By Contact With Solid Sorbent Patents (Class 585/820)
  • Patent number: 7910773
    Abstract: A method for adsorbing volatile organic compounds (VOCs) derived from organic matter comprises adsorbing the VOCs onto palladium doped ZSM-5, optionally at ambient temperature. The organic matter can be perishable organic goods such as food, including fruit and/or vegetables, horticultural produce, including plants and/or cut flowers, or refuse. The palladium doped ZSM-5 has a Si:Al ratio of less than or equal to 100:1 and preferably has a palladium content of from 0.1 wt % to 10.0 wt % based on the total weight of the doped ZSM-5.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: March 22, 2011
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Thomas Ilkenhans, Stephen Poulston, Andrew William John Smith
  • Patent number: 7906088
    Abstract: Mixing small amounts of an inorganic halide, such as NaCl, to basic copper carbonate followed by calcination at a temperature sufficient to decompose the carbonate results in a significant improvement in resistance to reduction of the resulting copper oxide. The introduction of the halide can be also achieved during the precipitation of the carbonate precursor. These reduction resistant copper oxides can be in the form of composites with alumina and are especially useful for purification of gas or liquid streams containing hydrogen or other reducing agents. These reduction resistant copper oxides can function at near ambient temperatures.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 15, 2011
    Assignee: UOP LLC
    Inventors: Vladislav I. Kanazirev, Peter Rumfola, III
  • Patent number: 7901567
    Abstract: A process for capturing organometallic impurities comprising at least one of a heavy metal, silicon, phosphorus, and arsenic, contained in a hydrocarbon feed comprising contacting the feed with a capture mass comprising at least one of iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), lead (Pb) and zinc (Zn) deposited on a porous support at least one of aluminas, silica, silica-aluminas, and titanium, or magnesium oxides used alone or as a mixture with alumina or silica-alumina, the metallic element being in the sulphide form with a degree of sulphurization of at least 60%, and in which the feed to be treated is a catalytically cracked gasoline containing 5% to 60% by weight of olefins, 50 ppm to 6000 ppm by weight of sulphur and traces of arsenic in amounts in the range 10 ppb to 1000 ppb by weight.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: March 8, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Vincent Coupard, Christophe Bouchy, Florent Picard
  • Patent number: 7897827
    Abstract: Processes and systems are disclosed that relate to the removal of impurities and separation the light olefins from an MTO product vapor stream. Specifically, the processes and systems relate to recovery of light olefins during regeneration of an adsorber in an oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can include recycling residual effluent stream to an upstream operation unit upstream of the oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can also include recycling residual effluent gas produced by depressurizing residual effluent in the first adsorber, as well as preferably venting an effluent gas from the first adsorber to a compressor upstream of the oxygenate removal unit.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: March 1, 2011
    Assignee: UOP LLC
    Inventor: Jason T. Corradi
  • Patent number: 7875738
    Abstract: This invention relates to an amorphous non-glassy ceramic composition that may be prepared by curing, calcining and/or pyrolyzing a precursor material comprising silicon, a Group III metal, a Group IVA metal, and/or a Group IVB metal.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 25, 2011
    Assignee: Sigma-Aldrich Co.
    Inventors: William R. Betz, Christopher M. Linton
  • Patent number: 7867381
    Abstract: A feedstream to an FCC unit is treated to remove or reduce the content of polynuclear aromatics and nitrogen-containing compounds by contacting the feedstream with an adsorbent compound selected from attapulgus clay, alumina, silica gel and activated carbon in a fixed bed or slurry column and separating the treated feedstream that is lower in the undesired compounds from the adsorbent material. The adsorbent can be mixed with a solvent for the undesired compounds and stripped for re-use.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: January 11, 2011
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Publication number: 20100298598
    Abstract: This disclosure provides a method of preparing a crystalline molecular sieve comprising: (a) providing a reaction mixture comprising at least one source of ions of tetravalent element Y, at least one source of alkali metal hydroxide, water, optionally at least one seed crystal, and optionally at least one source of ions of trivalent element X, the reaction mixture having the following molar composition: Y:X2=2 to infinity, preferably from about 2 to about 1000, OH?:Y=0.001 to 2, preferably from 0.1 to 1, M+:Y=0.001 to 2, preferably from 0.
