Using Metal Oxide Catalyst Patents (Class 585/640)
  • Patent number: 8975461
    Abstract: The present invention in its various embodiments is directed to methods for preparing a renewable jet fuel blendstock, and blendstocks prepared by such methods, comprising fermenting a biomass-derived feedstock to form one or more C2-C6 alcohols such as isobutanol, catalytically dehydrate and oligomerize the alcohols to form higher molecular weight olefins (e.g., C8-C16 olefins), hydrogenating at least a portion of the higher molecular weight olefins to form a renewable jet fuel blendstock comprising C12 and C16 alkanes which meet or exceed the requirements of ASTM D7566-10a for hydroprocessed synthesized paraffinic kerosene (SPK).
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Gevo, Inc.
    Inventors: Matthew W. Peters, Joshua D. Taylor
  • Publication number: 20150057481
    Abstract: Process for simultaneous dehydration and skeletal isomerization of a feedstock that comprises at least one C4 monoalcohol and that contains between 0.5 and 50% water, for the purpose of producing C4 alkenes, with said process operating at a temperature of between 250 and 550° C., under a pressure of between 0.1 and 1 MPa, with an hourly volumetric flow rate of between 0.1 and 10 h?1, characterized in that it uses a catalyst that comprises at least one non-zeolitic aluminosilicate-type solid.
    Type: Application
    Filed: March 25, 2013
    Publication date: February 26, 2015
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Alexandra Chaumonnot, Vincent Coupard, Sylvie Maury
  • Patent number: 8962904
    Abstract: Catalytic composition for producing an alpha-olefin and methods of making same. The catalytic composition includes a gamma-alumina substrate dopes with at least one element consisting of bismuth, copper, gallium, phosphorus, tin, and zinc, an amount of each element being within a range of from 150 parts per million to 1000 parts per million relative to a total doped weight of the gamma-alumina substrate. Additionally, at least one element is combined with at least one element consisting of cesium, lithium, and magnesium, an amount of each element being within the range of from 150 parts per million to 1000 parts per million relative to the total doped weight of the gamma-alumina substrate.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: February 24, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Daniela Ferrari, Alberto Martinez Joaristi, Billy B. Bardin, Garmt R. Meima
  • Patent number: 8962905
    Abstract: Process for the continuous hydrogenation of triglyceride containing raw materials in a fixed bed reactor system having several catalyst beds arranged in series and comprising at least one hydrogenation catalyst comprising an active phase constituted by a nickel and molybdenum element. The raw material feed, hydrogen containing gas and diluting agent are passed together through the catalyst beds at hydrogenation conditions. The raw material feed stream as well as the stream of hydrogen containing gas are divided into an equal number of different partial streams. These are each passed to one catalyst bed in such a manner that the weight ratio of diluting agent to raw material feed is essentially the same at the entrance of all catalyst beds and does not exceed 4:1. The claimed process is preferably conducted at low temperatures and allows the utilization of existing units due to the low recycle ratio.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 24, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Thierry Chapus, Nathalie Dupassieux, Antoine Daudin
  • Patent number: 8957268
    Abstract: Methods are provided for refining natural oil feedstocks. The methods comprise reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters. In certain embodiments, the methods further comprise separating the olefins from the esters in the metathesized product. In certain embodiments, the methods further comprise hydrogenating the olefins under conditions sufficient to form a fuel composition. In certain embodiments, the methods further comprise transesterifying the esters in the presence of an alcohol to form a transesterified product.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: February 17, 2015
    Assignee: Elevance Renewable Sciences, Inc.
