Engine Fuel, Air, Or Ignition Controlled By Sensor Of Reactor Condition Patents (Class 60/285)
  • Patent number: 8943803
    Abstract: A power system for use with an engine having at least one cylinder, and a piston, a fuel injector, and an exhaust valve associated with the at least one cylinder, is disclosed. The power system may have an exhaust passage, an aftertreatment component disposed within the exhaust passage, and a valve actuator configured to selectively move the exhaust valve. The power system may also have a controller in communication with the fuel injector and the valve actuator. The controller may be configured to make a determination to heat the aftertreatment component, to activate the valve actuator to hold open the exhaust valve as the piston moves through a top-dead-center position to disable the at least one cylinder based on the determination, and to activate the fuel injector to inject fuel into the at least one cylinder while the at least one cylinder is disabled.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 3, 2015
    Assignee: Caterpillar Inc.
    Inventor: John S. Pipis, Jr.
  • Patent number: 8938953
    Abstract: A method of purifying an exhaust gas, includes: disposing a NOx trapping catalyst in an exhaust pipe of an internal combustion engine, the NOx trapping catalyst including: a metal substrate including cells, a corner portion of each of cells having an acute angle; and a catalyst layer supported in the metal substrate and including a noble metal, a heat-resistant inorganic oxide and a NOx trapping material, the catalyst layer having pores formed by addition of a pore formation promoting material, and the NOx trapping catalyst: adsorbing NOx in the exhaust gas when an exhaust air-fuel ratio is in a lean state; and desorbing and reducing the adsorbed NOx when the exhaust air-fuel ratio is in a stoichiometric state or a rich state; and removing the NOx by the exhaust air-fuel ratio being shifted between the lean state and the rich state.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: January 27, 2015
    Assignees: Mitsubishi Jidosha Kogyo Kabushiki Kaisha, ICT Co., Ltd., Umicore Shokubai Japan Co., Ltd.
    Inventors: Kinichi Iwachido, Ken Tanabe, Takayuki Onodera, Masanori Ide, Hiroaki Ohhara, Mariko Ono, Akihisa Okumura, Masao Hori
  • Publication number: 20150013311
    Abstract: A method for controlling a motor vehicle with an internal combustion engine and a catalytic converter is disclosed. The method includes: determining an oxygen storage value, which is a dimension for oxygen stored in the catalytic converter, detecting an engine load, carrying out a part evacuation of the oxygen from the catalytic converter with a fuel enrichment when the oxygen storage value exceeds a trigger evacuation threshold value and when the engine load is below a low-load threshold value.
    Type: Application
    Filed: June 9, 2014
    Publication date: January 15, 2015
    Inventors: Stefan Horst, Arnaud Schilly
  • Patent number: 8931257
    Abstract: A powertrain includes an internal combustion engine with multiple cylinders and an aftertreatment system having a selective catalytic reduction device utilizing ammonia as a reductant. An ammonia generation cycle includes operating some portion of the cylinders at an air/fuel ratio conducive to producing molecular hydrogen and some portion of the cylinders at an air/fuel ratio conducive to producing NOx. An ammonia generation catalyst is utilized between the engine and the selective catalytic reduction device to produce ammonia.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: January 13, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Kushal Narayanaswamy, Paul M. Najt
  • Patent number: 8931255
    Abstract: One embodiment is a unique strategy for raising exhaust temperatures which includes deactivating a first group of cylinders while maintaining a second group of cylinders in a combustion mode and injecting fuel into each of one of the second group of cylinders not earlier than 2 degrees before top dead center (TDC). The strategy also includes passing fuel rich exhaust from the second group of cylinders into an exhaust pathway and oxidizing at least a portion of the fuel rich exhaust in the exhaust pathway. In one form, the oxidizing occurs independent of any catalytic influence. Other embodiments include unique methods, systems, and apparatus for raising exhaust temperatures and/or regenerating one or more components of an aftertreatment system. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: January 13, 2015
    Assignee: Cummins Inc.
