?-olefins (PAOs), prepared from a mixed ?-olefin feed, which exhibit superior Noack volatility at low pour points, and methods for preparing the fully formulated lubricants. The fully formulated lubricants include PAOs that include mixtures of 1-decene and 1-dodecene. The PAOs may be prepared by polymerization/oligomerization using an alcohol promoted BF3 in conjunction with a combination of co-catalysts.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: March 22, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Douglas E. Deckman, Mark D. Winemiller, William L. Maxwell, David J. Baillargeon, Norman Yang, Maria Caridad B. Goze
  • Patent number: 6846903
    Abstract: Polyisobutenes are prepared by cationic polymerization of isobutene or isobutene-containing hydrocarbon streams in the liquid phase in the presence of boron trifluoride as a catalyst, the catalytic activity of the boron trifluoride being partially or completely eliminated at a desired time by means of a solid deactivator, by a process in which the solid deactivator has boron trifluoride-binding primary, secondary, tertiary and/or quaternary nitrogen atoms and is insoluble in the reaction mixture.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: January 25, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Wettling, Dirk Borchers, Wim Verrelst, Hans Peter Rath
  • Patent number: 6753389
    Abstract: Polyisobutene is prepared by cationic polymerization of isobutene and/or isobutene-containing hydrocarbons in the liquid phase in the presence of a complex of BF3 and at least one cocatalyst which is preferably chosen from oxygen-containing compounds, the BF3/cocatalyst complex being produced in situ by adding BF3 and cocatalyst to a reaction stream, wherein BF3 and oxygen-containing cocatalyst are added to the reaction stream via a common binary nozzle comprising an outlet for BF3 and an outlet for the oxygen-containing cocatalyst. The invention also describes a binary nozzle having a centrally arranged outlet for the catalyst.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: June 22, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans Peter Rath, Dieter Hahn, Gerhard Sandrock, Frans van Deyck, Bart Vander Straeten, Eddy De Vree
  • Patent number: 6734329
    Abstract: In process for the oligomerization of an alphaolefin, a carboxylic acid modifier, such as acetic acid, is used to increase the amount of trimer and tetramer in the product.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: May 11, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Eduardo J. Baralt, Russell Bak
  • Patent number: 6713566
    Abstract: This invention relates to a process for covalently coupling organic compounds which comprises: reacting an olefinic compound having at least one carbon to carbon double bond or an acetylenic compound having at least one carbon to carbon triple bond with a diboron derivative in the presence of a Group 8-11 metal catalyst to form an organoboron intermediate having an organoboronate residue on at least one carbon atom of the respective double or triple bond; and reacting the organoboron intermediate with an organic compound having a halogen or halogen-like substituent at a coupling position in the presence of a Group 8-11 metal catalyst and a suitable base, whereby the olefinic or acetylenic compound is coupled to the organic compound via a direct bond between the carbon atom having the organoboronate residue and the coupling posiitijno.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: March 30, 2004
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Sebastian Mario Marcuccio, Mary Rodopoulos, Helmut Weigold, Peter Osvath
  • Patent number: 6683138
    Abstract: A liquid phase polymerization process for preparing low molecular weight, highly reactive polyisobutylene. The process includes the steps of providing a feedstock containing isobutylene and a catalyst composition made up of a complex of BF3 and a complexing agent. The feedstock and the catalyst composition are introduced into a residual reaction mixture in a reaction zone where the residual reaction mixture, the feedstock and the catalyst composition are intimately intermixed so as to present an intimately intermixed reaction admixture in said reaction zone. The intimately intermixed reaction admixture is maintained in its intimately intermixed condition and kept at a temperature of at least about 0° C. while the same is in the reaction zone, whereby the isobutylene therein is polymerized to form polyisobutylene having a high degree of terminal unsaturation. A product stream is withdrawn from the reaction zone.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: January 27, 2004
    Assignee: Texas Petrochemicals LP
    Inventors: C. Edward Baxter, Jr., Gilbert Valdez, Christopher Lobue, Timothy Lowry
  • Publication number: 20040015029
    Abstract: Polyisobutenes in which at least 60 mol % of the polymer chains have at least one olefinically unsaturated terminal group are prepared by cationic polymerization of isobutene or isobutene-containing monomer mixtures in the condensed phase by a process in which the polymerization is carried out in the presence of an initiator system comprising
    Type: Application
    Filed: June 4, 2003
    Publication date: January 22, 2004
    Inventors: Arno Lange, Hans Peter Rath
  • Patent number: 6680417
    Abstract: A process for the production of an oligomer oil by the polymerization of a feedstock containing one or more C3 to C20 1-olefins in the presence of a solid unsupported metallocene- and activator-containing catalyst system which is formed by removing the solvent from a solution of the soluble metallocene- and activator-containing catalyst system.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: January 20, 2004
    Assignee: BP Corporation North America Inc.