    Inventors: Steven A. Cohen, Melvin L. Luetkens, Jr., Chander Balakrishnan, Robert Snyder
  • Patent number: 8957271
    Abstract: The present invention relates to a process to make light olefins, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a) providing a catalyst comprising zeolitic molecular sieves containing 10 member and larger channels in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock in the XTO reactor with the catalyst at conditions effective to convert at least a portion of the feedstock to form a XTO reactor effluent comprising light olefins and a h
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 17, 2015
    Assignee: Total Research & Technology Feluy
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Giacomo Grasso, Sander Van Donk, Wolfgang Garcia
  • Patent number: 8957274
    Abstract: The present invention relates to a process to make light olefins and aromatics, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a0) providing a first portion and a second portion of said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock, a) providing a catalyst comprising zeolitic molecular sieves containing at least 10 membered ring pore openings or larger in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting the first portion of said oxygen-containing, halogenide-containing or sulphur-cont
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 17, 2015
    Assignee: Total Research & Technology Feluy
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Giacomo Grasso, Sander Van Donk, Wolfgang Garcia
  • Patent number: 8957272
    Abstract: The present invention relates to a process to make light olefins, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a0) providing a first portion and a second portion of said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock, a) providing a catalyst comprising zeolitic molecular sieves containing at least 10 membered ring pore openings or larger in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting the first portion of said oxygen-containing, halogenide-containing or sulphur-containing organic
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 17, 2015
    Assignee: Total Research & Technology Feluy
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Giacomo Grasso, Sander Van Donk, Wolfgang Garcia
  • Patent number: 8957273
    Abstract: The present invention relates to a process to make light olefins, in a combined XTO-OC process, from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock comprising: a0) providing a first portion and a second portion of said oxygen-containing, halogenide-containing or sulphur-containing organic feedstock, a) providing a catalyst comprising zeolitic molecular sieves containing at least 10 membered ring pore openings or larger in their microporous structure, b) providing an XTO reaction zone, an OC reaction zone and a catalyst regeneration zone, said catalyst circulating in the three zones, such that at least a portion of the regenerated catalyst is passed to the OC reaction zone, optionally at least a portion of the catalyst in the OC reaction zone is passed to the XTO reaction zone and at least a portion of the catalyst in the XTO reaction zone is passed to the regeneration zone; c) contacting the first portion of said oxygen-containing, halogenide-containing or sulphur-contain
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 17, 2015
    Assignee: Total Research & Technology Feluy
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Giacomo Grasso, Sander Van Donk, Wolfgang Garcia
  • Publication number: 20150038756
    Abstract: The present invention refers to a microporous crystalline material, to the method for the production thereof and to the use of same, the material having a composition: x X2O3:z ZO2:y YO2 in which: X is a trivalent element such as Al, B, Fe, In, Ga, Cr, or mixtures thereof, where (y+z)/x can have values of between 9 and infinity; Z corresponds to a tetravalent element selected from Si, Ge or mixtures thereof; and Y corresponds to a tetravalent element such as Ti, Sn, Zr, V or mixtures thereof, where z/y can have values of between 10 and infinity.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Avelino CORMA CANÓS, Fernando REY GARCÍA, Manuel HERNÁNDEZ RODRIGUEZ, José Luis JORDÁ MORET
  • Publication number: 20150038754
    Abstract: A phosphorous modified zeolite (A) can be made by a process that includes selecting a zeolite, steaming the zeolite, leaching the zeolite, separating solids from liquid, and calcining. An olefin product can be made from an oxygen-containing, halogenide-containing or sulphur-containing organic feedstock by contacting the feedstock with the phosphorous modified zeolite (A) in an XTO reactor under conditions effective to convert at least a portion of the feedstock to olefin products. The XTO reactor effluent can include light olefins and a heavy hydrocarbon fraction. The light olefins can be separated from the heavy hydrocarbon fraction. The heavy hydrocarbon fraction can be contacted in an OCP reactor at conditions effective to convert at least a portion of the heavy hydrocarbon fraction to light olefins.