    Inventor: Michael A. Wilson
  • Patent number: 8931261
    Abstract: A pump component is removed from a port of a suction-side fluid cavity of a high-pressure fluid pump. The pump component performs a pump function for the high-pressure fluid pump. A primary coupler connects to the port. The pump component connects to the primary coupler. A diverter fluid passage diverts a low-pressure fluid from the primary coupler to an auxiliary fluid delivery system. The primary coupler communicates the low-pressure fluid through the pump component and primary coupler to the port.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: January 13, 2015
    Assignee: Cummins Emission Solutions Inc.
    Inventors: John T. Carroll, III, Laszlo D. Tikk
  • Patent number: 8931263
    Abstract: An exhaust pipe for a diesel engine is connected to a diesel particulate defuser (“DPD”). To automatically regenerate the DPD, an exhaust gas temperature is detected, a deviation of the detected exhaust gas temperature from a target regeneration temperature is evaluated, and an amount of post injection is controlled through PID control according to the deviation. When, during the automatic regeneration with a vehicle running, an exhaust brake valve is closed, the post injection is interrupted. While the exhaust brake is being closed, an operation of an integral control term is continued with the PID control, and when the exhaust brake valve is opened, the integral control term operated without interruption is used as an initial amount of operation.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: January 13, 2015
    Assignee: Isuzu Motors Limited
    Inventors: Takashi Ikeda, Takayuki Furukawa, Keizou Kanenobu
  • Patent number: 8931256
    Abstract: An engine system for a machine is disclosed. The engine system may have an intake manifold configured to direct air into a donor cylinder and a non-donor cylinder of an engine. The engine system may have a first exhaust manifold configured to direct exhaust from the non-donor cylinder to the atmosphere and a second exhaust manifold configured to receive exhaust from the donor cylinder. The engine system may further have a control valve configured to selectively direct a first amount of exhaust from the second exhaust manifold to the intake manifold and an after-treatment component configured to treat the first amount of exhaust. In addition, the engine system may have a controller configured to adjust a first operating parameter of the donor cylinder such that a ratio of an amount of a gaseous component and an amount of particulate matter in the first amount of exhaust exceeds a predetermined threshold.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: January 13, 2015
    Inventors: Keith E. Moravec, Teoman Uzkan
  • Patent number: 8925302
    Abstract: A system and method for operating an engine turbocharger is described. In one example, the turbocharger is rotated in different directions in response to operating conditions. The system and method may reduce engine emissions.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: January 6, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: William Charles Ruona, Kevin Durand Byrd, Keith Michael Plagens
  • Patent number: 8925299
    Abstract: The invention relates to an arrangement (1) for operating an exhaust gas post-treatment device, particularly of a motor vehicle, wherein the arrangement (1) comprises a plurality of consumers (3-12) and a controller (2), wherein the controller (2) comprises at least one switching device (13) for switching the consumers (3-12) on and off. According to the invention, the consumers (3-12) are grouped according to function, and connected to one switch (17-21) each of the switching device (13). The invention further relates to a method for operating an exhaust post-treatment device.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: January 6, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Bernd Schelling, Patrick Bauer, Mehmet Oencel, Ralph Bauer, Thomas Holst, Georg Hoegele
  • Patent number: 8925301
    Abstract: A vehicle includes: an engine; an EHC (electrically heated catalyst) electrically heated for purifying exhaust gas of the engine; a temperature sensor for sensing the temperature of the EHC; and an ECU that controls the EHC in temperature. The ECU performs a first estimation process and a second estimation process to estimate the temperature of the EHC and accordingly controls electric power applied to energize the EHC, the first estimation process being performed to estimate the temperature of the EHC based on an output of the temperature sensor before the engine starts, the second estimation process being performed to estimate the temperature of the EHC based on the temperature of the exhaust gas emitted by the engine after the engine is started.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: January 6, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Keita Hashimoto
  • Patent number: 8919106
