Using Catalyst Patents (Class 585/653)
  • Publication number: 20110245569
    Abstract: Processes for the conversion, under conditions and with a catalyst system effective for olefin metathesis, of hydrocarbon feedstocks comprising an acyclic symmetrical olefin (e.g., butene-2) are described. Olefin products of lower and higher carbon numbers (e.g., propylene and pentene) are formed in the presence of a catalyst comprising a solid support and a tungsten hydride bonded to alumina present in the support. This occurs despite the olefin metathesis reaction mechanism leading to a degenerative result, without any expected production of different carbon number products from acyclic symmetrical olefins.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Christopher P. NICHOLAS, Etienne MAZOYER, Mostafa TAOUFIK, Jean-Marie BASSET, Paul T. BARGER
  • Publication number: 20110245560
    Abstract: Processes for olefin metathesis, for example for the production of propylene, utilize a catalyst comprising a solid support and a tungsten hydride bonded to alumina present in the support. Conversion, selectivity, and/or catalyst stability advantages may be realized when a first olefin reactant (e.g., ethylene) is present in the hydrocarbon feedstock at a stoichiometric deficit relative to a second, higher carbon number olefin reactant (e.g., butylene).
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Mostafa TAOUFIK, Etienne MAZOYER, Christopher P. NICHOLAS, Jean-Marie BASSET
  • Publication number: 20110245570
    Abstract: Processes for the conversion, under conditions and with a catalyst system effective for olefin metathesis, of hydrocarbon feedstocks comprising butylene, for example all or a large proportion of a single C4 olefin isomer such as butene-1, are described. Olefin products, and particularly propylene, are formed in the presence of a catalyst comprising a solid support and a tungsten hydride bonded to alumina present in the support. This occurs despite the expectation that the olefin metathesis reaction mechanism leads to the formation of olefin products having other carbon numbers.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Christopher P. NICHOLAS, Etienne MAZOYER, Mostafa TAOUFIK, Jean-Marie BASSET, Paul T. BARGER, James E. REKOSKE
  • Publication number: 20110230697
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.
    Type: Application
    Filed: June 2, 2011
    Publication date: September 22, 2011
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20110192765
    Abstract: The present invention relates to a catalyst comprising at least one IZM-2 zeolite, at least one amorphous matrix, at least one hydro-dehydrogenating element selected from the group formed by the elements from group VIB and from group VIII of the periodic table and excluding platinum and palladium. The catalyst also optionally contains a controlled quantity of at least one doping element selected from phosphorus, boron and silicon, optionally at least one element from group VB of the periodic table of the elements, and optionally a group VIIA element. The invention also relates to hydrocracking and hydrotreatment processes implementing this catalyst.
    Type: Application
    Filed: July 29, 2009
    Publication date: August 11, 2011
    Applicant: IFP Energies nouvelles
    Inventors: Emmanuelle Guillon, Laurent Simon
  • Patent number: 7981273
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20110172483
    Abstract: The present invention relates to an oxide catalyst and a phosphoric oxide catalyst for hydrocarbon steam cracking, method for preparing the same and a method for preparing olefin by using the same. More precisely, the present invention relates to an oxide catalyst for hydrocarbon steam cracking represented by formula 1 and a phosphoric oxide catalyst for hydrocarbon steam cracking represented by formula 3 which would be used for the production of olefin such as ethylene and propylene by hydrocarbon steam cracking, and a method for preparing the same. The present invention provides an oxide catalyst and a phosphoric oxide catalyst for hydrocarbon steam cracking that has excellent thermo-stability at high temperature and improved olefin yield. CrZrjAkOx ??[Formula 1] CrZrjAkPlOx ??[Formula 3] Wherein, j, k, l and x are as indicated in the description.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 14, 2011
    Inventors: Jun-seon CHOI, Jun-Han Kang, Jong-hun Song, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
  • Patent number: 7973209
    Abstract: Processing schemes and arrangements for the catalytic cracking of a heavy hydrocarbon feedstock and obtaining light olefins substantially free of carbon dioxide via amine treatment and employing fractionation processing are provided.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: July 5, 2011
    Assignee: UOP LLC
    Inventors: Gavin P. Towler, John P. Brady, William J. Lechnick, Michael A. Schultz
  • Patent number: 7951987