    Type: Application
    Filed: September 11, 2014
    Publication date: February 5, 2015
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Delphine Minoux, Sander Van Donk
  • Patent number: 8946496
    Abstract: The invention relates to a process for preparing lower olefins from an oxygenate, the process comprising: subjecting C4 hydrocarbons obtained in an oxygenate-to-olefins conversion step to extractive distillation to an etherification step to convert isobutene into an alkyl tertiary butyl ether to obtain an isobutene-depleted C4 hydrocarbon stream and alkyl tertiary-butyl ether; subjecting the isobutene-depleted C4 hydrocarbon stream to extractive distillation to obtain a stream enriched in unsaturated C4 hydrocarbons and a stream enriched in saturated C4 hydrocarbons; and recycling at least part of the stream enriched in unsaturated C4 hydrocarbons and/or at least part of the alkyl tertiary-butyl ether to the oxygenate-to-olefins conversion step.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 3, 2015
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Rajaram Ramesh, Jeroen Van Westrenen
  • Patent number: 8940953
    Abstract: The invention relates to a process for converting a feed stream consisting of reactive components and an optional feed diluent to a product stream comprising aromatic hydrocarbons and C2-C3 olefins, wherein the reactive components comprise at least 90 vol % of an aliphatic ether selected from the group consisting of methyl tertiary butyl ether and ethyl tertiary butyl ether, the process comprising the step of contacting the feed stream with a catalyst composition comprising a zeolite catalyst, wherein the zeolite catalyst is a zeolite modified by Ga and an element M1 selected from the group consisting of Zn, Cd and Cu.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: January 27, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Aghaddin Kh. Mammadov, Ali Said Al-Khuraimi
  • Publication number: 20150005558
    Abstract: Described is a method to make linear alpha olefins. The method includes the steps of contacting a feedstock having a lactone and/or an unsaturated carboxylic acid with a solid acid catalyst having acidic catalytic sites including Lewis acid catalytic sites, for a time and a temperature wherein at least a fraction of the lactone and/or unsaturated carboxylic acid present in the feedstock is converted into a linear alpha olefin. The method may optionally take place in the presence of water. The solid acid catalyst should preferably have at least 50% Lewis acid catalytic sites.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: James Anthony Dumesic, Dong Wang, Sikander Hussain Hakim, David Martin Alonso
  • Publication number: 20150005559
    Abstract: The application provides a catalyst for producing ethylene and propylene from methanol and/or dimethyl ether, and a preparation and application thereof. In the present application, a molecular sieve catalyst co-modified by rare earth metals and silanization is utilized. First, the material containing methanol and/or dimethyl ether reacts on the catalyst to generate hydrocarbons. The hydrocarbons are separated into a C1-C5 component and a C6+ component. Then the C6+ component is recycled to the feeding port and fed into the reactor after mixing with methanol and/or dimethyl ether. The above steps are repeated, to finally generate C1-C5 products, in which the selectivity for ethylene and propylene can reach more than 90 wt % in the C1-C5 component, so that the maximal yield can be achieved in the production of ethylene and propylene from methanol and/or dimethyl ether.
    Type: Application
    Filed: April 23, 2012
    Publication date: January 1, 2015
    Applicant: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Lei Xu, Zhongmin Liu, Shukui Zhu, Zhengxi Yu
  • Patent number: 8912373
    Abstract: A method and apparatus for dehydrating bio-1-alcohols to bio-1-alkenes with high selectivity. The bio-1-alkenes are useful in preparing high flashpoint diesel and jet biofuels which are useful to civilian and military applications. Furthermore, the bio-1-alkenes may be converted to biolubricants useful in the transportation sector and other areas requiring high purity/thermally stable lubricants.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: December 16, 2014
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Michael E. Wright
  • Patent number: 8911614
    Abstract: A new family of crystalline microporous metallophosphates designated AlPO-59 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-59 compositions are characterized by a new unique ABC-6 net structure and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Publication number: 20140364670
    Abstract: The invention relates to a process for the continuous production of one or more olefins from an aqueous solution of corresponding alcohol(s) comprising the following steps: Providing a solid-free aqueous solution of the alcohol(s), Putting said solution through a reactor, which is filled with a fixed-bed catalyst such that said solution comes into contact with the catalyst when flowing through said reactor at a temperature of at least 300° C. and a pressure of at least 220 bar in such a temperature/pressure combination that said alcohol(s) are reacted under supercritical conditions, and Transferring a resulting two-stage mixture to a separator, in which said mixture is separated in a raw olefin gas phase and an aqueous liquid phase, Wherein said catalyst is selected from among metal oxides having the properties of a Brønstedt acid, insoluble metallic or semi-metallic phosphates as well as porous materials selected from among pumice and carbon, the surface area of which is coated with inorganic acid groups.