    Abstract: A method for operating a motor vehicle internal combustion engine with an exhaust system branch in which a wall-flow exhaust particle filter is arranged. An amount of ash and an amount of soot accumulated in the exhaust particle filter are continuously determined. An ash increase value characterizing an increase in the amount of ash is determined and if pre-set conditions are present, the operation of the internal combustion engine is changed over to a special operating mode for performing an ash detachment and transportation operation, in which operating variables of the internal combustion engine are set such that, on the exhaust entry side in the exhaust particle filter, a pre-settable minimum exhaust flow speed results at which detachment of ash attached to the channel walls of the exhaust particle filter and transportation of detached ash in the direction of the respective inlet channel end is made possible.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: December 30, 2014
    Assignee: Daimler AG
    Inventors: Achim Dittler, Uwe Gaertner, Thomas Koch, Alexander Massner, Kevin Sisken, Frank Zimmermann
  • Patent number: 8919097
    Abstract: Methods and systems are provided for selecting a group of cylinders for selective deactivation, in a variable displacement engine system, based at least on a regeneration state of an exhaust catalyst. The position of one or more valves and throttles may be adjusted based on the selective deactivation to reduce back-flow through the disabled cylinders while also maintaining conditions of a downstream exhaust catalyst. Pre-ignition and knock detection windows and thresholds may also be adjusted based on the deactivation to improve the efficiency of knock and pre-ignition detection.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: December 30, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: James Michael Kerns, Michael James Uhrich, Stephen B. Smith, Adam Nathan Banker
  • Patent number: 8919102
    Abstract: An exhaust purifying device for an internal combustion engine which can restrict an influence of a measurement error in a NOx sensor provided at the downstream side of a catalyst and can optimally maintain a NOx purifying rate. The device includes a catalytic converter carrying a selective catalytic reduction catalyst provided in an exhaust passage of the engine to selectively reduce nitrogen oxides, a urea water adding valve for adding urea water to the catalyst as a reducing agent, a NOx sensor provided at the downstream side of the catalyst, and an ECU for adjusting an addition amount of the urea water adding valve based upon output of the NOx sensor, wherein a urea water addition amount adjusting process is executed under a condition that a NOx amount to be generated in the engine increases.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: December 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaaki Sato, Tomihisa Oda, Shinya Asaura, Shunsuke Toshioka
  • Patent number: 8919107
    Abstract: A control device of a diesel engine with a turbocharger is provided. The device includes an engine body having a cylinder, a fuel injection valve, a turbine of the turbocharger, a bypass passage for bypassing the turbine, a bypass valve for opening and closing the bypass passage, an oxidation catalyst for purifying HC, and a DPF for capturing soot. The device includes a fuel cutting module for stopping, when the diesel engine is in a deceleration state, a main injection of the fuel performed on compression stroke, a DPF regenerating module for performing, when a predetermined DPF regeneration condition is satisfied, a post injection on expansion stroke to supply HC to the oxidation catalyst and regenerate the DPF by heat generated from an oxidation reaction of HC, and a bypass valve control module for controlling the bypass valve.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Mazda Motor Corporation
    Inventor: Hiroyuki Nishimura
  • Patent number: 8919099
    Abstract: A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: December 30, 2014
    Inventors: Min Sun, Kevin L. Perry, Chang H. Kim
  • Patent number: 8919100
    Abstract: A method for a motor vehicle includes using a regenerative brake system that produces electric current as a result of application of said regenerative brakes and sending at least a fraction of the electric current directly to an electrical accessory of the vehicle and bypassing the battery. One electrical accessory may be an electrically heated catalytic converter.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark W. Verbrugge, Karthik Ramanathan
  • Publication number: 20140373512
    Abstract: In a system having an oxygen sensor arranged downstream of a NOx storage-reduction catalyst, a constant current is made to flow between sensor electrodes by a constant current circuit provided in the outside of the oxygen sensor, which makes it possible to change an output characteristic of the oxygen sensor. Further, during a lean combustion control of an engine, a sensing responsiveness to a lean component of the oxygen sensor is improved. In this way, when NOx (lean component) is emitted to the downstream of the catalyst, the NOx can be quickly sensed by the oxygen sensor. Meanwhile, during a rich combustion control of the engine, the sensing responsiveness to a rich component of the oxygen sensor is improved. In this way, when HC and CO (rich components) are emitted to the downstream of the catalyst, the HC and the CO can be quickly sensed by the oxygen sensor.
