Elemental O Acceptor Patents (Class 585/621)
-
Patent number: 11492310Abstract: A process, a system, and an apparatus are provided for converting a lower alkane to an alkene. Oxygen and the lower alkane are provided to an ODH reactor to convert at least a portion of the lower alkane to an alkene. An ODH stream comprising the alkene, an oxygenate, steam, and a carbon-based oxide is produced. The bulk of the oxygenate is removed from the ODH outlet stream by non-dilutive cooling, with residual oxygenate being removed using dilutive quenching with a carbonate. Subsequently, separation of the carbon-based oxide from the alkene is achieved using a caustic tower, which also produces spent caustic in the form of a carbonate, which is then used as the carbonate for dilutive quenching. Dilutive quenching using a carbonate allows conversion of the oxygenate to an acetate, which can then be used to simplify separation of the oxygenate from water.Type: GrantFiled: October 9, 2019Date of Patent: November 8, 2022Assignee: NOVA Chemicals (International) S.A.Inventors: Bolaji Olayiwola, Vasily Simanzhenkov, Shahin Goodarznia, Kamal Serhal
-
Patent number: 11406969Abstract: A metal oxide catalyst, which has a bulk composition represented by formula (1) below and which is used to produce a conjugated diolefin by an oxidative dehydrogenation reaction between a monoolefin, having 4 or more carbon atoms, and molecular oxygen, wherein standard deviation obtained by dividing a ratio of Bi molar concentration relative to Mo molar concentration at the surface of a catalyst particle by a ratio of the Bi molar concentration relative to the Mo molar concentration in a catalyst bulk is 0.3 or less.Type: GrantFiled: May 24, 2017Date of Patent: August 9, 2022Assignee: ASAHI KASEI KABUSHIKI KAISHAInventors: Miho Naritomi, Kenji Akagishi, Hiroyuki Yanagi, Hiroyuki Yano
-
Patent number: 11370730Abstract: The present specification provides a method for preparing 1,3-butadiene, the method comprising: (A) obtaining a first product comprising a light component, 1,3-butadiene, and a heavy component from a reactant comprising butene; (B) separating the heavy component from a second product comprising the 1,3-butadiene and the light component by condensing the heavy component after heat exchanging the first product; and (C) separating concentrated heavy component by reboiling the condensed heavy component.Type: GrantFiled: February 1, 2019Date of Patent: June 28, 2022Assignee: LG CHEM, LTD.Inventors: Hyunseok Nam, Jun Han Kang, Kyong Yong Cha, Jaewon Jeong, Dong Hyun Ko, Jun Kyu Han, Sang Jin Han, Kyung Moo Lee, Joohyuck Lee, Daeheung Choi, Myungji Suh, Ye Seul Hwang, Sunhwan Hwang, Seongmin Kim
-
Patent number: 10647638Abstract: A method for producing butadiene comprises a step of obtaining a product gas containing butadiene, by feeding a raw-material gas containing straight-chain butene and an oxygen-containing gas containing molecular oxygen to a reactor and performing oxidative dehydrogenation reaction in the presence of a catalyst, wherein the catalyst comprises a composite oxide containing molybdenum and bismuth, and the concentration of hydrocarbons having 5 or more carbon atoms in the raw-material gas is 0.05 mol % to 7.0 mol %.Type: GrantFiled: October 19, 2016Date of Patent: May 12, 2020Assignee: JXTG Nippon Oil & Energy CorporationInventors: Sosuke Higuchi, Nobuhiro Kimura
-
Patent number: 10421700Abstract: The invention relates to a process for producing butadiene from n-butenes which comprises the steps of: A) providing a vaporous n-butenes-comprising input gas stream a1 by evaporating a liquid n-butenes-comprising stream a0; B) introducing the vaporous n-butenes-comprising input gas stream a1 and an at least oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene to obtain a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases, Ca) chilling the product gas stream b by contacting with a cooling medium comprising an organic solvent in at least one chilling zone, the cooling medium being at least partially recycled into the chilling zone, Cb) compressing the chilled product gas stream b which is possibly depleted of high-boiling secondary components in at least one compression stage to obtain at least one aqueous cType: GrantFiled: March 23, 2016Date of Patent: September 24, 2019Assignee: BASF SEInventors: Jan Pablo Josch, Ragavendra Prasad Balegedde Ramachandran, Christian Walsdorff, Regina Benfer, Anton Wellenhofer, Ulrike Wenning, Heinz Boelt, Hendrik Reyneke, Christine Toegel
-
Patent number: 10370310Abstract: The invention relates to a method for producing butadiene from n-butenes having the steps: A) providing a feed gas stream a comprising n-butenes; B) feeding the feed gas stream a comprising the n-butenes and an oxygen-comprising gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, wherein a product gas stream b comprising butadiene, unreacted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling minor components, possibly carbon oxides and possibly inert gases is obtained; Ca) cooling the product gas stream b by contacting it with a refrigerant and condensing at least a part of the high-boiling minor components; Cb) compressing the remaining product gas stream b in at least one compression stage, wherein at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases are obtained; Da) separating off non-condensable and low-bType: GrantFiled: January 11, 2017Date of Patent: August 6, 2019Assignees: BASF SE (ISENBRUCK BÖSL HÖRSCHLER LLP), Linde AGInventors: Jan Pablo Josch, Georgios Karanikoulis, Oliver Hammen, Claudia Mossbacher, Ulrike Wenning, Anton Wellenhofer, Christine Toegel, Hendrik Reyneke