    Type: Application
    Filed: September 30, 2008
    Publication date: November 25, 2010
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Patent number: 7838713
    Abstract: The process includes at least two adsorptive separation zones to separate para-xylene from a feed stream comprising C8 aromatic hydrocarbons and at least one C9 aromatic hydrocarbon component. An adsorbent comprising X or Y zeolite and a heavy desorbent are used in the first adsorptive separation zone to produce an extract stream comprising para-xylene and a raffinate stream comprising para-xylene depleted C8 aromatic hydrocarbons, the C9 aromatic hydrocarbon, and the desorbent. The raffinate stream is separated in a raffinate distillation zone to produce a stream comprising the first desorbent component and the C9 aromatic hydrocarbon which stream is further separated in a second adsorptive distillation zone to produce a stream comprising the desorbent and a C9 aromatic hydrocarbon stream.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 23, 2010
    Assignee: UOP LLC
    Inventors: Leonid Bresler, Stanley J. Frey
  • Patent number: 7838714
    Abstract: Process for separation of metaxylene, with at least 99% by weight of purity of an aromatic feedstock F, in a single adsorption stage in a simulated moving bed in an SMB device that comprises 12, 13 or 15 adsorbent beds with different numbers of beds being employed in zone 1 between the supply of the desorbent D and the draw-off of the extract E; zone 2 between the draw-off of the extract E and the supply of the feedstock F; zone 3 between the supply of the feedstock and the draw-off of the raffinate R; and zone 4 between the draw-off of the raffinate R and the supply of the desorbent D whereby the process is carried out according to a configuration of zones (a, b, c, d), whereby a, b, c, and d represent the number of adsorbent beds that operate respectively in zones 1, 2, 3, 4 in which there is used: Either an SMB of 12 adsorbent beds operating according to the configuration (2, 5, 3, 2), Or an SMB of 13 adsorbent beds operating according to the configuration (2, 5, 4, 2), Or an SMB of 15 adsorbent beds op
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: November 23, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Philibert Leflaive, Luc Wolff, Damien Leinekugel Le Cocq
  • Patent number: 7829058
    Abstract: A process for treating a composition comprising one or more desired (hydro)halocarbons and one or more undesired sulphur containing impurities so as to reduce the concentration of at least one undesired sulphur containing impurity, the process comprising contacting the composition with an adsorbent comprising an acid stable molecular sieve having a pore size of from 2 to 10 ? and/or an activated carbon.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: November 9, 2010
    Assignee: Ineos Fluor Holdings Limited
    Inventors: Paul Andrew Hoos, Stuart Corr
  • Publication number: 20100280290
    Abstract: This disclosure relates to a novel method of making and recovering M41S family molecular sieve materials using synthesis mixtures having high solids-content and without a purification step. The solids-content, for example, is in a range from about 20 wt. % to 50 wt. %. The method also includes the step of mixing at least a portion of the M41S made with another material to form a composition, wherein the amount of said material to be mixed with said M41S product is such that said composition having less than 10 wt. % free fluid. The material mixed with the M41S made includes metal oxides, metal nitrides, metal carbides and mixtures thereof, as well as absorptive material capable of absorbing mother liquor and selected from the group consisting of carbon silica, alumina, titania, zirconia and mixtures thereof. The amount of the wastewater generated by this novel method is reduced by at least 50% to as much as 100% as comparing with conventional method of making M41S materials.
    Type: Application
    Filed: July 30, 2008
    Publication date: November 4, 2010
    Applicant: EXXON-MOBIL CHEMICAL PATENTS INC.