    Type: Application
    Filed: January 22, 2013
    Publication date: December 25, 2014
    Inventors: Masahiro Yokoi, Mikiyasu Matsuoka, Shingo Nakata
  • Patent number: 8915071
    Abstract: Provided is an exhaust gas purifying device which can improve handling work ability such as maintenance of an engine while it can improve a purifying performance of an exhaust gas of the engine. The exhaust gas purifying device is provided with a plurality of gas purifying bodies which purifies the exhaust gas discharged by the engine, a plurality of inside cases which are inward provided with the gas purifying bodies, and outside which are inward provided with the inside cases. An outlet end portion of an inside case in an exhaust gas upstream side and an inlet end portion of an in an exhaust gas downstream side are superposed as a double structure. Sensor boss bodies for supporting exhaust gas sensors are arranged in an outside surface of the outlet end portion or the inlet end portion of the double structure. The sensor boss bodies are extended to an outside direction of the outside case.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: December 23, 2014
    Assignee: Yanmar Co., Ltd.
    Inventor: Masataka Mitsuda
  • Patent number: 8915070
    Abstract: Systems, methods, and computer readable storage media are described in which exhaust gas is routed to a hydrocarbon retaining device during starting, and purged to the engine intake manifold. Various alternative approaches are described for controlling operation and diagnosing degradation. Further, various interrelated configurations are described.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: December 23, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael James Uhrich, Shane Elwart, James Michael Kerns, Jason Aaron Lupescu
  • Patent number: 8910467
    Abstract: In controlling a hybrid vehicle, an internal combustion engine and an electric motor are controlled such that, when a power request is received while traveling with an operation of the internal combustion engine stopped and a requested power required for traveling is higher than a predetermined power, the operation of the internal combustion engine is started with an intake air volume based on the requested power and the hybrid vehicle travels with the requested power. When the power request is received for the first time after ignition-on, the start control for controlling the internal combustion engine is performed such that the operation of the internal combustion engine is started with an intake air volume lower than that based on the requested power. The hybrid vehicle includes a controller that performs the above control, an internal combustion engine, an electric motor, a battery, and a purification device.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: December 16, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Keisuke Morisaki
  • Patent number: 8904762
    Abstract: An embodiment (control apparatus) for an internal combustion engine according to the present invention determines, based on an output value of the downstream air-fuel ratio sensor disposed downstream of a three-way catalyst, determines which air-fuel ratio request, a rich request or a lean request, is occurring. The control apparatus sets a target upstream air-fuel ratio to a target rich air-fuel ratio when the rich request is occurring, and sets the target upstream air-fuel ratio to a target lean air-fuel ratio when the lean request is occurring. Each of the target rich air-fuel ratio and the target lean air-fuel ratio is varied depending on an intake air amount. Further, the control apparatus increases a purge amount of an evaporated fuel as a magnitude (air-fuel ratio change amount ?AF, |afLean?afRich|) of a difference between the target rich air-fuel ratio and the target lean air-fuel ratio becomes larger.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: December 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Suzuki, Shuntaro Okazaki
  • Patent number: 8904769
    Abstract: An internal combustion engine system includes: an engine with a plurality of pistons housed in respective ones of a plurality of cylinders; an air intake system to provide air to the plurality of cylinders through respective ones of a plurality of intake valves; an exhaust system to release exhaust gas from the plurality of cylinders through respective one of a plurality of exhaust valves; an aftertreatment system to treat exhaust emission from the engine; at least one sensor to provide a sensor signal corresponding to an efficiency of the aftertreatment system; and a controller coupled to the at least one sensor and operable to regulate an internal exhaust gas recirculation operation in the cylinders when the aftertreatment system operates at less than a desired efficiency.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 9, 2014
    Assignee: Cummins Inc.