-
Patent number: 10308569Abstract: The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes, B) feeding the input gas stream a comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting with a cooling medium in at least one cooling zone, the cooling medium being at least partly recycled and having an aqueous phase and an organic phase, Cb) compressing the cooled product gas stream b which may have been depleted of high-boiling secondary components in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, nType: GrantFiled: September 14, 2015Date of Patent: June 4, 2019Assignees: BASF SE, Linde AGInventors: Jan Pablo Josch, Philipp Grüne, Regina Benfer, Maximilian Vicari, Andre Biegner, Gergor Bloch, Heinz Boelt, Hendrik Reyneke, Christine Toegel, Ulrike Wenning
-
Patent number: 9738574Abstract: The present invention relates to a method for producing butadiene through an oxidative dehydrogenation reaction. The production method according to the present invention may easily regulate an input ratio between oxygen and nitrogen that are used as raw material, such that a loss may be minimized of butadiene that is included in a second fraction stream (purge stream) and discharged to outside of the system. Consequently, an economic competitiveness of the process, such as a reduced raw material cost and an improved productivity may be realized.Type: GrantFiled: May 15, 2015Date of Patent: August 22, 2017Assignee: LG CHEM, LTD.Inventors: Jae Ik Lee, Jeong Seok Lee, Mi Kyung Kim, Dae Hyeon Kim, Jong Ku Lee
-
Publication number: 20140221719Abstract: The present disclosure provides a premixer for at least two gases, comprising: a tabular body having a closed end and an opposite, open end; a first flow passage for receiving a first gas, the first flow passage axially extending through the closed end into the tabular body in a sealable manner; a conical tube arranged in the tabular body, wherein a small end of the conical tube communicates with the first flow passage, and a large end of the conical tube extends toward the open end with an edge thereof being fixed to an inner wall of the tabular body, thereby defining a sealed distribution chamber between the tabular body and the conical tube; and a second flow passage arranged on a side portion of the tabular body for receiving a second gas, wherein the second flow passage communicates with the distribution chamber, so that the second gas can be introduced into said conical tube via the distribution chamber in a substantially radial manner.Type: ApplicationFiled: January 27, 2014Publication date: August 7, 2014Applicants: Shanghai Research Institute of Petrochemical Technology, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATIONInventors: Weimin YANG, Wenjie LIU, Yunqun HUANG, Yi GUO, Depan SHI
-
Publication number: 20140200381Abstract: The invention relates to a process for preparing butadiene from n-butenes, which comprises the following steps: A) provision of a feed gas stream a comprising n-butenes; B) introduction of the feed gas stream a comprising n-butenes and an oxygen-comprising gas into at least one dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene, unreacted n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; C) cooling and compression of the product gas stream b in at least one cooling stage and at least one compression stage, with the product gas stream b being brought into contact with a circulated coolant to give at least one condensate stream c1 comprising water and a gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; D) separation of incondensable and low-boiling gas constituents comprising oxygen,Type: ApplicationFiled: January 14, 2014Publication date: July 17, 2014Applicant: BASF SEInventors: Jan Pablo Josch, Philipp Grüne, Christian Walsdorff
-
Publication number: 20140200380Abstract: The invention relates to a process for preparing butadiene from n-butenes, which comprises the steps: A) provision of a feed gas stream a comprising n-butenes; B) introduction of the feed gas stream a comprising n-butenes and an oxygen-comprising gas into at least one oxidative dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene, unreacted n-butenes, water vapor, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases; Ca) cooling of the product gas stream b by contacting with an organic solvent as coolant, Cb) compression of the product gas stream b in at least one compression stage, giving at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases; D) separation of incondensable and low-boiling gas constituents comprising oxygen, low-boilingType: ApplicationFiled: January 14, 2014Publication date: July 17, 2014Applicant: BASF SEInventors: Jan Pablo Josch, Philipp Grüne, Christian Walsdorff, Oliver Hammen, Ragavendra Prasad Balegedde Ramachandran
-
Patent number: 8765082Abstract: Processes for using a combination of carbon dioxide and oxygen in the dehydrogenation of hydrocarbons are provided. A hydrocarbon feedstock, carbon dioxide and oxygen are fed to an oxidative dehydrogenation reactor system containing one or more catalysts that promote dehydrogenation of the hydrocarbon feedstock to produce a dehydrogenated hydrocarbon product. The processes of the present invention may be used, for example, to produce styrene monomer by dehydrogenation of ethylbenzene using carbon dioxide and oxygen as oxidants.Type: GrantFiled: August 6, 2012Date of Patent: July 1, 2014Assignee: Lummus Technology Inc.Inventors: Stephen C. Arnold, Johannes Hendrik Koegler, Anne Mae Gaffney, Chuen Yuan Yeh, Ruozhi Song