    Inventors: Vahid Bagheri, Robert E. Farritor, Randall J. Stolk, Andrew D. Overstreet, David Eisenberg, Frederic Grzeszczak
  • Patent number: 6646174
    Abstract: A process for the co-oligomerization of 1-dodecene and 1-decene to produce a polyalphaolefin having a kinetic viscosity of 4 to 6 cSt at 100° C., a Noack weight loss of 4 to 9%, a viscosity index of 130 to 145, and a pour point of −60° C. to −50° C.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: November 11, 2003
    Assignee: BP Corporation North America Inc.
    Inventor: Michel Clarembeau
  • Publication number: 20030166986
    Abstract: A process for the co-oligomerization of 1-dodecene and 1-decene to produce a polyalphaolefin having a kinetic viscosity of 4 to 6 cSt at 100° C., a Noack weight loss of 4 to 9%, a viscosity index of 130 to 145, and a pour point of −60° C. to −50° C.
    Type: Application
    Filed: March 4, 2002
    Publication date: September 4, 2003
    Inventor: Michel Clarembeau
  • Publication number: 20030096924
    Abstract: A liquid phase polymerization process for preparing low molecular weight, highly reactive polyisobutylene. The process includes the steps of providing a feedstock containing isobutylene and a catalyst composition made up of a complex of BF3 and a complexing agent. The feedstock and the catalyst composition are introduced into a residual reaction mixture in a reaction zone where the residual reaction mixture, the feedstock and the catalyst composition are intimately intermixed so as to present an intimately intermixed reaction admixture in said reaction zone. The intimately intermixed reaction admixture is maintained in its intimately intermixed condition and kept at a temperature of at least about 0° C. while the same is in the reaction zone, whereby the isobutylene therein is polymerized to form polyisobutylene having a high degree of terminal unsaturation. A product stream is withdrawn from the reaction zone.
    Type: Application
    Filed: December 31, 2002
    Publication date: May 22, 2003
    Applicant: Texas Petrochemicals LP
    Inventors: C. Edward Baxter, Gilbert Valdez, Christopher Lobue, Timothy Lowry
  • Patent number: 6562913
    Abstract: A liquid phase polymerization process for preparing low molecular weight, highly reactive polyisobutylene. The process includes the steps of providing a feedstock containing isobutylene and a catalyst composition made up of a complex of BF3 and a complexing agent. The feedstock and the catalyst composition are introduced into a residual reaction mixture in a reaction zone where the residual reaction mixture, the feedstock and the catalyst composition are intimately intermixed so as to present an intimately intermixed reaction admixture in said reaction zone. The intimately intermixed reaction admixture is maintained in its intimately intermixed condition and kept at a temperature of at least about 0° C. while the same is in the reaction zone, whereby the isobutylene therein is polymerized to form polyisobutylene having a high degree of terminal unsaturation. A product stream is withdrawn from the reaction zone.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: May 13, 2003
    Assignee: Texas Petrochemicals LP
    Inventors: C. Edward Baxter, Jr., Gilbert Valdez, Christopher Lobue, Timothy Lowry
  • Publication number: 20030088135
    Abstract: The present invention provides a method for producing high reactive polybutene (HRPB) in which carbon-carbon double bond is positioned at an end of polybutene. The method produces polybutene having 300˜5000 of number average molecular weight (Mn) from (a) isobutene, (b) C4 hydrocarbon compounds derived from cracking of naphtha, and containing more than 10 weight % of isobutene, and (c) C4 hydrocarbon compounds derived from a refining process of crude oil or from catalytic cracking of heavy gas oil, and containing more than 10 weight % of isobutene by using catalyst comprising secondary alkylether, tertiary alcohol, and boron trifluoride.