    Abstract: The present invention relates to a thermal-cracking method of hydrocarbon using a hydrocarbon thermal-cracking apparatus including a tube type furnace having a radiation part for thermally cracking hydrocarbon feedstocks supplied together with steam and a convection part. A hydrocarbon thermal-cracking catalyst is packed in some or entire area of the tube placed in the radiation part of the tube type furnace, wherein the hydrocarbon thermal-cracking catalyst includes an oxide catalyst represented by CrZrjAkOx (wherein, 0.5?j?120 and 0?k?50, A is a transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and the numbers of j and k). Therefore, it is possible to improve yield and selectivity of olefin, reduce fuel consumption due to an excellent heat transfer efficiency and extend decoking interval by reduced production of coke deposited to an inside wall of a tube, in steam cracking of hydrocarbon for producing olefin.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: May 31, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Jun-seon Choi, Byoung-gi Park, Jin-do Kim, Hyune-jung Ryu
  • Patent number: 7947860
    Abstract: Processing schemes and arrangements for application of a dividing wall separation column in the processing of an effluent resulting from FCC processing modified for increased light olefin production. The dividing wall separation column desirably splits a naphtha feedstock produced or resulting from such modified FCC processing to produce or form a light fraction containing C5-C6 compounds, an intermediate fraction containing C7-C8 compounds and a heavy fraction containing C9+ compounds.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: May 24, 2011
    Assignee: UOP LLC
    Inventors: Michael A. Schultz, Keith A. Couch
  • Publication number: 20110118518
    Abstract: A process for obtaining a catalyst composite comprising the following steps: a). selecting a molecular sieve having pores of 10-or more-membered rings b). contacting the molecular sieve with a metal silicate different from said molecular sieve comprising at least one alkaline earth metal and one or more of the following metals: Ga, Al, Ce, In, Cs, Sc, Sn, Li, Zn, Co, Mo, Mn, Ni, Fe, Cu, Cr, Ti and V, such that the composite comprises at least 0.1 wt % of silicate.
    Type: Application
    Filed: January 23, 2009
    Publication date: May 19, 2011
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk
  • Patent number: 7943038
    Abstract: Processes for producing one or more olefins are provided. In one or more embodiments, a doped catalyst can be prepared by fluidizing one or more coked-catalyst particles in the presence of one or more oxidants to provide a fluidized mixture. At least a portion of the coke can be removed from the coked-catalyst particles to provide regenerated catalyst particles. One or more doping agents can be distributed throughout the fluidized mixture, depositing on the surface of the regenerated catalyst particles to provide doped catalyst particles. One or more hydrocarbon feeds can be fluidized with the doped catalyst particles to provide a reaction mixture which can be cracked to provide a first product containing propylene, ethylene, and butane.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: May 17, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Pritham Ramamurthy
  • Patent number: 7939702
    Abstract: Disclosed is a process for increasing production of light olefinic hydrocarbons from hydrocarbon feedstock by catalytic cracking. In the process, an effective separation process structure and recycle method of light olefins are used not only to increase the productivity and efficiency of an overall process, thus effectively increasing the production of light olefins, but also to simplify the overall process.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: May 10, 2011
    Assignee: SK Energy Co., Ltd.
    Inventors: Sun Choi, Yong Seung Kim, Deuk Soo Park, Suk Joon Kim, Il Mo Yang
  • Patent number: 7932427
    Abstract: The present invention provides a process for the preparation of propylene from a hydrocarbon feed containing one or more C5 and/or C6 cycloalkanes, wherein the hydrocarbon feed containing one or more C5 and/or C6 cycloalkanes is contacted under cracking conditions with a one-dimensional zeolite having 10-membered ring channels and a silica to alumina ratio in the range from 1 to 500 wherein at least 50% w/w of the total amount of zeolite used is zeolite in the hydrogen form.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: April 26, 2011
    Assignee: Shell Oil Company
    Inventors: Leslie Andrew Chewter, Michiel Johannes Franciscus Maria Verhaak, Jeroen Van Westrenen
  • Publication number: 20110065969
    Abstract: High energy (e.g., ultrasonic) mixing of a liquid hydrocarbon feedstock and reactants comprised of an oxidation source, catalyst and acid yields a diesel fuel product or additive having substantially increased cetane number. Ultrasonic mixing creates cavitation, which involves the formation and violent collapse of micron-sized bubbles, which greatly increases the reactivity of the reactants. This, in turn, substantially increases the cetane number compared to reactions carried out using conventional mixing processes, such as simple mechanical stirring. Alternatively, an aqueous mixture comprising water and acid can be pretreated with an oxidation source such as ozone and subjected to ultrasonic cavitation prior to reacting the pretreated mixture with a liquid hydrocarbon feedstock.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 17, 2011
    Applicant: CETAMAX VENTURES LTD.