    Type: Application
    Filed: January 24, 2013
    Publication date: December 11, 2014
    Inventors: Gerd Unkelbach, Rainer Schweppe, Thomas Hirth
  • Patent number: 8906225
    Abstract: A new family of crystalline microporous metallophosphates designated AlPO-57 has been synthesized. These metallophosphates are represented by the empirical formula R+rMmn+EPxSiyOz where R is an organoammonium cation such as the DEDMA+, M is a divalent framework metal such as an alkaline earth or transition metal, and E is a framework element such as aluminum or gallium. The microporous AlPO-57 compositions are characterized by a new unique ABC-6 net structure and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for separating at least one component.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: December 9, 2014
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8895792
    Abstract: An oxygenate to olefins (OTO) process, comprising the steps of: (i) purifying an oxygenate feedstream comprising one or more ionic contaminants by contacting the feedstream with a membrane, resulting in the formation of a retentate and a permeate separated by the membrane, which permeate is a purified oxygenate stream which contains a lower ionic contaminant concentration than the original oxygenate feedstream; (ii) introducing the purified oxygenate stream into an oxygenate to olefins reaction zone; and (iii) contacting the purified oxygenate stream with a molecular sieve catalyst in the oxygenate to olefins reaction zone to form a product stream comprising olefins.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: November 25, 2014
    Assignee: Shell Oil Company
    Inventors: Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
  • Patent number: 8889941
    Abstract: The invention relates to a process for preparing lower olefins from an oxygenate, the process comprising subjecting C4 hydrocarbons obtained in an oxygenate-to-olefins conversion step to extractive distillation to obtain a stream enriched in unsaturated C4 hydrocarbons comprising isobutene and n-butenes, and a stream enriched in saturated C4 hydrocarbons; converting the isobutene in the stream enriched in unsaturated C4 hydrocarbons into an alkyl tertiary butyl ether to obtain an isobutene-depleted unsaturated C4 hydrocarbon stream and alkyl tertiary-butyl ether; and recycling at least part of the isobutene-depleted unsaturated C4 hydrocarbon stream and/or at least part of the alkyl tertiary-butyl ether, optionally after conversion into tertiary butanol and/or isobutene, to the oxygenate-to-olefins conversion step.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: November 18, 2014
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Rajaram Ramesh, Jeroen Van Westrenen
  • Patent number: 8884090
    Abstract: An olefin is prepared from an alkyl alcohol in a process which comprises the steps: a) converting the alkyl alcohol into a dialkylether over a first catalyst, to yield a hot dialkylether product stream containing alkyl alcohol, dialkylether and water; b) cooling the hot dialkylether product stream at least partly by indirect heat exchange with a cold dialkylether product stream to below the dew point of water at the prevailing conditions to obtain a gas-liquid mixture; c) separating the obtained mixture into a liquid water-containing stream and a vaporous dialkylether-rich stream; d) subjecting at least part of the vaporous dialkylether-rich stream, as the cold dialkylether product stream in step b), to heat exchange with the hot dialkylether product stream, to yield a heated dialkylether-rich feed; and e) converting the heated dialkylether-rich feed to an olefin over a second catalyst.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: November 11, 2014
    Assignee: shell Oil Company
    Inventors: Jeroen Van Westrenen, Leslie Andrew Chewter, Ferry Winter
  • Patent number: 8884089
    Abstract: The present invention provides a process for producing olefins, comprising: a. cracking an ethane-comprising feed in a cracking zone under cracking conditions to obtain at least olefins and hydrogen; b. converting an oxygenate feedstock in an oxygenate-to-olefin zone to obtain at least olefins; wherein at least part of the oxygenate feedstock is obtained by providing hydrogen obtained in step a) and a feed containing carbon monoxide and/or carbon dioxide to an oxygenate synthesis zone and synthesizing oxygenates. In another aspect the invention provides an integrated system for producing olefins.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: November 11, 2014
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Jeroen Van Westrenen
  • Publication number: 20140303419
    Abstract: The present invention relates to the preparation of linear butenes from isobutanol which has preferably been obtained from renewable raw materials by microbial and/or fermentation processes.
    Type: Application
    Filed: October 17, 2012
    Publication date: October 9, 2014
    Inventors: Matthias Boll, Thomas Foellinger
  • Publication number: 20140296603
    Abstract: A process and device for the flow of catalyst in a reactor is presented. The device includes a series of grids within a reactor vessel, where each grid includes small openings for the passage of gas and some catalyst particles, and larger openings for the more continuous passage of catalyst.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Applicant: UOP LLC
    Inventors: Richard A. Johnson, II, Paolo Palmas, John J. Senetar, Daniel A. Kauff, Michael Stine
  • Publication number: 20140296466
    Abstract: The present invention relates to a method of producing bio-based homoserine lactone and bio-based organic acid through hydrolysis of O-acyl homoserine produced by a microorganism in the presence of an acid catalyst. According to the present invention, O-acyl homoserine produced by a microorganism is used as a raw material for producing 1,4-butanediol, gamma-butyrolactone, tetrahydrofuran and the like, which are industrially highly useful. The O-acyl homoserine produced by a microorganism can substitute conventional petrochemical products, can solve environmental concerns, including the emission of pollutants and the exhaustion of natural resources, and can be continuously renewable so as not to exhaust natural resources.