-
Publication number: 20140171709Abstract: A reactor for gas-phase dehydrogenation of a hydrocarbon-comprising stream with an oxygen-comprising stream over a monolithic heterogeneous catalyst. Catalytically active zone(s) comprising monoliths packed next to one another and/or above one another and a mixing zone having fixed internals upstream of each catalytically active zone. Feed line(s) for the hydrocarbon-comprising gas stream to be dehydrogenated at the lower end of the reactor. Independently regulable feed line(s), which supply distributor(s), for the oxygen-comprising gas stream into each of the mixing zones and discharge line(s) for the reaction gas mixture of the autothermal gas-phase dehydrogenation at the upper end of the reactor. The interior wall of the reactor is provided with insulation. The catalytically active zone(s) is accessible from the outside of the reactor via manhole(s).Type: ApplicationFiled: December 11, 2013Publication date: June 19, 2014Applicant: BASF SEInventors: Gerhard Olbert, Carlos Tellaeche Herranz, Norbert Asprion, Alexander Weck, Ellen Dahlhoff
-
Patent number: 8674156Abstract: A method of producing a mixed manganese ferrite catalyst, and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst. Specifically, a method of producing a mixed manganese ferrite catalyst through a coprecipitation method which is performed at a temperature of 10˜40° C., and a method of preparing 1,3-butadiene using the mixed manganese ferrite catalyst through an oxidative dehydrogenation reaction, in which a C4 mixture containing n-butene, n-butane and other impurities is directly used as reactants without performing additional n-butane separation process or n-butene extraction. 1,3-butadiene can be prepared directly using a C4 mixture including n-butane at a high concentration as a reactant through an oxidative hydrogenation reaction without performing an additional n-butane separation process, and 1,3-butadiene, having high activity, can be also obtained in high yield for a long period of time.Type: GrantFiled: November 7, 2008Date of Patent: March 18, 2014Assignees: SK Innovation Co., Ltd., SK Global Chemical Co. Ltd.Inventors: Young Min Chung, Yong Tak Kwon, Tae Jin Kim, Seong Jun Lee, Min Su Ko, Seung Hoon Oh, Yong Seung Kim, In Kyu Song
-
Patent number: 8546634Abstract: There is provided a method for production of a conjugated diene from a monoolefin having four or more carbon atoms by a fluidized bed reaction. The method for production of a conjugated diolefin includes bringing a catalyst in which an oxide is supported on a carrier into contact with a monoolefin having four or more carbon atoms in a fluidized bed reactor in which the catalyst and oxygen are present, wherein the method satisfies the following (1) to (3): (1) the catalyst contains Mo, Bi, and Fe; (2) a reaction temperature is in the range of 300 to 420° C.; and (3) an oxygen concentration in a reactor outlet gas is in the range of 0.05 to 3.0% by volume.Type: GrantFiled: September 29, 2010Date of Patent: October 1, 2013Assignee: Asahi Kasei Chemicals CorporationInventors: Hideo Midorikawa, Hiroyuki Yano, Takashi Kinoshita
-
Patent number: 8410328Abstract: A method of preparing multicomponent bismuth molybdate catalysts composed of four metal components and a method of preparing 1,3-butadiene using the catalyst, and particularly, to multicomponent bismuth molybdate catalysts composed of a divalent cationic metal, a trivalent cationic metal, bismuth and molybdenum, a preparation method thereof, and a method of preparing 1,3-butadiene from a C4 mixture including n-butene and n-butane using oxidative dehydrogenation are described.Type: GrantFiled: August 24, 2008Date of Patent: April 2, 2013Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.Inventors: Young Min Chung, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
-
Publication number: 20130035531Abstract: A reactor in the form of a cylinder or prism wherein the interior of the reactor is divided by a cylindrical or prismatic gastight housing G which is arranged in the longitudinal direction of the reactor into an inner region having one or more catalytically active zones, in which in each case a packing composed of monoliths stacked on top of one another, next to one another and behind one another and before each catalytically active zone in each case a mixing zone having solid internals are provided, and an outer region B arranged coaxially to the inner region A, wherein the inner region A is insulated from the outer region B of the reactor by means of a microporous high-performance insulation material having a thermal conductivity 1 at temperatures up to 700° C. of less than 0.05 W/m*K is proposed.Type: ApplicationFiled: August 1, 2012Publication date: February 7, 2013Applicant: BASF SEInventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Carlos Tellaeche Herranz, Reinhold Höchst, Andrea Gienger, Roland Bauer
-