    Inventors: KIN MENG CHAN, KAMALUL ARIFIN YUSOF, SHAHRUL NIZA BIN ABDUL RAHIM, MD ASRAFF BIN ABDUL KARIM, ROGER KAI LOTT
  • Publication number: 20110065973
    Abstract: The invention is directed to effective means for joining materials having dissimilar coefficients of thermal expansion, such as advanced ceramics with metallic compounds. Moreover, the present invention relates to furnace tubes and methods of fabricating a joint between two different materials, which is compositionally graded to provide a substantially graded coefficient of thermal expansion between the joint materials.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 17, 2011
    Applicant: STONE & WEBSTER PROCESS TECHNOLOGY, INC
    Inventors: John Andrew Fernie, Martyn David Roberts, Yong Wang, Narayanan Rajesh Kavilveedu
  • Patent number: 7893311
    Abstract: The invention is to provide a catalyst excellent in product producibility and selectivity, and in coking degradation resistance and regeneration degradation resistance, which is for production of ethylene and propylene through catalytic conversion from a hydrocarbon material. The invention relates to a method for producing ethylene and propylene through catalytic conversion from an olefin, by contacting a hydrocarbon material with a zeolite-containing shaped catalyst satisfying the following requirements (1) to (6), in a reactor: (1) the zeolite is an intermediate pore-size zeolite having a pore size of from 5 to 6.5 angstroms, (2) the zeolite does not substantially contain a proton, (3) the zeolite contains at least one metal selected from the group consisting of metals belonging to the Group IB of the Periodic Table, (4) the zeolite-containing shaped catalyst comprises silica as a binder, (5) the zeolite-containing shaped catalyst has a side-crush strength of at least 2.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: February 22, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yoshikazu Takamatsu, Kouji Nomura
  • Patent number: 7884257
    Abstract: The invention is to provide a catalyst for long-term, high-yield and stable production of ethylene and propylene in an efficient and simple method of catalytic conversion from a hydrocarbon material. The invention relates to a method for producing ethylene and propylene by contacting a hydrocarbon material that contains an olefin having from 4 to 12 carbon atoms in an amount of at least 20% by weight, with a zeolite-containing shaped catalyst satisfying the following requirements (1) to (4), in a reactor for catalytic conversion of that olefin: (1) the zeolite is an intermediate pore-size zeolite having a pore size of from 5 to 6.5 angstroms, (2) the zeolite does not substantially contain a proton, (3) the zeolite contains at least one metal selected from the group consisting of metals belonging to the Group IB of the Periodic Table, (4) the zeolite has a silica/alumina molar ratio (SiO2/Al2O3 molar ratio) of from 800 to 2,000.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: February 8, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yoshikazu Takamatsu, Kouji Nomura
  • Patent number: 7880048
    Abstract: A process for once-through conversion of a hydrocarbon feed comprising at least olefins containing 4 carbon atoms and at least olefins containing 5 carbon atoms is described for the production of propylene, said process comprising passing said feed into at least one reaction unit provided with at least one catalyst in the form of spherical beads with a diameter in the range 1 to 3 mm, each of said spherical beads comprising at least one zeolite and at least one alumina-based support and having a pore distribution such that the macroporous volume, measured by mercury porosimetry, is in the range 0.10 to 0.20 ml/g and the mesoporous volume, measured by mercury porosimetry, is in the range 0.25 to 0.35 ml/g.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: February 1, 2011
    Assignee: IFP
    Inventors: Brigitte Pigeat, Vincent Coupard, Sylvie Maury, Serge Drouet
  • Patent number: 7875756
    Abstract: A process for producing lower olefins is disclosed. The technical problem is to overcome the defects presented in the prior art including high reaction pressure, high reaction temperature, low yield and selectivity of lower olefins as the target products, poor stability and short life of catalyst, and limited suitable feedstocks. The disclosed process, which is carried out under the conditions of catalytic cracking olefins and adopts as a feedstock an olefins-enriched mixture containing one or more C4 or higher olefins and optionally an organic oxygenate compound, comprises the steps of: a) letting the feedstock contact with a crystalline aluminosilicate catalyst having a SiO2/Al2O3 molar ratio of at least 10, to thereby produce a reaction effluent containing lower olefins; and b) separating lower olefins from the reaction effluent; wherein, the reaction pressure is from ?0.1 MPa to <0 MPa.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: January 25, 2011
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Juntao Liu, Siqing Zhong, Wenwei Wu
  • Publication number: 20110009680
    Abstract: This disclosure relates to a crystalline molecular sieve comprising silicalite-1 having substantially hexagonal column morphology of at least 90% and having less than 20% crystal twinning as measured by SEM. This disclosure also relates to a method of making the crystalline molecular sieve of this disclosure, the method comprises: (a) providing a mixture comprising at least one source of at least one tetravalent element (Y), at least one source of hydroxide ion, at least one directing-agent (R), water, the mixture having the following molar composition: H2O/Y=10 to 1000 OH?/Y=0.41 to 0.74 R/Y=0.001 to 2 wherein R comprises at least one of TPAOH, TPACl, TPABr, TPAI, and TPAF, wherein OH?/Y is not corrected for trivalent ion; (b) submitting the mixture at crystallization conditions to form a product comprising the crystalline molecular sieve, wherein the crystallization conditions comprise a temperature in the range of from 100° C. to 250° C.