    Type: Application
    Filed: March 19, 2014
    Publication date: October 2, 2014
    Inventors: Han Won Lee, Young Lyeol Yang, So Young Kim, Yong Uk Shin, Jin Sook Chang, Hye Won Um, Young Hyoung Goh, Sung Hoo Jhon
  • Publication number: 20140296599
    Abstract: A catalyst can include a phosphorus modified zeolite having partly an ALPO structure. The ALPO structure can be determined by a signal between 35-45 ppm in 27Al MAS NMR spectrum. The zeolite can include at least one ten member ring in the structure thereof. The catalyst can also include a binder and one or more metal oxides. The catalyst can be used in processes in the presence of steam at high temperatures, such as temperatures that are above 300° C. and up to 800° C. The catalyst can be used in alcohol dehydration, olefin cracking, MTO processes, and alkylation of aromatic compounds with olefins and/or alcohols.
    Type: Application
    Filed: July 25, 2012
    Publication date: October 2, 2014
    Applicant: Total Research & Technology Feluy
    Inventors: Nikolai Nesterenko, Delphine Minoux, Cindy Adam, Jean-Pierre Dath
  • Publication number: 20140275683
    Abstract: Disclosed is a catalyst for preparing isobutene by dissociation of methyl tert-butyl ether, the catalyst comprising amorphous silica alumina and a silicalite-1 molecular sieve, wherein the total IR acid amount of weak acids in the catalyst is in a range from 0.020 to 0.080 mmol/g, and the ratio of B acid/L acid of the weak acids is in a range from 2.5:1 to 4.0:1. Also provided is a method of preparing the catalyst and the use thereof. The catalyst has a high selectivity with respect to isobutene, and high conversion of methyl tert-butyl ether, and can also effectively inhibit formation of the by-product dimethyl ether.
    Type: Application
    Filed: October 24, 2012
    Publication date: September 18, 2014
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, FUSHUN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC
    Inventors: Shumei Zhang, Kai Qiao, Ming Chen, Qingtong Zhai, Changxin Guo, Chunmei Wang
  • Patent number: 8835703
    Abstract: The present invention describes a method for the production of one or more olefins from the residue of at least one renewable natural raw material. The present invention is advantageously related to a method that is integrated with a processing method for processing renewable natural agricultural raw materials for the production of propylene, and optionally of ethylene and butylene, mainly from the residues of the processed renewable natural agricultural raw material. The propylene is obtained from the gasification reaction of the lignocellulosic materials and of other organic products contained in the raw material residues, followed by the formation of methanol and its subsequent transformation into propylene, where this route may further generate ethylene and/or butylene as by-products.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: September 16, 2014
    Assignee: Braskem S.A.
    Inventor: Antonio Luiz Ribeiro De Castro Morschbacker
  • Patent number: 8829259
    Abstract: An integrated MTO synthesis and hydrocarbon pyrolysis system is described in which the MTO system and its complementary olefin cracking reactor are combined with a hydrocarbon pyrolysis reactor in a way that facilitates the flexible production of olefins and other petrochemical products, such as butene-1 and MTBE.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: September 9, 2014
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Joseph H. Gregor, John J. Senetar
  • Patent number: 8829260
    Abstract: A process for the production of olefins from at least one of an alcohol and ether, the process including: contacting at least one alcohol or ether with a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce an olefin.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: September 9, 2014
    Assignee: Catalytic Distillation Technologies
    Inventor: J. Yong Ryu
  • Patent number: 8822748
    Abstract: Process for the production of ethene by the vapor phased chemical dehydration of a feed containing ethanol, water and ethoxyethane in a reactor at elevated temperature and pressure in the presence of a bed of catalyst comprising a supported heteropolytungstic acid, by maintaining or configuring the reactor so that it operates in a regime which satisfies the following parameters: 0.05<(Pwater/Pethanol+Pethoxyethane))/(8×10?5×GHSV+0.75)??(1) and ?20<Treaction?Tdew point?40×Ptotal feed+40×Pinerts<+80??(2) wherein Pwater, Pethanol and Pethoxyethane, GHSV, Treaction, Tdew point, Ptotal feed and Pinerts are as defined in the specification.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: September 2, 2014
    Assignee: BP P.L.C.