    Inventors: Wenyih F. Lai, Robert Kay, Stephen McCarthy
  • Patent number: 7820869
    Abstract: Adsorbents and methods for the adsorptive separation of para-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable binderless adsorbents (e.g., formulated with the substantial absence of an amorphous material that normally reduces selective pore volume), particularly those with a water content from about 3% to about 5.5% by weight, improve capacity and/or mass transfer. These properties are especially advantageous for improving productivity in low temperature, low cycle time adsorptive separation operations in a simulated moving bed mode.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: October 26, 2010
    Assignee: UOP LLC
    Inventors: James W. Priegnitz, Darryl M. Johnson, Sr., Linda Shi Cheng, Scott E. Commissaris, Jack E. Hurst, Michael H. Quick, Santi Kulprathipanja
  • Patent number: 7815864
    Abstract: This invention relates to an amorphous non-glassy ceramic composition that may be prepared by curing, calcining and/or pyrolyzing a precursor material comprising silicon, a Group III metal, a Group IVA metal, and/or a Group IVB metal.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: October 19, 2010
    Assignee: Sigma-Aldrich Co.
    Inventors: William R. Betz, Christopher M. Linton
  • Patent number: 7812208
    Abstract: Adsorbents and methods for the adsorptive separation of para-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable adsorbents comprise small-crystallite-size zeolite X having an average crystallite size of less than 1.8 microns. The adsorbents may be binderless (e.g., formulated with the substantial absence of an amorphous material that normally reduces selective pore volume) to further improve capacity and mass transfer. These properties are especially advantageous for improving productivity in low temperature, low cycle time adsorptive separation operations in a simulated moving bed mode.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: October 12, 2010
    Assignee: UOP LLC
    Inventors: Linda Shi Cheng, Jack E. Hurst
  • Publication number: 20100249484
    Abstract: One exemplary embodiment can be a separation system. The separation system can include an adsorption zone, a rotary valve, a transition zone, and one or more pipes. Usually, the transition zone includes one or more lines communicating the rotary valve with the adsorption zone. The rotary valve alternatively may distribute an input of a feed or a desorbent to the adsorption zone or alternatively can receive an output of a raffinate or an extract from the adsorption zone in a line, and a remnant may remain in the line from a previous input or output. One or more pipes outside the transition zone communicating with the rotary valve can form at least one pipe volume receiving an input for dislodging a remnant or for receiving a remnant from the line. The remnant may be different from the input or output.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Douglas George Stewart, Grace Chao, Braden E. Smith, Stephen W. Sohn, Robert J.L. Noe
  • Patent number: 7799213
    Abstract: Reactive phosphorus species can be removed or transferred from a hydrocarbon phase to a water phase in an emulsion breaking process by using a composition that contains water-soluble hydroxyacids. Suitable water-soluble hydroxyacids include, but are not necessarily limited to glycolic acid, gluconic acid, C2-C4 alpha-hydroxy acids, poly-hydroxy carboxylic acids, thioglycolic acid, chloroacetic acid, polymeric forms of the above hydroxyacids, poly-glycolic esters, glycolate ethers, and ammonium salt and alkali metal salts of these hydroxyacids, and mixtures thereof. The composition may optionally include a mineral acid to reduce the pH of the desalter wash water. A solvent may be optionally included in the composition. The invention permits transfer of reactive phosphorus species into the aqueous phase with little or no hydrocarbon phase undercarry into the aqueous phase. The composition is particularly useful in treating crude oil emulsions, and in removing calcium and other metals therefrom.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 21, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Lawrence N. Kremer, Tran M. Nguyen, Jerry J. Weers
  • Publication number: 20100234662
    Abstract: A process for removing carbon monoxide from an olefin-containing hydrocarbon feedstock comprising the steps of: a) passing the said hydrocarbon feedstock over a material comprising nickel deposited on a support material wherein said nickel is present as both nickel oxide and metallic nickel; and b) recovering a hydrocarbon stream having a substantially reduced carbon monoxide content.
    Type: Application
    Filed: June 20, 2008
    Publication date: September 16, 2010
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventor: Kai Hortmann
  • Publication number: 20100228071
    Abstract: An adsorbent for removing impurities such as CO2, H2S and water vapors from a gaseous olefin stream of at least C2 to C4 olefins is disclosed. The adsorbent comprises of zeolite CaA molecular sieve modified with metal silicate.