    Type: Application
    Filed: February 13, 2009
    Publication date: January 13, 2011
    Inventor: Sebastien Kremer
  • Patent number: 7863494
    Abstract: Provided are a catalyst for hydrocarbon steam cracking for light olefin production and a method for preparing the same. The catalyst is a simple KMgPO4 catalyst, a supported KMgPO4 catalyst, or a KMgPO4-sintered catalyst. The supported KMgPO4 catalyst is prepared by impregnating a carrier with an aqueous solution of a KMgPO4 precursor and the KMgPO4-sintered catalyst is prepared by mixing a KMgPO4 powder or a KMgPO4 precursor powder with metal oxide followed by sintering. Provided is also a method for producing light olefins such as ethylene and propylene by steam cracking in the presence of the catalyst. When the catalyst comprising KMgSO4 as a catalytic component is used in olefin production, the yield of olefins is increased and the amount of cokes deposited on the catalyst is reduced.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: January 4, 2011
    Assignees: LG Chem, Ltd., LG Petrochemical Co., Ltd.
    Inventors: Jun-han Kang, Won-ho Lee, Sang-mun Jeong, Sang-ku Park, Jong-hyun Chae
  • Publication number: 20100324348
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 23, 2010
    Inventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20100317909
    Abstract: A method for producing olefins using a carbon nanotube catalyst is disclosed. Initially, a hydrocarbon feedstock is received. The hydrocarbon feedstock, the carbon nanotube catalyst, and steam are mixed in a thermal cracking reactor. The mixture is heated in the thermal cracking reactor to a particular temperature. The olefins are then separated from the mixture. The carbon nanotube catalyst can include carbon nanotubes coated with M1xOy and modified with M2mOn. M1 can be either the element silicon or tungsten, x can be an integer that represents the oxidation number of M1, and y can an integer that represents the number of oxygen atoms required by the oxidation number of M1. M2 can be a metallic element, m can be an integer that represents the oxidation number of M2, and n can be an integer that represents the number of oxygen atoms required by the oxidation number of M2.
    Type: Application
    Filed: August 19, 2010
    Publication date: December 16, 2010
    Inventors: KAMYAR KEYVANLOO, JAFAR TOWFIGHI DARIAN, ALI MOHAMADALIZADEH
  • Publication number: 20100312032
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.51?j?120, 1?k?50, A is transition metal, and x is a number satisfying conditions according to valence of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefin by using the same.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Applicant: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Publication number: 20100280290
    Abstract: This disclosure relates to a novel method of making and recovering M41S family molecular sieve materials using synthesis mixtures having high solids-content and without a purification step. The solids-content, for example, is in a range from about 20 wt. % to 50 wt. %. The method also includes the step of mixing at least a portion of the M41S made with another material to form a composition, wherein the amount of said material to be mixed with said M41S product is such that said composition having less than 10 wt. % free fluid. The material mixed with the M41S made includes metal oxides, metal nitrides, metal carbides and mixtures thereof, as well as absorptive material capable of absorbing mother liquor and selected from the group consisting of carbon silica, alumina, titania, zirconia and mixtures thereof. The amount of the wastewater generated by this novel method is reduced by at least 50% to as much as 100% as comparing with conventional method of making M41S materials.