    Inventors: Axel Otto zur Loye, John D. Ridge
  • Patent number: 8904761
    Abstract: A control apparatus for a power unit equipped with an internal combustion engine and outputs a power. The control apparatus according to the invention starts engine operation when the required power becomes equal to or larger than an engine start threshold during engine stop, and stops engine operation when the required power becomes equal to or smaller than an engine stop threshold during engine operation. The internal combustion engine is equipped with a catalyst. When the purification capacity of the catalyst is lower than a start threshold correction threshold, a value smaller than a reference engine start threshold is set as the engine start threshold. When the purification capacity of the catalyst is equal to or higher than the start threshold correction threshold, a value equal to the reference engine start threshold or a value larger than the reference engine start threshold is set as the engine start threshold.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: December 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takashi Amano
  • Patent number: 8904760
    Abstract: An exhaust gas treatment system for a diesel engine is disclosed. The exhaust gas treatment system includes a hydrocarbon selective catalytic reduction catalyst (HC-SCR) in fluid communication with a diesel engine to receive an exhaust gas flow therefrom. The system also includes a two-way catalyst in fluid communication with the HC-SCR to receive the exhaust gas flow therefrom, the two-way catalyst comprising a urea selective catalytic reduction catalyst and a diesel particulate filter (DPF).
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: December 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Rahul Mital
  • Patent number: 8904755
    Abstract: A heater control device of an oxygen concentration sensor is provided in which even in a case where an internal combustion engine is automatically stopped by idle stop control after cold start-up, it is possible to start energization of a heater at an appropriate time.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: December 9, 2014
    Assignee: Bosch Corporation
    Inventors: Keiichi Takeda, Ken Noguchi
  • Patent number: 8904765
    Abstract: The internal combustion engine has an upstream side NOx selective reduction catalyst and a downstream side NOx selective reduction catalyst which are arranged in an engine exhaust passage. The upstream side NOx selective reduction catalyst has a region where the NOx removal rate becomes substantially constant when the ratio of concentration of ammonia to NOx of the inflowing exhaust rises. The internal combustion engine has an operating state in that region where the ratio of concentration of ammonia to NOx is maintained. The downstream side NOx selective reduction catalyst has an ammonia oxidation ability which is larger than the upstream side NOx selective reduction catalyst.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroshi Miyagawa, Kiyoshi Yamazaki
  • Patent number: 8904768
    Abstract: An adaptive method is used for LNT desulfation and regeneration. The desulfation method involves adapting the amount of sulfur loading to trigger a desulfation event in accordance with the current adsorption capacity of the LNT. The method involves monitoring the current sulfur loading and the current LNT adsorption capacity. This data is used to calculate a loading amount “trigger”, whose value varies over the LNT lifetime. Whenever this trigger amount is reached, a desulfation event is performed. The regeneration method is similar, with the baseline data and loading threshold being determined by NOx loading rather than sulfur loading.