    Type: Application
    Filed: November 10, 2005
    Publication date: September 9, 2010
    Applicant: INDIAN PETROCHEMICAL CORPORATION LIMITED
    Inventors: Prakash Kumar, Ravi Puranik Vijayalaxmi, Pavagada Raghavendra Char, Sodankoor Garadi Thirumaleshwara Bhat
  • Patent number: 7780846
    Abstract: A method for producing a substantially desulfurized hydrocarbon fuel stream at temperatures less than 100° C. including providing a nondesulfurized fuel cell hydrocarbon fuel stream and passing the fuel stream through a sulfur adsorbent system containing a specialized sulfur adsorbent containing hydrated alumina to produce a substantially desulfurized hydrocarbon fuel stream.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: August 24, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Eric J. Weston, Jon P. Wagner, R. Steve Spivey, Mike McKinney, Michael W. Balakos, Russell Scott Osborne, Michelle Madden
  • Publication number: 20100210889
    Abstract: A process is disclosed for removing mercury from a liquid hydrocarbon stream by contacting the mercury-containing liquid hydrocarbon stream with ferrous halide at moderate temperatures and without preheating the liquid hydrocarbon stream, or subjecting the liquid hydrocarbon stream to a heat treating step, immediately prior to contact with the ferrous halide particles.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 19, 2010
    Applicant: ConocoPhillips Company
    Inventors: John M. Hays, Erin E. Tullos, Joseph B. Cross
  • Patent number: 7777089
    Abstract: Process for the separation of close boiling isomeric compounds comprising distilling a dilute solution of isomers in a high boiling compound in the presence of a solid adsorbent. Multi and/or monobranched as well as cyclic isomers are withdrawn at the top of the distillation column, while straight chain and/or mono branched isomers are retained within the solid adsorbent. The diluent solution of the high boiling compound is withdrawn from the bottom of the distillation column and recycled, where it may be combined with the feed isomer mixture or recycled straight to the top of the adsorption column.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: August 17, 2010
    Assignee: Haldor Topsøe A/S
    Inventors: Simon Ivar Andersen, Annette Leerskov, Peter Jakob Mune
  • Patent number: 7771587
    Abstract: A method and product for removing nitrogen compound molecules from gasoline or diesel fuel includes exposing the gasoline or diesel fuel to a plurality of molecularly imprinted polymer beads (MIPS) that have receptor sites on the surfaces thereof that include imprints that match the physical shape of at least a portion of a nitrogen compound molecule. A quantity of the nitrogen molecules align with and adhere to some of the receptor sites and, accordingly, they are removed from the gasoline or diesel fuel producing a remediated or sweetened gasoline or diesel fuel. According to one embodiment, the MIPS are contained in an enclosure having a plurality of openings large enough to permit the solution to pass through and small enough so as to prevent the MIPS from passing through. According to another embodiment the MIPS are applied (i.e.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: August 10, 2010
    Inventor: Anna Madeleine Leone
  • Patent number: 7763767
    Abstract: This invention relates to a process for conversion of hydrocarbon feedstock, comprising the steps of (A) feeding the hydrocarbon feedstock to an adsorption unit; (B) adsorbing the hydrocarbon feedstock in the adsorption unit with a solid particulate adsorbent useful for adsorbing at least one component from the hydrocarbon feedstock under adsorption conditions; (C) withdrawing the adsorbed feedstock from the adsorption unit; (D) desorbing the component(s) from the solid particulate adsorbent; and (E) removing, under the adsorption conditions for a fractional time of step (B), at least a portion of said adsorbent while the feedstock is being fed to the adsorption unit.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: July 27, 2010
    Assignee: ExxonMobil Chemicals Patents Inc.