    Type: Application
    Filed: July 30, 2008
    Publication date: November 4, 2010
    Applicant: EXXON-MOBIL CHEMICAL PATENTS INC.
    Inventors: Wenyih F. Lai, Robert Kay, Stephen McCarthy
  • Publication number: 20100274066
    Abstract: Catalyst compositions comprising a siliceous zeolite component, either in separately formed catalyst particles or dispersed in the same binder or matrix as other zeolites of the compositions, are described. The catalyst compositions, for example as blends of three different bound zeolite catalysts, are particularly useful in fluid catalytic cracking (FCC) processes due to the reductions in coke and dry gas yields that allow FCC throughput, which is normally constrained by gas handling and/or catalyst regeneration capacity, to be increased.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Lawrence L. Upson, Laszlo T. Nemeth
  • Patent number: 7820033
    Abstract: A process for increasing ethylene yield in a cracked hydrocarbon is provided. A hydrocarbon feed stream comprising at least 90% by weight of one or more C4-C10 hydrocarbons can be heated to provide an effluent stream comprising at least 10% by weight propylene. The effluent stream can be selectively separated to provide a first stream comprising heavy naphtha, light cycle oil, slurry oil, or any combination thereof and a second stream comprising one or more C4-C10 hydrocarbons. The second stream can be treated to remove oxygenates, acid gases, water, or any combination thereof to provide a third stream comprising the one or more C4-C10 hydrocarbons. The third stream can be selectively separated to provide a product stream comprising at least 30% by weight propylene. At least a portion of the product stream can be recycled to the hydrocarbon feed stream to increase ethylene yield in the effluent stream.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: October 26, 2010
    Assignee: Kellogg Brown & Root LLC
    Inventors: Curtis N. Eng, Yonglin Yang
  • Publication number: 20100256431
    Abstract: The present invention provides a process for the catalytic cracking of an olefin-rich feedstock which is selective towards light olefins in the effluent, the process comprising contacting a hydrocarbon feedstock containing one or more olefins, with a catalyst made of a phosphorus-modified zeolite (A), to produce an effluent with an olefin content of lower molecular weight than that of the feedstock, wherein said phosphorous modified zeolite (A) is made by a process comprising in that order: selecting a zeolite with low Si/Al ratio (advantageously lower than 30) among H+ or NH4+-form of MFI, MEL, FER, MOR, clinoptilolite, said zeolite having been made preferably without direct addition of organic template; steaming at a temperature ranging from 400 to 870° C. for 0.01-200 h; leaching with an aqueous acid solution containing the source of P at conditions effective to remove a substantial part of Al from the zeolite and to introduce at least 0.
    Type: Application
    Filed: July 28, 2008
    Publication date: October 7, 2010
    Applicant: Total Petrochemicals Research Feluy
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Delphine Minoux, Sander Van Donk
  • Patent number: 7767611
    Abstract: A modified zeolite beta having an anhydrous chemical formula, by weight % of the oxides, of (0-0.3)Na2O.(0.5-10)Al2O3.(1.3-10)P2O5.(0.7-15)MxOy.(70-97)SiO2, wherein M is one or more transition metal(s) selected from the group consisting of Fe, Co, Ni, Cu, Mn, Zn and Sn, x is the number of the atoms of said transition metal M, and y is a number that meets with the requirement of the oxidation state of said transition metal M, is disclosed. The modified zeolite beta can be used as an active component of a cracking catalyst or additive for catalytic cracking of petroleum hydrocarbons.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 3, 2010
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Yibin Luo, Zhijian Da, Ying Ouyang, Li Zhuang, Jun Long, Xingtian Shu, Baoning Zong
  • Patent number: 7754934
    Abstract: A process for efficiently and stably producing ethylene and propylene which comprises bringing a hydrocarbon feedstock comprising at least one C4-12 olefin into contact with a zeolite-containing catalyst to obtain a reaction mixture containing ethylene and propylene, separating the reaction mixture into a fraction comprising ingredients ranging from hydrogen to C3 hydrocarbons and a fraction comprising C4 and higher hydrocarbons, and recycling the C4 and higher hydrocarbons as they are to a reactor.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: July 13, 2010
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takashi Tsunoda, Mitsuhiro Sekiguchi
  • Publication number: 20100152515
    Abstract: One exemplary embodiment can be a fluid catalytic cracking system. The fluid catalytic cracking system can include a reaction zone including a riser having a top and a bottom adapted to receive spent catalyst at a first elevation and regenerated catalyst at a second elevation. Typically, the first elevation is lower than the second elevation. Additionally, the fluid catalytic cracking system can include a gas distributor contained near the bottom of the riser in communication with a hydrocarbon feed.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Inventors: Paolo Palmas, Robert Mehlberg, Keith Allen Couch, Paul Nishimura
  • Patent number: 7737317
    Abstract: Processing schemes and arrangements are provided for the processing a heavy hydrocarbon feedstock via hydrocarbon cracking processing with selected hydrocarbon fractions being obtained via fractionation-based product recovery.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: June 15, 2010
    Assignee: UOP LLC.