Patent number: 8367885Abstract: This invention relates to a method of preparing a multicomponent bismuth molybdate catalyst by changing the pH of a coprecipitation solution upon coprecipitation and a method of preparing 1,3-butadiene using the catalyst. The multicomponent bismuth molybdate catalyst, coprecipitated using a solution having an adjusted pH, the preparation method thereof, and the method of preparing 1,3-butadiene through oxidative dehydrogenation using a C4 mixture including n-butene and n-butane as a reactant are provided. The C4 raffinate, containing many impurities, is directly used as a reactant without an additional process for separating n-butane or extracting n-butene, thus obtaining 1,3-butadiene at high yield. The activity of the multicomponent bismuth molybdate catalyst can be simply increased through precise pH adjustment upon coprecipitation, which is not disclosed in the conventional techniques.Type: GrantFiled: May 8, 2008Date of Patent: February 5, 2013Assignees: SK Innovation Co., Ltd, SK Global Chemical Co., Ltd.Inventors: Young Min Chung, Seong Jun Lee, Tae Jin Kim, Seung Hoon Oh, Yong Seung Kim, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
-
Patent number: 8258362Abstract: A process for the synthesis of linear ?,?-diolefins from an allylic substrate comprises the steps of a) forming the bis-Grignard reagent XMgCH2(CH2)nCH2MgX from an ?,?-acyclic dihalide with X being a halogen; b) preparing a solution comprising an allylic substrate and a copper catalyst; c) catalyzing a coupling reaction by adding to the solution of step (b) the bis-Grignard reagent of step (a); and d) isolating and purifying the ?,?-olefin coupling reaction product.Type: GrantFiled: May 4, 2010Date of Patent: September 4, 2012Assignee: ISP Investments Inc.Inventors: Krishnamurthy Nacharaju, Paul D. Taylor, Mark J. Cooney, Larry A. Crabtree
-
Patent number: 8237000Abstract: Processes for using a combination of carbon dioxide and oxygen in the dehydrogenation of hydrocarbons are provided. A hydrocarbon feedstock, carbon dioxide and oxygen are fed to an oxidative dehydrogenation reactor system containing one or more catalysts that promote dehydrogenation of the hydrocarbon feedstock to produce a dehydrogenated hydrocarbon product. The processes of the present invention may be used, for example, to produce styrene monomer by dehydrogenation of ethylbenzene using carbon dioxide and oxygen as oxidants.Type: GrantFiled: June 19, 2008Date of Patent: August 7, 2012Assignee: Lummus Technology, Inc.Inventors: Stephen C. Arnold, Johannes Hendrik Koegler, Anne Mae Gaffney, Chuen Yuan Yeh, Ruozhi Song
-
Publication number: 20120130137Abstract: The present invention relates to a process of producing a conjugated diene including a step of mixing a raw material gas containing a monoolefin having a carbon atom number of 4 or more with a molecular oxygen-containing gas and supplying the mixture into a reactor, and a step of obtaining a corresponding conjugated diene-containing product gas produced by the oxidative dehydrogenation reaction of the monoolefin having a carbon atom number of 4 or more in the presence of a catalyst, wherein the concentration of a combustible gas in the gas supplied to the reactor is not less than the upper explosion limit and the oxygen concentration in the product gas is from 2.5 to 8.0 vol %.Type: ApplicationFiled: November 28, 2011Publication date: May 24, 2012Applicant: MITSUBISHI CHEMICAL CORPORATIONInventors: Souichi ORITA, Hiroshi Takeo, Masaru Utsunomiya, Takuma Nishio, Hiroyuki Yagi, Nariyasu Kanuka
-
Patent number: 8088962Abstract: A process for preparing butadiene, comprising A) providing a stream (a) comprising n-butane; B) feeding stream (a) comprising into at least one first dehydrogenation zone and nonoxidatively catalytically dehydrogenating n-butane to obtain a stream (b) comprising n-butane, 1-butene, 2-butene, butadiene, hydrogen and low-boiling secondary constituents; C) feeding stream (b) and an oxygenous gas into at least one second dehydrogenation zone and oxidatively dehydrogenating n-butane, 1-butene and 2-butene to obtain a stream (c) comprising n-butane, 2-butene, butadiene, low-boiling secondary constituents, carbon oxides and steam, wherein stream (c) has a higher content of butadiene than stream (b); D) removing the low-boiling secondary constituents and steam to obtain a stream (d) substantially consisting of n-butane, 2-butene and butadiene; E) separating stream (d) into a stream (e1) consisting substantially of n-butane and 2-butene and a stream (e2) consisting substantially of butadiene by extractive distillationType: GrantFiled: January 16, 2006Date of Patent: January 3, 2012Assignee: BASF SEInventors: Catharina Klanner, Götz-Peter Schindler, Sven Crone, Frieder Borgmeier, Mark Duda, Falk Simon
-
Publication number: 20110301392Abstract: A catalyst for the dehydrogenation of alkanes or alkyl substituents of hydrocarbons, is a shaped body having at least one oxide from the elements of the main or secondary group II to IV of the periodic table or of a mixed oxide thereof serving as base material of the shaped body. The catalyst further contains an additional constituent which is an oxide of an element of the main group IV of the periodic table, added during the shaping process. A platinum compound and a compound of an element of the main group IV of the periodic table is used as a surface constituent of the catalyst. The invention further relates to the production of the catalyst and to a method for the dehydrogenation of alkanes using the catalyst.Type: ApplicationFiled: December 15, 2009Publication date: December 8, 2011Applicant: UHDE GMBHInventors: Muhammad Iqbal Mian, Max Heinritz-Adrian, Sascha Wenzel, Oliver Noll, Meinhard Schwefer, Helmut Gehrke
-