    Inventors: Dana Lynn Pilliod, Katy Conley Randall, Eric Martin Harding
  • Patent number: 7763163
    Abstract: A feedstream to a hydrocracking unit is treated to remove or reduce the content of polynuclear aromatics and nitrogen-containing compounds by contacting the feedstream with an adsorbent compound selected from attapulgus clay, alumina, silica gel and activated carbon in a fixed bed or slurry column and separating the treated feedstream that is lower in the undesired compounds from the adsorbent material. The adsorbent can be mixed with a solvent for the undesired compounds and stripped for re-use.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: July 27, 2010
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 7759534
    Abstract: Process for separating paraxylene with a purity that is at least equal to 99.5% by weight from an aromatic feedstock F in a single adsorption stage in a simulated moving bed (SMB), comprising different numbers of beds, allocated to a zone 1 between the supply of the desorbent D and the draw-off of the extract E; a zone 2 between the draw-off of the extract E and the supply of the feedstock F; a zone 3 between the supply of the feedstock and the draw-off of the raffinate R; a zone 4 between the draw-off of the raffinate R and the supply of the desorbent D, wherein an SMB of 12 adsorbent beds has bed configuration (2, 5, 3, 2), an SMB of 15 adsorbent beds has bed configuration (3, 6, 4 , 2), or an SMB of 19 adsorbent beds has bed configuration (4, 7, 6, 2), wherein the desorbent in this latter case is paradiethylbenzene.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: July 20, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Philibert Leflaive, Lue Wolff, Damien Leinekugel Le Cocq
  • Patent number: 7754652
    Abstract: A method and product for removing sulfur compound molecules from gasoline or diesel fuel includes exposing the gasoline or diesel fuel to a plurality of molecularly imprinted polymer beads (MIPS) that have receptor sites on the surfaces thereof that include imprints that match the physical shape of at least a portion of a sulfur compound molecule. A quantity of the sulfur molecules align with and adhere to some of the receptor sites and, accordingly, they are removed from the gasoline or diesel fuel producing a remediated or sweetened gasoline or diesel fuel. According to one embodiment, the MIPS are contained in an enclosure having a plurality of openings large enough to permit the solution to pass through and small enough so as to prevent the MIPS from passing through. According to another embodiment the MIPS are applied (i.e., coated) to the inside surface of a conduit and the gasoline or diesel fuel is forced or allowed to flow through the conduit thereby removing some of the sulfur molecules therefrom.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 13, 2010
    Inventor: Anna Madeleine Leone
  • Patent number: 7728187
    Abstract: Adsorbents and methods for the adsorptive separation of meta-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable adsorbents comprise sodium zeolite Y having an average crystallite size from about 50 to about 700 nanometers. The adsorbents provide improved separation efficiency, which may be associated with a higher meta-xylene mass transfer rate and/or other beneficial effects. Exemplary desorbents for use in the process may comprise toluene, benzene, or indan.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 1, 2010
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Stanley J. Frey, Richard R Willis, Lisa M. Knight
  • Patent number: 7727401
    Abstract: A process for purifying monoterpenes, including the steps of: providing a monoterpene comprising alpha terpinene of about 90% or greater purity and comprising an oxygen-containing impurity compound selected from the group consisting of 1,8-cineole, 1,4,-cineole, and mixtures thereof; providing an activated silica gel preparative chromatographic column; contacting the monoterpene with the column, wherein the oxygen-containing impurity compounds are retained on the column; recovering monterpenes depleted of oxygen-containing impurity compounds from the column by applying a pressure above atmospheric from a gas source without the use of a solvent; and removing the oxygen-containing impurity compounds by contacting the column with an alcohol.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: June 1, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Heather Regina Bowen
  • Patent number: 7718842
    Abstract: The invention concerns a process for separating meta-xylene from a hydrocarbon feed comprising isomers containing 8 carbon atoms, comprising: a step for bringing said feed into contact with a faujasite type zeolite adsorbant, the percentage of water in the adsorbant being in the range 0 to 8% by weight and the adsorption temperature being from 25° C. to 250° C.; a desorption step employing a solvent selected from tetraline and its alkylated derivatives; a step for separating meta-xylene from the desorbant.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: May 18, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Philibert Leflaive, Karin Barthelet
  • Patent number: 7713489
    Abstract: The invention relates to an original experimental device for the study and the validation of processes in a reactive simulated moving bed, as well as the method that makes possible the exploitation of the results obtained from said device. This device consists of one or two columns and a number of storage tanks.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: May 11, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Luc Wolff, Damien Leinekugel Le Cocq
  • Publication number: 20100113853
    Abstract: [Object] To provide a method of making high-purity 2,7-dimethylnaphthalene from a dimethylnaphthalene isomer mixture at high yield by a simple industrial process with low production costs. [Means for Solving Problems] A method of purifying 2,7-dimethylnaphthalene includes a step of bringing a stock oil containing a mixture of 1,7-dimethylnaphthalene and 2,7-dimethylnaphthalene and a developing solvent into contact with L zeolite to adsorb 1,7-dimethylnaphthalene.