    Inventors: Michael A. Schultz, Jason T. Corradi
  • Patent number: 7718840
    Abstract: Disclosed is a process for producing light olefins from hydrocarbon feedstock. The process is characterized in that a porous molecular sieve catalyst consisting of a product obtained by evaporating water from a raw material mixture comprising a molecular sieve with a framework of Si—OH—Al— groups, a water-insoluble metal salt, and a phosphate compound, is used to produce light olefins, particularly ethylene and propylene, from hydrocarbon, while maintaining excellent selectivity to light olefins. According to the process, by the use of a specific catalyst with hydrothermal stability, light olefins can be selectively produced in high yield with high selectivity from hydrocarbon feedstock, particularly full-range naphtha. In particular, the process can maintain higher cracking activity than the reaction temperature required in the prior thermal cracking process for the production of light olefins, and thus, can produce light olefins with high selectivity and conversion from hydrocarbon feedstock.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: May 18, 2010
    Assignees: SK Energy Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Sun Choi, Yong Seung Kim, Deuk Soo Park, Suk Joon Kim, Il Mo Yang, Hee Young Kim, Yong Ki Park, Chul Wee Lee, Won Choon Choi, Kwang An Ko, Na Young Kang
  • Patent number: 7691767
    Abstract: Provided are a catalyst which inhibits light paraffins form being produced in catalytic cracking of heavy hydrocarbons and which effectively produces olefins and a process in which the above catalyst is used to produce olefins from heavy hydrocarbons at a high yield. The catalyst is a catalytic cracking catalyst for catalytically cracking a hydrocarbon raw material, comprising (A) pentasil type zeolite modified with a rare earth element and zirconium and (B) faujasite type zeolite, and the process is a production process for olefin and a fuel oil, comprising bringing a heavy oil containing 50 mass % or more of a hydrocarbon fraction having a boiling point of 180° C. or higher into contact with the catalyst described above to crack it.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: April 6, 2010
    Assignees: Research Association of Refinery Integration for Group-Operation, Idemitsu Kosan Co., Ltd.
    Inventors: Kenichi Wakui, Kinsho Furusawa, Akio Suwa, Toshio Itoh, Hisao Nagashima
  • Patent number: 7692057
    Abstract: The present invention provides a process for producing lower olefins by catalytic cracking a feedstock comprising an olefins-enriched mixture containing C4 or higher olefins and optionally an organic oxygenate compound. The technical problem mainly addressed in the present invention is to overcome the defects presented in the prior art including low yield and selectivity of lower olefins as the target products, and short regeneration period of catalyst.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: April 6, 2010
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Juntao Liu, Weimin Yang, Siqing Zhong, Yanhui Yuan, Huiming Zhang
  • Publication number: 20100076240
    Abstract: A process for converting a hydrocarbon feedstock to provide an effluent containing light olefins, the process comprising passing a hydrocarbon feedstock, the feedstock containing at least 25 wt % C5+ paraffins, through a reactor containing a crystalline silicate catalyst to produce an effluent including propylene.