    Type: Grant
    Filed: October 17, 2010
    Date of Patent: December 9, 2014
    Assignee: Southwest Research Institute
    Inventors: Qilong Lu, Shizuo Sasaki, Yiqun Huang
  • Patent number: 8904767
    Abstract: The present invention relates to a method for achieving reduced emissions at cold start of an internal combustion engine having an exhaust gas after treatment system comprising at least one Diesel Oxygen Catalyst (DOC), at least one Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) unit, comprising the steps of: heating the DOC prior to cold starting said internal combustion engine, starting and controlling the internal combustion engine towards low NOx emission when said DOC has reached a predetermined temperature, optimizing the fuel consumption at a given total emission level when said DPF and SCR has reached a predetermined temperature.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: December 9, 2014
    Assignee: Volvo Lastvagnar AB
    Inventors: Lennart Andersson, Bert-Inge Bertilsson
  • Patent number: 8899014
    Abstract: An emission control system for an engine includes a catalyst and an exhaust-gas sensor provided downstream of the catalyst in a flow direction of exhaust gas. The exhaust-gas sensor includes a sensor element that includes a pair of electrodes and a solid electrolyte body located between the electrodes. The emission control system further includes a constant current supply portion that changes an output characteristic of the exhaust-gas sensor by applying a constant current between the electrodes, a rich direction control portion that performs a rich direction control after a fuelling-stop control, and a characteristic control portion that performs a rich responsiveness control during the rich direction control. In the rich direction control, an air-fuel ratio of the exhaust gas is made to be richer. In the rich responsiveness control, the constant current supply portion increases a detection responsiveness of the exhaust-gas sensor with respect to rich gas.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: December 2, 2014
    Assignee: Denso Corporation
    Inventors: Kosuke Nakano, Shingo Nakata, Mikiyasu Matsuoka
  • Patent number: 8899018
    Abstract: Through the use transfer functions, or other modeling types, directed toward the individual operation of an engine and after-treatment subsystems, an optimizer determines the trade-offs between fuel consumption, urea consumption, and reduction of NOx and PM emissions for each component of the integrated system. Evaluation of these trade-offs permits the optimizer to dictate how each component should be controlled, or adjusted, to achieve optimal fuel (and urea) consumption while meeting the constraints bounding the solution. Response characteristics can be triggered by adjusting certain engine operating levers in order to achieve optimal performance of the integrated system.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: December 2, 2014
    Assignee: Cummins Inc.
    Inventors: Tim Frazier, Eric Andrews, Ken Federle
  • Patent number: 8899027
    Abstract: A method is applied to regenerate particulate matter in a particulate filter of a hybrid electric vehicle having a combination of a combustion engine and an electric motor for propelling the vehicle, the hybrid electric vehicle having an electrically heated catalyst disposed in flow communication with the particulate filter in an exhaust system of the vehicle. The method determines whether the combustion engine is or is not combusting fuel, and under a condition where the combustion engine is not combusting fuel, the catalyst is electrically heated until it has reached a temperature suitable to cause ignition of the particulate matter. The electric motor is used to facilitate rotation of the combustion engine at a rotational speed suitable to draw air into and be exhausted out of the combustion engine into the exhaust system, across the catalyst, and into the particulate filter to facilitate ignition of the particulate in the filter.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: December 2, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Bryan N. Roos, Eugene V. Gonze, Michael J. Paratore, Jr.
  • Patent number: 8899015
    Abstract: A catalyst degradation detection device, determines whether a three-way catalyst has degraded on the basis of the maximum value of the amount of oxygen stored by the catalyst. When determining whether the three-way catalyst has degraded, the amount of stored oxygen is calculated, and the responsiveness of change in the output signal of an oxygen sensor to oxygen concentration change in catalyst-downstream exhaust is measured. Then, on the basis of the responsiveness of the oxygen sensor which measured the oxygen storage amount, the oxygen storage amount is corrected by reducing the same such that the worsened the measured responsiveness relative to a reference value, the greater the reduction in the oxygen storage amount used in determining whether the three-way catalyst has degraded. The corrected oxygen storage amount used is prevented from deviating from the correct value on the basis of a worsening of the responsiveness of the oxygen sensor.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: December 2, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Makoto Sato
  • Patent number: 8899019
    Abstract: An air-fuel ratio control apparatus of the present invention includes a determination section and a reverse direction correction introducing section. The determination section determines whether or not an output of the downstream air-fuel ratio sensor falls within a predetermined range whose center corresponds to a target value corresponding to the stoichiometric air-fuel ratio. When the output of the downstream air-fuel ratio sensor falls within the predetermined range, the reverse direction correction introducing section temporarily introduces, to an air-fuel ratio correction in a direction requested by the output, an air-fuel ratio correction in a direction opposite to the requested direction.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: December 2, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryota Onoe, Junichi Suzuki, Takahiko Fujiwara, Makoto Tomimatsu, Koichi Kimura, Shuntaro Okazaki
  • Patent number: 8893479
    Abstract: In order to relief a sudden change of engine sound during the transition to recovery control of a particulate removing filter or during returning from the recovery control, a system of treating exhaust gas of an engine includes an exhaust-gas particulate removing filter in an exhaust path, closes down the opening of an inlet throttle valve or an exhaust throttle valve to a recovery opening smaller than a normal opening during recovery of the particulate removing filter, and returns the opening from the recovery opening to the normal opening after the recovery of the particulate removing filter. The opening of the inlet throttle valve or the exhaust throttle valve during the closing process from the normal opening to the recovery opening and during the returning process from the recovery opening to the normal opening is changed at a gradually decreasing or gradually increasing rate of change of the opening.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 25, 2014
    Assignee: Yanmar Co., Ltd.