    Type: Application
    Filed: July 5, 2002
    Publication date: May 8, 2003
    Inventors: Hyun-Ki Yun, Byeong-Gyu Lim, Myeong-Seog Kim, Se-Saeng Oh, Jae-Hoon Uhm
  • Patent number: 6531555
    Abstract: This invention relates to a method to oligomerize ethylene comprising combining ethylene with a catalyst system comprising an activator and one or more phenoxide group metal compounds represented by the formula: wherein R3, R4, R5, R8, R9 and R10 may each independently be hydrogen, a halogen, a heteroatom containing group or a C1 to C100 group, provided that at least one of these groups has a Hammett &sgr;p value (Hansch, et al Chem. Rev. 1991, 91, 165) greater than 0.20; R2 and R7 may each independently be alkyl, aryl or silyl groups; R1 and R6 may each independently be an alkyl group, an aryl group, an alkoxy group, or an amino group; N is nitrogen; H is hydrogen; O is oxygen; M is a group 4 transition metal; and each X may each independently be an anionic ligand or a dianionic ligand.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: March 11, 2003
    Assignee: Univation Technologies, LLP
    Inventor: Gregory T. Whiteker
  • Publication number: 20020193650
    Abstract: The present invention relates to poly &agr;-olefins (PAO's) which exhibit superior Noack volatility at low pour points. Mixtures of 1-decene and 1-dodecene are polymerized using an alcohol promoted BF3 in conjunction with a combination of cocatalysts. The reaction mixture is distilled to remove the unreacted monomeric and dimeric species. The resulting product is then hydrogenated to saturate the oliogomers to provide a hydrogenated product which has a viscosity of 5 cSt. This product is distilled to provide PAO's of varying viscosity grades. The 4 cSt PAO is comprised mostly of trimers and tetramers while the 6 cSt product is comprised of trimers, tetramers, and pentamers.
    Type: Application
    Filed: May 17, 2001
    Publication date: December 19, 2002
    Inventors: Maria Caridad B. Goze, Norman Yang
  • Publication number: 20020183574
    Abstract: The invention provides a hydrocarbon conversion process for converting olefins to longer chain hydrocarbons, the process using a catalyst system including a non-nickel transition metal derived catalyst and one or more ionic liquids at a reaction temperature of between 10° C. and 130° C. and a reaction pressure of up to 100 Bar. The hydrocarbon conversion process may be oligomerisation and trimerisation.
    Type: Application
    Filed: May 23, 2002
    Publication date: December 5, 2002
    Inventors: John Thomas Dixon, Jacobus Johannes Cronje Grove, Alta Ranwell
  • Publication number: 20020173685
    Abstract: A process for the oligomerization of ethylene to a mixture of olefinic products having high linearity is provided, by using a catalyst comprising a reaction product of a simple divalent nickel salt; a boron hydride reducing agent; a water soluble base; a ligand selected from an o-dihydrocarbylphosphinobenzoic acid and alkali metal salt thereof; and, a phosphite.
    Type: Application
    Filed: April 10, 2001
    Publication date: November 21, 2002
    Inventors: David Stephen Brown, Richard Edward Robertson
  • Patent number: 6476284
    Abstract: An efficient dehalogenation can be carried out by a method which comprises treating an organic compound containing a compound of halogen, such as fluorine or chlorine, as an impurity and having non-conjugated carbon-carbon double bonds, for example, butene polymer produced with a boron trifluoride catalyst, with an inorganic solid treating agent containing aluminum atoms. When the dehalogenation is conducted in the presence of a basic substance such as ammonia or an amine, it can be continued over long while inhibiting the isomerization of the non-conjugated carbon-carbon double bonds.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: November 5, 2002
    Assignee: Nippon Petrochemicals Company, Limited
    Inventors: Koichi Ohashi, Tsutomu Takashima, Teruhisa Kuroki, Koji Fujimura, Yuichi Tokumoto
  • Patent number: 6462151
    Abstract: Boron trifluoride can be recovered in a reusable state by a method that is economical and does not cause environmental pollution, which method comprises the steps of bringing a fluid containing boron trifluoride or its complex into contact with metal fluoride so as to selectively adsorb and remove boron trifluoride in the complex and heating the resultant metal tetrafluoroborate at a temperature in the range of 100 to 600° C. to separate it into boron trifluoride and metal fluoride. By applying the method to a process for producing polybutene or olefin oligomer using boron trifluoride complex catalyst, the catalyst can be recovered with retaining its activity and reused effectively.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: October 8, 2002
    Assignee: Nippon Petrochemicals Company, Limited
    Inventors: Tsutomu Takashima, Yuichi Tokumoto, Koji Fujimura
  • Patent number: 6459005
    Abstract: The present invention intends to provide an ethylene/&agr;-olefin copolymer of specific structure, exhibiting excellent performance as a lubricant oil additive, capable of having various functional groups in high ratio, and serviceable as raw material for various solubilizing agents. The ethylene/&agr;-olefin copolymer of the present invention is composed of ethylene and an &agr;-olefin having 3 to 10 carbon atoms, and characterized by specific characteristics.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: October 1, 2002
    Assignee: Mutsui Chemicals, Inc.
    Inventors: Hideki Hirano, Terunori Fujita, Junji Saito, Makoto Mitani