    Inventors: Benjamin Patrick Gracey, Stephen Roy Partington
  • Patent number: 8822749
    Abstract: Process for the preparation of an olefinic product, which process comprises reacting an oxygenate feedstock and an olefinic co-feed in a reactor in the presence of an oxygenate conversion catalyst comprising a molecular sieve having one-dimensional 10-membered ring channels, and a further molecular sieve having more-dimensional channels, wherein the weight ratio between the one-dimensional molecular sieve and the further molecular sieve is in the range of from 1:1 to 100:1, to prepare an olefinic reaction effluent; separating the olefinic reaction effluent into at least a first olefinic fraction and a second olefinic fraction; recycling at least part of the second olefinic fraction; and recovering at least part of the first olefinic fraction as olefinic product.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: September 2, 2014
    Assignee: Shell Oil Company
    Inventors: Jeroen Van Westrenen, Leslie Andrew Chewter, Ferry Winter
  • Publication number: 20140243570
    Abstract: A catalyst can be used to convert an alcohol in a dehydration process into an olefin having the same number of carbon atoms as the alcohol. The catalyst can include a phosphorus modified zeolite made by providing a zeolite with at least one ten member ring in the structure, steaming the zeolite, mixing the zeolite with binders and shaping additives, and shaping the zeolite. An ion-exchange step can be performed, and the shaped catalyst can be steamed. Phosphorus can be introduced on the catalyst at an amount of at least 0.1 wt %, such as by dry impregnation or chemical vapor deposition. A metal can be introduced. The catalyst can be washed and/or calcinated, and steamed in an equilibration step. The steaming severity (X) can be at least about 2. The catalyst can be steamed at a temperature above 625° C., such as a temperature ranging from 700 to 800° C.
    Type: Application
    Filed: July 25, 2012
    Publication date: August 28, 2014
    Applicants: IFP ENERGIES NOUVELLES, TOTAL RESEARCH & TECHNOLOGY FELUY
    Inventors: Nikolai Nesterenko, Delphine Minoux, Cindy Adam, Jean-Pierre Dath, Joseph Lopez, Patrick Euzen
  • Patent number: 8809603
    Abstract: A method of producing a hydrocarbon fuel from a hydrocarbon-containing gas is disclosed and described. A hydrocarbon-containing gas is produced (10) containing from about 25% to about 50% carbon dioxide and can be reformed (12) with a steam gas to form a mixture of hydrogen, carbon monoxide and carbon dioxide. The reforming can be a composite dry-wet reforming or a tri-reforming step. The mixture of hydrogen, carbon monoxide and carbon dioxide can be at least partially converted (14) to a methanol product. The methanol product can be converted to the hydrocarbon fuel (18), optionally via UME synthesis (16). The method allows for effective fuel production with low catalyst fouling rates and for operation in an unmanned, self-contained unit at the source of the hydrocarbon-producing gas.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 19, 2014
    Assignee: Oberon Fuels, Inc.
    Inventors: Andrew Corradini, Jarod McCormick
  • Patent number: 8796499
    Abstract: A process for producing light olefins from methanol and/or dimethyl ether is disclosed. It comprises: (a) introducing a feed comprising methanol and/or dimethyl ether into a fluidized-bed reactor from its bottom, and contacting the feed in a dense phase zone and a transition zone of the fluidized-bed reactor with a catalyst, to form an effluent I comprising unreacted feed, reaction products and entrained solid particulate catalyst; (b) introducing a terminating agent consisting of water, alcohol, ether, hydrocarbons, and aromatic at upper portion of the transition zone and/or lower portion of a gas-solid separating zone of the fluidized-bed reactor into the effluent I, to give an effluent II; and (c) passing the effluent II into the gas-solid separating zone in upper portion of the fluidized-bed reactor, where gas-solid separation is accomplished to give a gaseous product stream and solid catalyst.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: August 5, 2014
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Juntao Liu, Siqing Zhong, Huiming Zhang
  • Publication number: 20140206918
    Abstract: A new family of crystalline microporous silicometallophosphates designated MAPSO-64 and modified forms thereof have been synthesized. These silicometallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as ETMA+ or DEDMA+, M is an alkaline earth or transition metal cation of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The MAPSO-64 compositions are characterized by a BPH framework topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Publication number: 20140206919
    Abstract: A new family of crystalline microporous metallophosphates designated AlPO-67 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+ or DEDMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-67 compositions have the LEV topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8785703