    Inventors: Taichi Togashi, Atsushi Ohta
  • Patent number: 8893473
    Abstract: An emission control system for an engine includes an upstream sensor provided upstream of a catalyst in a flow direction of exhaust gas, a downstream sensor provided downstream of the catalyst to detect an air-fuel ratio so that the air-fuel ratio approaches a target air-fuel ratio in a sub feedback control, a constant current supply portion which changes an output characteristic of the downstream sensor by applying a constant current on a pair of electrodes thereof. A characteristic control portion controls the constant current supply portion in the sub feedback control to advance a timing of lean detection of the downstream sensor when the air-fuel ratio is richer than the target air-fuel ratio, and to advance a timing of rich detection of the downstream sensor when the air-fuel ratio is leaner than the target air-fuel ratio.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: November 25, 2014
    Assignee: Denso Corporation
    Inventors: Shingo Nakata, Mikiyasu Matsuoka, Hiroki Nogami
  • Patent number: 8893483
    Abstract: A multi-mode powertrain system employing a power-split configuration to transfer torque to a driveline includes an internal combustion engine fluidly coupled to an exhaust aftertreatment system having a catalytic device. A method for controlling the multi-mode powertrain system includes identifying permitted transition paths between a plurality of engine states. The plurality of engine states includes a default state, a pre-light-off state, a light-off state, and a post-light-off state. A preferred one of the plurality of engine states is selected in response to an output torque request and an operating temperature of the catalytic device. Engine operation is transitioned to the preferred one of the plurality of engine states via the permitted transition paths, and the engine is operated in the preferred one of the plurality of engine states.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: November 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anthony H. Heap, Kee Yong Kim, Yaoyao Wei, Alexander K. Rustoni
  • Patent number: 8893474
    Abstract: A DPF target temperature setting unit has a temperature increase rate setting portion which sets a temperature increase change rate such that, until a target set temperature at which PM is burnt is reached after the start of late post injection, the temperature increase change rate is reduced in accordance with an increase in temperature or a period of time elapsed since the start of the late post injection, a stepwise temperature increase change rate in the temperature increase rate setting portion includes two stages of a first-stage change rate A and a second-stage change rate B lower than the first-stage change rate, and a target temperature of the DPF temperature is calculated by using the temperature increase rate of the temperature increase rate setting portion.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: November 25, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yoshikatsu Ikawa, Hiroyuki Endo, Kazunari Ide, Ko Takayanagi
  • Patent number: 8893472
    Abstract: A cogeneration apparatus includes: an airtight chamber provided within an apparatus casing and constructed to prevent exhaust gas of a prime mover from flowing out therefrom; and a relief valve provided in a water flow path within the airtight chamber and constructed to discharge the exhaust gas, contained in the water flow path, to the airtight chamber.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: November 25, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Koichi Oka, Daiki Kamiyama, Kosuke Yamana, Nobuyuki Sasaki, Hideyuki Ushiyama
  • Patent number: 8887490
    Abstract: A catalyst system may include a catalyst and a first sensor that detects contents of gases entering the catalyst and reports the contents of the gases entering the catalyst to an emissions control module. A second sensor and a third sensor may detect contents of gases exiting the catalyst and report the contents of the gases exiting the catalyst to the emissions control module. The emissions control module may determine an air-fuel ratio based on the contents of gases entering the catalyst and the contents of gases exiting the catalyst. The emissions control module may instruct an air-fuel regulator to operate an engine using the air-fuel ratio.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: November 18, 2014
    Assignee: General Electric Company
    Inventors: Jared J. Wentz, Pin Zeng, Ryan Michael Rudnitzki