Publication number: 20110130607Abstract: A reactor (1) in the form of an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream (2) by means of an oxygen-comprising gas stream (3) to give a reaction gas mixture over a heterogeneous catalyst configured as monolith (4), wherein the interior of the reactor (1) is divided by a detachable, cylindrical or prismatic housing G which is arranged in the longitudinal direction of the reactor (1) and is gastight in the circumferential direction and open at two end faces of the housing into an inner region A having one or more catalytically active zones (5), in which in each case a packing composed of monoliths (4) stacked on top of one another, next to one another and above one another and before each catalytically active zone (5) in each case a mixing zone (6) having solid internals are provided, and an outer region B arranged coaxially to the inner region A, is proposed.Type: ApplicationFiled: December 1, 2010Publication date: June 2, 2011Applicant: BASF SEInventors: Grigorios Kolios, Wilhelm Ruppel, Ulrike Wegerle, Jasmina Kessel, Wolfgang Gerlinger, Godwind Tafara Peter Mabande, Goetz-Peter Schindler, Albena Kostova, Gerhard Olbert, Peter Pfab
-
Patent number: 7518024Abstract: A process for preparing 1-butene from 1-butane, which includes providing a n-butane-containing feed gas stream; introducing of the n-butane-containing feed gas stream into at least one dehydrogenation zone and nonoxidative catalytic dehydrogenation of n-butane; removing hydrogen, the low-boiling secondary constituents and optionally water vapor to give a C4 product gas stream containing 10-80% by volume of n-butane, 5-40% by volume of 1-butene, 10-50% by volume of 2-butene, 0-40% by volume of butadiene and 0-10% by volume of further gas constituents; introducing the C4 product gas stream containing 10-80% by volume of n-butane, 10-60% by volume of 1-butene, 15-60% by volume of 2-butene, 0-5% by volume of butadiene and 0-10% by volume of further gas constituents, into a selective hydrogenation zone and selective hydrogenation of butadiene to 1- and/or 2-butene to give stream consisting essentially of n-butane, 1-butene and 2-butene; and separating of the stream distillation into a desired product.Type: GrantFiled: October 27, 2004Date of Patent: April 14, 2009Assignee: BASF AktiengesellschaftInventors: Götz-Peter Schindler, Andreas Brodhagen, Thorsten Johann, Thomas Hill
-
Patent number: 7495138Abstract: A process for preparing butadiene, comprising nonoxidatively dehydrogenating n-butane from a stream (a) in a first dehydrogenation zone to obtain stream (b) comprising 1-butene, 2-butene, and butadiene; oxidatively dehydrogenating the 1-butene and 2-butene of (b) in the presence of an oxygenous gas in a second dehydrogenation zone to obtain stream (c) comprising n-butane, butadiene, hydrogen, and steam; compressing and cooling (c) to obtain stream (d2) comprising n-butane, butadiene, hydrogen, and steam; extractively distilling (d2) into stream (e1) comprising butadiene and stream (e2) comprising n-butane, hydrogen, and steam; optionally compressing and cooling (e2) to obtain stream (f1) comprising n-butane and water and stream (f2) comprising n-butane and hydrogen and optionally recycling (f1) into the first dehydrogenation zone; separating (f2) into stream (g1) comprising n-butane and stream (g2) comprising hydrogen by contacting (f2) with a high boiling absorbent and subsequently desorbing the gas constituType: GrantFiled: December 19, 2005Date of Patent: February 24, 2009Assignee: BASF AktiengesellschaftInventors: Sven Crone, Catharina Klanner, Götz-Peter Schindler, Mark Duda, Frieder Borgmeier
-
Patent number: 7488857Abstract: The disclosure involves a process for the preparation of butadiene and 1-butene. The process includes at least a first catalytic dehydrogenation of n-butane to obtain a gas stream which is followed by at least a second oxidative dehydrogenation to form a second gas stream. The second gas stream is then subjected to distillation and isomeration steps to obtain butadiene and 1-butene.Type: GrantFiled: December 30, 2004Date of Patent: February 10, 2009Assignee: BASF AktiengesellschaftInventors: Thorsten Johann, Götz-Peter Schindler, Andreas Brodhagen, Sven Crone, Regina Benfer, Marcus Sigl, Mark Duda
-
Patent number: 7488858Abstract: The disclosure involves a process for preparing butadiene from n-butane. In the process, n-butane is first dehydrogenated autothermally under nonoxidative conditions to form a gas stream. The gas stream is then oxidatively dehydrogenated to form a second gas stream. From the second gas stream, a third gas stream containing n-butane, 2-butene and butadiene is obtained. From the third gas stream, a butadiene/butaine product stream is obtained and remaining n-butane and 2-butene is recycled into the first dehydrogenation zone.Type: GrantFiled: December 30, 2004Date of Patent: February 10, 2009Assignee: BASF AktiengesellschaftInventors: Thorsten Johann, Götz-Peter Schindler, Andreas Brodhagen, Sven Crone, Mark Duda
-
Patent number: 7485761Abstract: A process for preparing 1-butene, which includes nonoxidatively, catalytically dehydrogenating n-butane to obtain a product gas stream of n-butane, 1-butene, 2-butene, butadiene, hydrogen, and secondary constituents; removing hydrogen and the secondary constituents to obtain a C4 product gas stream; separating the C4 product stream into a recycle stream of n-butane and a stream of 1-butene, 2-butene and butadiene by extractive distillation, and recirculating the recycle stream to the dehydrogenation zone; introducing the 1 -butene, 2-butene and butadiene stream into a selective hydrogenation zone and selective hydrogenation of butadiene to 1-butene and/or 2-butene to obtain a stream of 1-butene and 2-butene; introducing the 1-butene and 2-butene stream, and a circulating stream of 1-butene and 2-butene into a distillation zone and isolation of a product stream; and introducing the 2-butene-containing stream into an isomerization zone to obtain a circulating stream of 1-butene and 2-butene, and recirculating tType: GrantFiled: October 27, 2004Date of Patent: February 3, 2009Assignee: BASF AktiengesellschaftInventors: Götz-Peter Schindler, Andreas Brodhagen, Thorsten Johann, Thomas Hill, Marcus Sigl, Regina Benfer