    Type: Application
    Filed: July 13, 2007
    Publication date: March 25, 2010
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Jean-Pierre Dath, Walter Vermeiren
  • Patent number: 7683231
    Abstract: A catalyst system capable of supporting combustion beyond the fuel rich limit of flammability comprising a catalytic component, a first support and a second support and wherein the catalytic component is present on both the first and the second support, and a process for the production of an olefin, said process comprising passing a mixture of a hydrocarbon and an oxygen-containing gas over said catalyst system to produce said olefin. The first support and the second support must differ in at least one of the following aspects: support material, support type and/or structural dimension.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: March 23, 2010
    Assignee: Ineos Europe Limited
    Inventors: Ian Allan Beattie Reid, Vaughan Clifford Williams
  • Patent number: 7678954
    Abstract: In a process for producing a hydrocarbon composition, a feed comprising at least one C3 to C8 olefin and an olefinic recycle stream rich in C9? hydrocarbons is contacted with a crystalline molecular sieve catalyst having an average crystal size no greater than 0.05 micron and an alpha value between about 100 and about 600 in at least one reaction zone under olefin oligomerization conditions including an inlet temperature between about 150° C. and about 350° C., a pressure of at least 2,860 kPa and a recycle to feed weight ratio of about 0.1 to about 3.0. The contacting produces an oligomerization effluent stream, which is separated into at least a hydrocarbon product stream rich in C9+ hydrocarbons and the olefinic recycle stream.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: March 16, 2010
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Keith H. Kuechler, Stephen Harold Brown, Helge Jaensch, Georges M. Mathys, Shifang Luo, Jane C. Cheng
  • Publication number: 20100063341
    Abstract: The invention provides methods for converting hydrocarbons as starting material by industrial fixed-bed reaction processes with a zeolite shaped catalyst which has a low content of inorganic binder and a high pore volume and which shows high catalytic activity, long catalyst life and high crushing strength. A zeolite shaped catalyst used in the methods of the invention includes zeolite and an inorganic binder and is obtained by kneading zeolite, a starting material of an inorganic binder, shaping auxiliary(ies), organic polymer particles having an average diameter of 0.1 to 6 ?m and water into a kneaded product, and extruding, drying and calcining the kneaded product; and the zeolite shaped catalyst has a zeolite component content of not less than 60 wt % relative to the total weight, a pore volume of 0.4 to 1.0 ml/g, a half-volume pore diameter of 80 to 500 nm and a crushing strength of not less than 0.9 kg.
    Type: Application
    Filed: March 17, 2008
    Publication date: March 11, 2010
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Phala Heng, Teruo Muraishi, Michiaki Umeno, Hirokazu Ikenaga
  • Patent number: 7663013
    Abstract: A porous solid acid catalyst for producing light olefins is prepared through pillaring and a solid state reaction of a raw material mixture. The catalyst is made of a porous material having a crystalline structure that is different from that of the raw material mixture. The catalyst exhibits excellent catalytic activity (i.e., conversion and selectivity) in the production of light olefins from hydrocarbon feeds such as full range naphthas.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: February 16, 2010
    Assignee: SK Energy Co., Ltd.
    Inventors: Sun Choi, Deuk Soo Park, Suk Joon Kim, Ahn Seop Choi, Hee Young Kim, Yong Ki Park, Chul Wee Lee, Won Choon Choi, Sang Yun Han, Jeong Ri Kim
  • Patent number: 7655826
    Abstract: This invention relates to a method of making an olefin from a dialkyl ether comprising (a) introducing an ether having a formula CxH2x+1CyH2y+1 into a thermal or catalytic cracking unit processing a hydrocarbon feedstock; and (b) decomposing at least a portion of the ether to form an olefin having a formula CxH2x and/or CyH2y and an alcohol having a formula CxH2x+1 and/or CyH2y+1OH, wherein x and y independently range from about 1 to about 30. This invention also relates to a method of reducing coking in a thermal or catalytic cracking unit comprising (a) introducing an ether, having a formula CxH2x+1OCyH2y+1, into the cracking unit processing a hydrocarbon feedstock in an amount effective to reduce coke formation relative to processing the hydrocarbon feedstock in the absence of the ether, wherein x and y independently range from about 1 to about 30.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: February 2, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Charles M. Yarbrough, Vijay Swarup, Patrick Joseph Maher, Albert Y Hu, Michael Walter Bedell
  • Publication number: 20100022811
    Abstract: A selective catalytic cracking process of natural gas liquid fraction to light olefins and other products is described, the process includes placing in contact (within a reaction zone) said liquid fraction of natural gas, rich in C5+ paraffins, with an MFI type zeolitic catalyst in acid form, having a pore size of at least 4 Angstroms, a silica/alumina ratio of between 10 and 2000, and where the processing conditions involve a temperature of between 350° C. and 650° C., space velocity of between 2 and 100h?1 and atmospheric pressure, and afterwards carrying out the catalytic cracking to separate products, to recover a product enriched with light olefins, LPG fractions, and aromatics, and where the production of olefins is favored in conditions of higher space velocities, while the production of LPG fractions and aromatics are favored in conditions of lowered space velocities.