    Type: Application
    Filed: April 6, 2006
    Publication date: May 6, 2010
    Inventors: Shinichi Nagao, Hiroshi Ogawa
  • Publication number: 20100076243
    Abstract: Adsorbents and methods for the adsorptive separation of para-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable adsorbents comprise small-crystallite-size zeolite X having an average crystallite size of less than 1.8 microns. The adsorbents may be binderless (e.g., formulated with the substantial absence of an amorphous material that normally reduces selective pore volume) to further improve capacity and mass transfer. These properties are especially advantageous for improving productivity in low temperature, low cycle time adsorptive separation operations in a simulated moving bed mode.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 25, 2010
    Applicant: UOP LLC
    Inventors: Linda Shi CHENG, Jack HURST
  • Patent number: 7683233
    Abstract: In a process for producing a para-xylene enriched product from a gaseous mixture comprising at least para-xylene, meta-xylene and ortho-xylene, the gaseous mixture is contacted with an adsorbent capable of selectively adsorbing para-xylene and comprising a crystalline molecular sieve having an average crystal size between about 0.5 micron and about 20 microns. The contacting is conducted at a temperature and pressure such that at least part of the para-xylene in the mixture is adsorbed by the adsorbent to produce a para-xylene-depleted effluent stream. The para-xylene is then desorbed from said adsorbent and collected to form a para-xylene enriched stream. The adsorption and desorption steps are repeated for a plurality of cycles, such that the time between successive contacting steps is no more than 10 seconds.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: March 23, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Di-Yi Ou, Sebastian C. Reyes, Bal K. Kaul, Wenyih Frank Lai, Brenda A. Raich, Charanjit S. Paur
  • Patent number: 7678958
    Abstract: This invention is directed to a method of removing dimethyl ether from an olefin stream. The method includes distilling the olefin stream so that the dimethyl ether is separated out of the olefin stream with propane. The olefin stream can then be further distilled to provide a polymer grade ethylene stream and a polymer grade propylene stream, with each stream containing not greater than about 10 wppm dimethyl ether.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: March 16, 2010
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: Minquan Cheng, Jeffrey J. Phillips, Michael Peter Nicoletti, David Ritchie Lumgair, Jr., John Richard Shutt, Jeffrey Alan Kabin, Wilfried Borgmann, Josef Kunkel, Helmut Fritz, Roland Walzi, Gerhard Lauermann, Klaus Muller
  • Patent number: 7678262
    Abstract: The invention concerns an improved hydrocracking process with a recycle having a step for eliminating polyaromatic compounds from at least a portion of the recycled fraction by adsorption on a particular adsorbent based on alumina-silica with a controlled macropore content.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: March 16, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Karin Barthelet, Patrick Euzen, Hugues Dulot, Patrick Bourges
  • Publication number: 20100056840
    Abstract: This invention relates to a process for converting a hydrocarbon feedstock, comprising the steps of (A) feeding the feedstock to a reactor or adsorption unit; (B) contacting the feedstock in the reactor or adsorption unit with a solid particulate material useful for converting the feedstock under conversion conditions; (C) withdrawing converted feedstock from the reactor; and (D) removing, under the conversion conditions for a fractional time of step (B), at least a portion of the solid particulate material while the feedstock is being fed to the reactor or adsorption unit, wherein the portion is more than 0.1 wt. % of the solid particulate material in the reactor or adsorption unit and wherein the fractional time is less than 95% of the time of step (B).