-
Patent number: 7482500Abstract: The disclosure relates to a process for preparing butadiene. The process involves nonoxidatively catalytically dehydrogenating butane to obtain a product gas stream containing butane, 1-butene, 2-butene, butadiene, hydrogen and secondary constituents. The 1-butene and 2-butene of the product gas stream is then oxidatively dehydrogenated to give a second gas stream containing butane,2-butene, butadiene, hydrogen, steam and secondary constituents. Next, the butane,2-butene and butadiene are separated from the second gas stream and the butane and 2-butene are then separated from the butadiene product. The butane and 2-butene are then recycled into the nonoxidative catalytic dehydrogenating zone.Type: GrantFiled: December 30, 2004Date of Patent: January 27, 2009Assignee: BASF AktiengesellschaftInventors: Thorsten Johann, Götz-Peter Schindler, Andreas Brodhagen, Sven Crone, Regina Benfer, Thomas Hill, Mark Duda
-
Patent number: 7435860Abstract: A process for preparing butadiene, comprising nonoxidatively dehydrogenating n-butane from a stream (a) in a first dehydrogenation zone to obtain stream (b) comprising 1-butene and 2-butene; oxidatively dehydrogenating the 1-butene and 2-butene of (b) in the presence of an oxygenous gas in a second dehydrogenation zone to obtain stream (c) comprising n-butane, butadiene, hydrogen, carbon dioxide, and steam; compressing and cooling (c) to obtain stream (d2) comprising n-butane, butadiene, hydrogen, carbon dioxide, and steam; extractively distilling (d2) into stream (e1) comprising butadiene and stream (e2) comprising n-butane, hydrogen, carbon dioxide, and steam; compressing and cooling (e2) to obtain stream (f1) comprising n-butane and water and stream (f2) comprising n-butane, hydrogen, and carbon dioxide; cooling (f2) to obtain stream (g1) comprising n-butane and stream (g2) comprising carbon dioxide and hydrogen; phase separating water from (f1) to obtain stream (h1) comprising n-butane; and recycling (h1)Type: GrantFiled: December 7, 2005Date of Patent: October 14, 2008Assignee: BASF SEInventors: Sven Crone, Catharina Klanner, Götz-Peter Schindler, Mark Duda, Frieder Borgmeier
-
Patent number: 7417173Abstract: Processes for producing butadiene from n-butane comprising: (a) providing a feed gas stream comprising n-butane; (b) non-oxidatively dehydrogenating the feed gas stream in the presence of a catalyst in a first dehydrogenation zone to form a first intermediate gas stream comprising n-butane, 1-butene, 2-butene, butadiene and hydrogen; (c) oxidatively dehydrogenating the first intermediate gas stream in the presence of an oxygenous gas having an oxygen content of at least 75% by volume in a second dehydrogenation zone to form a second intermediate gas stream comprising n-butane, butadiene, hydrogen, carbon dioxide and steam; (d) compressing and cooling the second intermediate gas to form a first condensate stream comprising water and a third intermediate gas stream comprising n-butane, butadiene, hydrogen, carbon dioxide and steam; (e) compressing and cooling the third intermediate gas to form a second condensate stream comprising n-butane, butadiene and water and a fourth intermediate gas stream comprising n-bType: GrantFiled: November 11, 2005Date of Patent: August 26, 2008Assignee: BASF AktiengesellschaftInventors: Sven Crone, Catharina Klanner, Götz-Peter Schindler, Mark Duda, Frieder Borgmeier
-
Patent number: 7262334Abstract: A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include ?-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.Type: GrantFiled: July 15, 2003Date of Patent: August 28, 2007Assignee: Regents of the University of MinnesotaInventors: Lanny D. Schmidt, Jakob J. Krummenacher, Kevin N. West
-
Publication number: 20040171894Abstract: A process for the oxidation of a hydrocarbon, said process comprising partially oxidising in a reaction zone, a mixture comprising a hydrocarbon and an oxygen-containing gas in the presence of a catalyst which is capable of supporting oxidation of the hydrocarbon, wherein prior to said partial oxidation, said mixture comprising the hydrocarbon and the oxygen-containing gas is passed through a heat exchanger. Preferably the heat exchanger is a compact heat exchanger. Prior to passage through the heat exchanger a mixture of hydrocarbon and oxygen-containing gas may be passed through a baffle zone which comprises a housing containing at least one baffle plate. In a preferred embodiment, the invention relates to a process for the production of an olefin such as ethylene by the catalytic oxidative dehydrogenation of a hydrocarbon or mixture of hydrocarbons.Type: ApplicationFiled: January 9, 2003Publication date: September 2, 2004Inventors: Derek Alan Colman, Trevor Hesketh, Ian Allan Beattie Reid, Terence Woodfin
-