    Abstract: The present invention provides a process for preparing ethylene and/or propylene, comprising the steps of contacting a stream comprising C4+ olefins with a zeolite-comprising catalyst at a temperature in the range of from 350 to 1000° C. and retrieving an olefinic product stream comprising: ethylene and/or propylene, and a C4+ hydrocarbon fraction, comprising paraffins, normal olefins and iso-olefins; The C4+ hydrocarbon fraction is recycled while part of the fraction is purged. The part of the C4+ hydrocarbon with is purged is treated to extract C4+ isoolefins as tert-alkyl ethers. At least part of tert-alkyl ethers are converted to further ethylene and propylene.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 22, 2014
    Assignee: Shell Oil Company
    Inventors: Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
  • Patent number: 8779226
    Abstract: The present invention provides a process for preparing ethylene and/or propylene, comprising the steps of: a) providing an oxygenate-comprising feedstock; b) contacting the oxygenate-comprising feedstock with a molecular sieve-comprising catalyst at a temperature in the range of from 450 to 700° C. and converting at least part of the oxygenate into an olefinic product comprising ethylene and/or propylene; and c) retrieving the olefinic product, wherein the oxygenate-comprising feedstock comprises in the range of from 1 to 97 wt % of at least one tert-alkyl ether selected from the group MTBE, ETBE, TAME and TAEE, based on the weight of the oxygenates in the oxygenate-comprising feedstock, and further comprises methanol and/or DME.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 15, 2014
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Rajaram Ramesh, Jeroen Van Westrenen
  • Publication number: 20140179972
    Abstract: A reactor design and configuration and a process for the catalytic dehydration of propanol to propylene where the reactor train is comprised of a multi-stage single reactor vessel or multiple reactor vessels wherein each stage and/or vessel has different length, internal diameter, and volume than the other stages and/or vessels and in addition the stages and/or reactor vessels are connected in series or in parallel arrangement, preferably used with an improved means of introducing the propanol feedstock and a heat carrying inert gas to the improved reactor train.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: PETRON SCIENTECH INC.
    Inventors: Hassan Taheri, Yogendra Sarin, Brian Ozero
  • Publication number: 20140171713
    Abstract: A porous crystalline nano metallo-alumino-phosphate molecular sieve is described. The molecular sieve has a framework composition on an anhydrous and calcined basis expressed by an empirical formula (ElxAlyPz)O2 wherein El is silicon, magnesium, zinc, iron, cobalt, nickel, manganese, chromium, or combinations thereof, where x is the mole fraction of El and has a value from 0.001 to about 0.5, y is the mole fraction of Al and has a value of at least 0.01, z is the mole fraction of P has a value of at least 0.01, and x+y+z=1, where the molecular sieve is characterized as having a LEV framework and nano octahedral crystals with an average crystal size of less than 700 nm. Methods of making the molecular sieves, and methods of using the molecular sieves are also described.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan, Nicholas J. Schoenfeldt
  • Patent number: 8754280
    Abstract: The present invention provides a method for start-up of an Oxygenate-to-Olefins process, which process comprises the steps: a) providing an oxygenate-comprising feedstock to an Oxygenate-to-Olefins reaction zone and contacting the feedstock with a zeolite-comprising catalyst at a temperature in the range of from 450 to 700° C. ° C., to obtain an reaction product containing olefins; b) separating the reaction product obtained in step a) in at least a product fraction containing ethylene and/or propylene and a product fraction containing C4+ olefins; c) recycling at least part of the C4+ olefins in the product fraction containing C4+ olefins to the Oxygenate-to-Olefins reaction zone in step (a), characterized in that upon start-up the oxygenate-comprising feedstock initially comprises a first amount of externally supplied tert-alkyl ether and subsequently the amount of externally supplied tert-alkyl ether in the oxygenate-comprising feedstock is reduced.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 17, 2014
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Rajaram Ramesh, Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
  • Patent number: 8754277
    Abstract: The present invention provides a process for preparing ethylene and/or propylene, comprising the steps of providing a hydrocarbon stream, comprising C4+ normal olefins and C4+ iso-olefins; converting C4+ isoolefins to tert-alkyl ether and separating the ethers from the hydrocarbon stream; isomersing the C4+ normal olefins to iso-olefins and converting C4+ isoolefins to tert-alkyl ether and separating the ethers from the hydrocarbon stream; converting the obtained tert-alkyl ether to ethylene and propylene by contacting the tert-alkyl ether with a molecular sieve-comprising catalyst and retrieving an olefinic product.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 17, 2014