    Type: Application
    Filed: November 11, 2009
    Publication date: March 4, 2010
    Inventors: Dana Lynn Pilliod, Katy Conley Randall, Eric Martin Harding
  • Patent number: 7671247
    Abstract: Methods for purifying liquid alkanes are provided. The methods produce alkanes having low absorbance, particularly at 193 nm. The alkane liquids are useful as immersion liquids in photomicrolithography employed for production of electronic circuits.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: March 2, 2010
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Robert Clayton Wheland, Leo Ernest Manzer, Sheng Peng
  • Publication number: 20100048972
    Abstract: A method for purification of ethylene-containing feedstreams from steam crackers or fluid catalytic crackers (FCC), wherein the feedstreams further comprises hydrogen, carbon monoxide, acetylenes, oxygen, nitric oxides, is disclosed. The method comprises contacting an ethylene-comprising gas stream with a Ru-based catalyst at reaction temperatures of at least 120°C. The process results in an ethylene-containing feedstream wherein the ethylene is essentially free of acetylenes, nitric oxides and oxygen. The purifying of the feedstream occurs with minimal loss of ethylene.
    Type: Application
    Filed: August 21, 2008
    Publication date: February 25, 2010
    Inventors: Mingyong Sun, Martin Byran, Steven A. Blankenship, Michael A. Urbancic
  • Patent number: 7663011
    Abstract: A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of refractory oxide containing at least 97% by volume of pores having a pore size ranging from about 15 ? to about 30 ? and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2 theta (?). The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: February 16, 2010
    Assignee: Lummus Technology Inc.
    Inventors: Zhiping Shan, Jacobus Cornelis Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer, Mohamed S. Hamdy
  • Patent number: 7651550
    Abstract: A desorption process and a process for producing a catalytically deactivated formed zeolitic adsorbent, whereby both processes are suitable to improve the lifetime of a formed zeolitic adsorbent in the removal of sulfur compounds from sulfur contaminated gas and liquid feed streams. The adsorbent is in particular a synthetic 13X or LSX faujasite with a silica to alumina ratio from 1.9:1.0 to about 3.0:1.0. The cations of the faujasite include alkali and alkaline earth metals. The formed zeolite mixture is preferably catalytically deactivated due to a phosphate treatment. The desorption is carried out thermally, wherein the heat treatment is done at different temperature stages to avoid decomposition of the organic sulfur compounds.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: January 26, 2010
    Assignee: Zeochem AG
    Inventors: Peter Hawes, Andreas Scheuble, Beat Kleeb, Armin Pfenninger
  • Publication number: 20090326308
    Abstract: Adsorbents and methods for the adsorptive separation of para-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable adsorbents comprise nano-size zeolite X having an average crystallite size of less than about 500 nanometers. The adsorbents provide both improved capacity and mass transfer, which is especially advantageous for improving productivity in low temperature, low cycle time adsorptive separation operations in a simulated moving bed mode.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: UOP LLC
    Inventors: Santi Kulprathipanja, Richard Willis, Dorothy Kuechl, Jim Priegnitz, Jack Hurst, Scott Commissaris, Linda Cheng
  • Publication number: 20090326305
    Abstract: Processes and systems for removing contaminants from a paraffin containing feedstock are provided that include: providing a paraffin containing feedstock, passing the paraffin containing feedstock to an inlet of a guard bed that includes an adsorbent material, and contacting the paraffin containing feedstock with the adsorbent material in the guard bed to produce a treated paraffin containing feedstock. The processes and systems can also include removing the treated paraffin containing feedstock from an outlet of the guard bed, and passing the treated paraffin containing feedstock to a paraffin separation zone that separates normal paraffins from the treated paraffin containing feedstock.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Stephen W. Sohn, Mark G. Riley, II
  • Publication number: 20090326309
    Abstract: Adsorbents and methods for the adsorptive separation of para-xylene from a mixture containing at least one other C8 aromatic hydrocarbon (e.g., a mixture of ortho-xylene, meta-xylene, para-xylene, and ethylbenzene) are described. Suitable binderless adsorbents (e.g., formulated with the substantial absence of an amorphous material that normally reduces selective pore volume), particularly those with a water content from about 3% to about 5.5% by weight, improve capacity and/or mass transfer. These properties are especially advantageous for improving productivity in low temperature, low cycle time adsorptive separation operations in a simulated moving bed mode.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: UOP LLC