Publication number: 20040082671Abstract: A reactor system for oxidative conversion of hydrocarbons comprising at least one reactor tube being provided with a plurality of perforations along a wall of the tube and a reaction zone with an active catalyst arranged on tube side and/or shell side of the reactor tube; and a bed of particulate material surrounding the at least one reactor tube, the bed of particulate material being adapted to be fluidised by an oxygen containing atmosphere and to transport heat from the reactor tube.Type: ApplicationFiled: October 17, 2003Publication date: April 29, 2004Inventors: Jens Perregaard, Gregory Patience
-
Molybdenum and vanadium based catalysts for the oxidation of alkanes to carboxylic acids and olefins
Publication number: 20030100794Abstract: A mixed metal oxide catalytic system comprises a catalyst having the formulaType: ApplicationFiled: January 7, 2003Publication date: May 29, 2003Applicant: Saudi Basic Industries Corporation, Saudi ArabiaInventors: Khalid Karim, Mohammad H. Al-Hazmi, Asad Ahmad Khan, Syed Irshad Zaheer -
Patent number: 6566573Abstract: A process and catalyst for the partial oxidation of paraffinic hydrocarbons, such as ethane, propane, naphtha, and natural gas condensates, to olefins, such as ethylene and propylene. The process involves contacting a paraffinic hydrocarbon with oxygen in the presence of hydrogen and a catalyst under autothermal process conditions. Preheating the feed decreases oxygen consumption and increases the net hydrogen balance. The catalyst comprises a Group 8B metal, preferably, a platinum group metal, and at least one promoter selected from Groups 1B, 6B, 3A, 4A, and 5A, optionally supported on a catalytic support, such as magnesia or alumina. In preferred embodiments, the support is pretreated with a support modifier selected from Groups 1A, 2A, 3B, 4B, 5B, 6B, 1B, 3A, 4A, 5A, the rare earth lanthanides, and the actinides. A modified fluidized bed reactor is disclosed for the process.Type: GrantFiled: September 1, 1999Date of Patent: May 20, 2003Assignee: Dow Global Technologies Inc.Inventors: Sameer S. Bharadwaj, Joseph J. Maj, Jonathan H. Siddall, Mark D. Bearden, Craig B. Murchison, Gerald E. Lazaruk
-
Patent number: 6020534Abstract: A process for the production of propylene and ethylene by non-catalytic oxidative conversion of propane by allowing the endothermic hydrocarbon cracking reaction to occur simultaneously with the exothermic hydrocarbons oxidative conversion reactions in an empty tubular reactor is disclosed. The process comprises mixing of oxygen and propane at ambient temperatures, mixing of sulfur compound with steam, admixing the mixture of steam and sulfur compound and the mixture of oxygen and propane and preheating the resulting admixture, passing said mixture through an empty tubular reactor, cooling and separating the components of effluent product gases by known methods and recycling the unconverted reactants, if required.Type: GrantFiled: August 28, 1998Date of Patent: February 1, 2000Assignee: Council of Scientific ResearchInventors: Vasant Ramchandra Choudhary, Amarjeet Munshiram Rajput, Vilas Hari Rane
-
Patent number: 6018088Abstract: A method is disclosed for producing branched aliphatic ketones in hydrocarbon mixtures from isoalkanes by a superacid catalyzed formylation-rearrangement reaction. The method can be used to simultaneously isomerize, if necessary, and formylate hydrocarbons in complex hydrocarbon mixtures such as refinery streams, alkylate mixtures, and natural gas liquids. Natural gas liquids of low octane number are upgraded and oxygenated by adding to the natural gas liquids or reactively producing in the liquids branched aliphatic ketones.Type: GrantFiled: April 29, 1998Date of Patent: January 25, 2000Inventor: George A. Olah
-
Patent number: 5866737Abstract: A process for the oxidation and oxidative dehydrogenation of hydrocarbons, in particular ethylbenzene, to form corresponding oxidized or olefinically unsaturated compounds, in particular styrene, over an oxygen-conferring, oxygen-regenerable catalyst involving a working period, a time-displaced regenerating period and at least one intermediate rinsing period comprises effecting a partial regeneration during the working period by time-displaced addition of a substoichiometric amount of oxygen.Type: GrantFiled: January 7, 1997Date of Patent: February 2, 1999Assignee: BASF AktiengesellschaftInventors: Alfred Hagemeyer, Jurgen Schweinzer, Otto Watzenberger
-
Patent number: 5763725Abstract: An improved process for the production of ethylene by non-catalytic oxidative cracking of ethane or ethane rich C.sub.2 -C.sub.4 paraffins with high conversion, selectivity and productivity, operating in a most energy efficient and safe manner requiring little or no external energy, in an empty tubular reactor, wherein the exothermic oxidative conversion of ethane or ethane rich C.sub.2 -C.sub.4 paraffins is coupled with the endothermic hydrocarbon cracking reactions by carrying out both the exothermic and endothermic reactions simultaneously in the reactor so that the heat produced in the exothermic reactions is used instantly in the endothermic reactions and thereby making the overall process mildly exothermic, near thermo-neutral or mildly endothermic, which comprises passing a preheated gaseous feed comprising of ethane or ethane rich C.sub.2 -C.sub.4 paraffins, oxygen and steam through an empty tubular reactor operated at the effective temperature, pressure, space velocity and hydrocarbon/O.sub.Type: GrantFiled: September 18, 1997Date of Patent: June 9, 1998Assignee: Council of Scientific & Industrial ResearchInventors: Vasant Ramchandra Choudhary, Amarjeet Munshiram Rajput, Shafeek Abdul Rashid Mulla
-