    Assignee: Shell Oil Company
    Inventors: Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
  • Publication number: 20140163277
    Abstract: A method of making one or more 2,5-dimethylhexenes is described. The method includes reacting isobutene with isobutanol in the presence of a platinum group metal catalyst to form one or more 2,5-dimethylhexenes. A method of making p-xylene using one or more 2,5-dimethylhexenes is also described. The p-xylene can be made from totally renewable sources, if desired.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Stuart E. Smith, Alakananda Bhattacharyya
  • Patent number: 8741258
    Abstract: Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: June 3, 2014
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Tushar P. Vispute, Kamalakanta Routray
  • Patent number: 8742188
    Abstract: The present invention provides a process for preparing ethylene and/or propylene and an iso-olefin-depleted olefinic product, comprising the steps of: a) providing a C5 hydrocarbon-comprising stream, comprising C5 cyclopentene and C5 iso-olefins; b) subjecting the C5 hydrocarbon-comprising stream to an etherification process with methanol and/or ethanol wherein at least part of the C5 iso-olefins are converted with methanol and/or ethanol to an tert-alkyl ether, and retrieving an etherification product stream; c) separating at least part of the etherification product stream into at least an ether-enriched stream and a first iso-olefin-depleted olefinic product; d) converting at least part of the tert-alkyl ether in the ether-enriched stream to ethylene and/or propylene by contacting at least part of the ether-enriched stream with a molecular sieve-comprising catalyst at a temperature in the range of from 350 to 1000° C. and retrieving a second olefinic product comprising ethylene and/or propylene.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 3, 2014
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Rajaram Ramesh, Sivakumar Sadasivan Vijayakumari, Jeroen Van Westrenen
  • Publication number: 20140148631
    Abstract: The present invention provides a process for preparing ethylene and/or propylene, wherein an oxygenate feedstock is contacted with a zeolite-comprising catalyst at a temperature in the range of from 500 to 700° C. to obtain a reactor effluent comprising ethylene and/or propylene and the oxygenate feedstock is contacted with the catalyst in a riser reactor having a reactor wall defining a flow trajectory towards a downstream outlet for reactor effluent, wherein at least oxygenate feedstock and catalyst are provided at one or more upstream inlets of the riser reactor and wherein C5 olefins are admitted to the riser reactor at one or more of locations along the length of the flow trajectory. The invention further provides a reaction system suitable for preparing ethylene and propylene.
    Type: Application
    Filed: July 1, 2013
    Publication date: May 29, 2014
    Inventors: Leslie Andrew CHEWTER, Ye-Mon CHEN, Timothy NISBET, Sivakumar SADASIVAN VIJAYAKUMARI, Jeroen VAN WESTRENEN
  • Patent number: 8735639
    Abstract: The present process provides a method for converting an oxygenate-containing feed stream to an olefin-containing product stream. The method includes: (1) providing a first fluidized catalytic reactor for converting methanol to propylene, the first reactor having a fluidized catalyst system comprising a first catalyst and a second catalyst; (2) providing a second fluidized catalytic reactor communicating with the first fluidized catalytic reactor for cracking heavy olefins having four carbon atoms or greater into propylene, the second reactor having the fluidized catalyst system; (3) providing an oxygenate containing feed to the first reactor; and (4) fluidizing the catalyst system with the oxygenate containing feed.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: May 27, 2014
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Bryan K. Glover, Peter R. Pujado
  • Publication number: 20140142361
    Abstract: The present invention relates to a process for the conversion of oxygenates to olefins comprising (i) providing a gas stream comprising one or more oxygenates; and (ii) contacting the gas stream with a catalyst; wherein the catalyst comprises a zeolitic material having an MFI, MEL, and/or MWW-type framework structure comprising YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element, said zeolitic material being obtainable and/or obtained according to a method comprising (1) preparing a mixture comprising one or more sources for YO2, one or more sources for X2O3, and one or more solvents; and (2) crystallizing the mixture obtained in step (1) to obtain a zeolitic material having an MFI, MEL and/or MWW-type framework structure; wherein the mixture crystallized in step (2) contains 3 wt.-% or less of the one or more elements M based on 100 wt.-% of YO2, wherein M stands for sodium.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 22, 2014
    Applicant: BASF SE
    Inventors: Manuela Gaab, Ulrich Müller, Milan Kostur, Kirsten Spannhoff, Kerem Bay, Andrei-Nicolae Parvulescu