    Inventors: Jim PRIEGNITZ, Darryl JOHNSON, Linda CHENG, Scott COMMISSARIS, Jack HURST, Mike QUICK, Santi KULPRATHIPANJA
  • Patent number: 7638677
    Abstract: A process for separating C8 aromatics is disclosed. The process uses at least two adsorbents, and in particular a BaX zeolite and a KY zeolite, for the separation of para-xylene from a mixture of C8 aromatics.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventor: Santi Kulprathipanja
  • Patent number: 7625429
    Abstract: A zeolite adsorbent for desulfurization and a method of preparing the same. More particularly, a zeolite adsorbent for desulfurization in which the relative crystallinity of Y zeolite that is ion exchanged with Ag is 45% to 98%, and a method of preparing the same. The zeolite adsorbent for desulfurization has excellent crystallinity over the known zeolite adsorbent for desulfurization, and thus has better performance of adsorbing sulfur compounds though it contains less Ag. Accordingly, when the sulfur compounds of a fuel gas are removed by employing the zeolite adsorbent for desulfurization, a desulfurizing device that is bettereven with less cost can be constructed.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: December 1, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Soon-ho Kim, Hyun-chul Lee, Yulia Potapova, Eun-duck Park, Eun-yong Ko
  • Patent number: 7625430
    Abstract: The present invention concerns a process for capturing organosiliceous complexes in the gaseous or liquid phase on a solid containing at least 80% by weight of alumina after calcining at 1000° C. The alumina has a total pore volume of more than 30 ml/100 g, a fraction of the pore volume in pores with a diameter of 70 ? or more of more than 10 ml/100 g and a specific surface area of more than 10 m2/g.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: December 1, 2009
    Assignee: IFP
    Inventor: Christophe Nedez
  • Patent number: 7612246
    Abstract: Process for the production of a RON isomerate that is at least equal to 80 and that contains less than 1% by weight of aromatic compounds and for co-production of an aromatic fraction that for the most part contains toluene, starting from a fraction with 7 carbon atoms containing paraffins, aromatic compounds and naphthenes.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: November 3, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Paul Broutin, Dominique Casanave, Jean-Francois Joly, Elsa Jolimaitre
  • Patent number: 7588678
    Abstract: The invention concerns an improved hydrocracking process having a step for eliminating polyaromatic compounds from at least a portion of a recycled fraction by adsorption on a particular adsorbent based on alumina-silica with a limited macropore content.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: September 15, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Karin Barthelet, Patrick Euzen, Hugues Dulot, Patrick Bourges
  • Patent number: 7576253
    Abstract: Use of mordenite zeolite and zeolite Y as adsorbents enables a dimethylnaphthalene isomer mixture to be efficiently separated. A feedstock oil containing a dimethylnaphthalene isomer mixture including an ?,?-isomer, an ?,?-isomer, and a ?,?-isomer is passed through an adsorbent layer (A) including mordenite zeolite together with a developing solvent. Subsequently, a liquid discharged from the adsorbent layer (A) is passed through an adsorbent layer (B) including zeolite Y. An eluent is passed through the adsorbent layer (B). The solvent is removed from the resultant eluate to obtain the ?,?-isomer of dimethylnaphthalene. Similarly, the ?,?-isomer of dimethylnaphthalene is obtained from the adsorbent layer (A).
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 18, 2009
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Shinichi Nagao, Hiroshi Ogawa
  • Publication number: 20090202416
    Abstract: The invention relates to a method of separating fluids from mixtures using a zeolite known as ITQ-32 consisting of a two-dimensional pore system comprising channels with openings formed by 8 tetrahedra which are interconnected by channels with openings formed by 12 tetrahedra. The inventive method comprises at least the following steps: a) the zeolite ITQ-32 material is brought into contact with the mixture of fluids, b) one or more of the components are adsorbed in the zeolite ITQ-32 material, c) the non-adsorbed components are extracted, and d) one or more of the components adsorbed in the zeolite ITQ-32 material are recovered.
    Type: Application
    Filed: July 24, 2006
    Publication date: August 13, 2009
    Inventors: Avelino Corma Canos, Fernando Rey Garcia, Susana Valencia Valencia