Patent number: 5648582Abstract: A process for the catalytic partial oxidation of methane in gas phase at very short residence time (800,000 to 12,000,000 hr.sup.-1) by contacting a gas stream containing methane and oxygen with a metal supported catalyst, such as platinum deposited on a ceramic monolith.Type: GrantFiled: November 30, 1995Date of Patent: July 15, 1997Assignee: Regents of the University of MinnesotaInventors: Lanny D. Schmidt, Daniel A. Hickman
-
Patent number: 5510558Abstract: Oxidative dehydrogenation of alkanes and alkylaromatic hydrocarbons is achieved by contact with an active carbon catalyst. In various aspects of the invention, the oxidative dehydrogenation is performed at a pressure above about 100 psia, and/or at a temperature in the range from about 500.degree. C. to about 800.degree. C., and/or the active carbon catalyst contains a metal, for example, molybdenum.Type: GrantFiled: December 29, 1993Date of Patent: April 23, 1996Assignee: Sun Company, Inc. (R&M)Inventors: Benjamin S. Umansky, Kevin A. Boyer, Chao-Yang Hsu
-
Patent number: 5386074Abstract: Barium peroxide in which has been incorporated a transition metal compound is used as a catalyst for the oxidative dehydrogenation of organic compounds in the presence of terminal oxidants.Type: GrantFiled: July 30, 1993Date of Patent: January 31, 1995Assignee: Sun Company, Inc. (R&M)Inventors: Vincent A. Durante, James E. Lyons, Darrell W. Walker
-
Patent number: 5214226Abstract: The present invention teaches an apparatus and method for commercial conversion of methane in the absence of a catalyst to higher hydrocarbons that are generally in short supply, e.g., butane, ethylene, propene, etc. The production of these higher molecular weight hydrocarbons aids in justifying the cost of the conversion process. The inventive conversion technique utilizes small amounts, generally 1% or less, of a low-cost initiator, plus air, which allows for the commercial viability of the process.Type: GrantFiled: March 13, 1992Date of Patent: May 25, 1993Assignee: Cornell Research Foundation, Inc.Inventors: Simon H. Bauer, Huy-Zu Cheng
-
Patent number: 5043500Abstract: A dehydrogenation process, where a hydrocarbon feed is dehydrogenated in a dehydrogenation zone and then oxidatively reheated by the combustion of hydrogen in an oxidation zone containing an oxidation catalyst, is improved by using a stream of dilution steam as an educing fluid to draw oxygen into contact with the effluent from the dehydrogenation zone ahead of the oxidation zone. A stream of dilution steam is often combined with the dehydrogenation zone effluent in order to control the oxygen concentration ahead of the oxidation zone and to lower the hydrogen partial pressure. Educing the oxygen-containing gas for the oxidation zone into the process by using the dilution steam an an educing fluid eliminates the need for compression of the oxygen-containing gas and prevents oxygen from contacting the dehydrogenation zone effluent before the dilution steam is admixed therewith. This process is particularly beneficial in the dehydrogenation of ethylbenzene to produce styrene.Type: GrantFiled: December 20, 1989Date of Patent: August 27, 1991Assignee: UOPInventor: Constante P. Tagamolila
-
Patent number: 4973793Abstract: Cofeeding butylenes with amylenes in a catalytic oxidative dehydrogenation reaction substantially improves the conversion of the amylenes. The approved amylene conversion is obtained by the oxidative dehydrogenation of mixtures of amylenes and from 10 to 95 mole % butylenes.Type: GrantFiled: June 8, 1989Date of Patent: November 27, 1990Assignee: Texas Petrochemicals CorporationInventor: Cecil G. McFarland
-
Patent number: 4788371Abstract: A novel process is disclosed for the steam dehydrogenation of dehydrogenatable hydrocarbons in the vapor phase in conjunction with oxidative reheating of the intermediate products. The process utilizes a single catalyst to perform both the selective oxidation and steam dehydrogenation functions. The particular catalyst employed comprises a Group VIII noble metal component, a Group IA and/or a Group IIA component and may contain among other modifiers a Group IIIA or IVA metal, and a halogen component. The catalytic components are supported on an inorganic substrate such as alumina.Type: GrantFiled: December 30, 1987Date of Patent: November 29, 1988Assignee: UOP Inc.Inventors: Tamotsu Imai, Deng-Yang Jan
-
Patent number: 4778941Abstract: More efficient mixing, more complete hydrogen consumption, and more thorough cooling of a dehydrogenation zone effluent is obtained by educting a portion of the dehydrogenation effluent from the reaction and externally cooling the withdrawn effluent in a heat exchanger and externally admixing the withdrawn effluent with an oxygen-containing stream. Eduction of the hydrogenation effluent by the oxygen-containing stream provides the necessary pressure drop for passing the dehydrogenation effluent through the heat exchanger and then admixing the effluent and oxygen-containing stream.Type: GrantFiled: January 19, 1988Date of Patent: October 18, 1988Assignee: UOP Inc.Inventor: Constante P. Tagamolila
-
Patent number: 4658074Abstract: Oxidative dehydrogenation of organic compounds in vapor phase with catalysts comprising crystalline compositions of iron, oxygen and at least one other metallic element. Preferred catalysts are ferrites.Type: GrantFiled: May 28, 1965Date of Patent: April 14, 1987Assignee: Petro-Tex Chemical CorporationInventors: Laimonis Bajars, Louis J. Croce