    Type: Application
    Filed: October 2, 2009
    Publication date: January 28, 2010
    Applicant: PETROLEO BRASILEIRO S.A. - PETROBRAS
    Inventors: Eduardo Falabella SOUSA AGUIAR, Cláudio José DE ARAUJO MOTA, José Luiz FONTES MONTEIRO, Débora Prado BATISTA PEIXOTO, Adriano DO COUTO FRAGA, Ana Carlota BELIZARIO DOS SANTOS, Antonio Marcos FONSECA BIDART, Fernando Barbosa DE OLIVEIRA, Henrique Soares CERQUEIRA, Isabela Brito DOS SANTOS, Marcos DE FREITAS SUGAYA
  • Publication number: 20100010279
    Abstract: A catalyst composition comprising metal phosphate binder and zeolite can be used to enhance olefin yields during hydrocarbon cracking processes. The composition typically further comprises aluminum phosphate, and the metal of the metal phosphate is a metal other than aluminum. Depending on the metal chosen, enhanced propylene and isobutylene yields in fluid catalytic cracking processes can be obtained compared to catalysts that do not contain such metal phosphate binders. The catalyst can also comprise non-zeolitic molecular sieves, thereby making the composition suitable for use in areas outside of catalytic cracking, e.g., purification and adsorbent applications.
    Type: Application
    Filed: July 14, 2009
    Publication date: January 14, 2010
    Inventor: Ranjit Kumar
  • Publication number: 20090326302
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The alumina in the catalyst is active in suppressing the production of mesophase.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza
  • Publication number: 20090326304
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The iron sulfide crystallites have diameters in the nanometer range.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza
  • Publication number: 20090326303
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The iron oxide and alumina catalyst does not require as much iron content relative to non-gaseous material in the reactor to obtain useable products.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Alakananda Bhattacharyya, Beckay J. Mezza
  • Publication number: 20090299118
    Abstract: Systems and methods for upgrading hydrocarbons are provided. A first hydrocarbon can be cracked in the presence of one or more catalysts to provide a first cracked mixture containing one or more light cycle oils (LCOs) and one or more coked catalysts. A second hydrocarbon, containing one or more C4 to C20 hydrocarbons and having a Research Octane Number of less than 88, can be mixed with the one or more catalysts to provide a first mixture at a second temperature. A third hydrocarbon can be combined with the first mixture to provide a second mixture. The second mixture can be cracked to provide a second cracked mixture containing propylene, one or more mixed hydrocarbons in the gasoline boiling range having a Research Octane Number greater than 88, and one or more coked catalysts. The first cracked mixture and second cracked mixture can be combined to provide a third mixture.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventor: Alan Claude
  • Publication number: 20090299119
    Abstract: Systems and methods for processing hydrocarbons are provided. A first hydrocarbon feed containing one or more C4 to C20 hydrocarbons having a research octane number of less than 88 can be cracked at a first temperature and in the presence of one or more catalysts to provide a first cracked mixture. A second hydrocarbon feed can be introduced to the first mixture to provide a second mixture. The second mixture can be cracked at the first temperature to provide a second cracked mixture containing propylene and one or more hydrocarbons having a research octane number of about 88 to about 95, and one or more coked catalysts.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventors: Alan Claude, Anand Subramanian
  • Patent number: 7615143
    Abstract: There is provided a catalyst composition having improved hydrothermal stability for the catalytic cracking of a hydrocarbon feedstock to selectively produce propylene. The catalyst composition comprises a first crystalline molecular sieve selected from the group consisting of IM-5, MWW, ITH, FER, MFS, AEL, and AFO and an effective amount of a stabilization metal (copper, zirconium, or mixtures thereof) exchanged into the molecular sieve. The catalyst finds application in the cracking of naphtha and heavy hydrocarbon feedstocks. When used in the catalytic cracking of heavier hydrocarbon feedstocks, the catalyst composition preferably comprises a second molecular sieve having a pore size that is greater than the pore size of the first molecular sieve. The process is carried out by contacting a feedstock containing hydrocarbons having at least 4 carbon atoms is contacted, under catalytic cracking conditions, with the catalyst composition.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: November 10, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Paul F. Keusenkothen, J. Jason Wu, John Scott Buchanan, Guang Cao, Larry L. Iaccino, David L. Stern, Matthew J. Vincent