  • Patent number: 8887491
    Abstract: A control apparatus for an internal combustion engine determines, based on an output value of the downstream air-fuel ratio sensor, an air-fuel ratio of a gas flowing into the catalyst that is set to either a “target rich ratio” or a “target lean ratio”, and determines a fuel injection amount. Disclosed is an evaporated fuel purge section for introducing an evaporated fuel generated in a fuel tank into an intake passage. The purge section starts the purge when the target air-fuel ratio is set to the target rich ratio at a purge execution condition satisfied time point at which a state has changed from a state in which the purge execution condition is unsatisfied to a state in which it is satisfied, and does not start the purge when the target air-fuel ratio is set to the target lean air-fuel ratio at the purge execution condition satisfied time point.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koichi Kimura, Junichi Suzuki, Shuntaro Okazaki
  • Publication number: 20140331652
    Abstract: The invention relates to an exhaust gas purification device of an internal combustion engine comprising a catalyst (45) having an active element and a composite oxidation which carries the active element in an exhaust passage (40), the active element transforming into the composite oxide as a solid solution when the catalyst temperature is higher than or equal to a predetermined solid solution temperature and the atmosphere of the interior of the catalyst is an oxidation atmosphere and the active element precipitating from the composite oxide when the catalyst temperature is higher than or equal to a predetermined precipitation temperature and the atmosphere of the interior of the catalyst is a reduction atmosphere.
    Type: Application
    Filed: December 7, 2011
    Publication date: November 13, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Tanaka, Yusuke Saito, Takeshi Nobukawa, Masao Watanabe
  • Publication number: 20140331651
    Abstract: This control apparatus for an internal combustion engine includes: a turbo-supercharger; a port injection valve and an in-cylinder injection valve; and catalysts. The control apparatus determines whether or not blow-by of gas to an exhaust passage from an intake passage through a combustion chamber occurs, or whether or not a condition in which the blow-by of gas is likely to occur is satisfied. If the determination is affirmative, the control apparatus sets the fuel injection timing for the port injection valve or the in-cylinder injection valve so as to execute fuel injection after an exhaust valve is closed. Further, if the aforementioned determination is affirmative, the control apparatus sets the fuel injection amount so that the air-to-fuel ratio defined using the amount of air passing through the intake valve coincides with a value leaner than the stoichiometric air-to-fuel ratio.
    Type: Application
    Filed: December 1, 2011
    Publication date: November 13, 2014
    Inventor: Takashi Nishikiori
  • Patent number: 8881505
    Abstract: According to one embodiment, an apparatus includes an electronic controller (15) for an internal combustion engine (12) of a motor vehicle. The electronic controller includes a location detection module (32) configured to identify a location of the motor vehicle by a global positioning system (GPS) device (18). Also, the electronic controller includes a driving condition prediction module (34) configured to determine a direction of travel and access geographic information data for a path to be traveled by the motor vehicle. The electronic controller also has a simulation module (36) configured to simulate engine performance including effects from parasitic loads. Still further, the electronic controller includes a parasitic load control module (38) configured to adjust the timing for one or more of a regeneration process for an exhaust filter and at least one other parasitic load in order to maintain engine performance at or above a predetermined threshold.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 11, 2014
    Assignee: Cummins IP, Inc.
    Inventor: Timothy R. Frazier
  • Patent number: 8881503
    Abstract: Disclosed is a method for preventing fuel freezing in a postprocessing burner system with a burner 14 upstream of a particulate filter 12 (exhaust purification member) incorporated in an exhaust pipe. Fuel is fed from a fuel tank 16 served also for a diesel engine 1 (engine) to the burner 14 through a feed pipe 17, and excess fuel is returned to the fuel tank 16 through a return pipe 18. The fuel is periodically circulated between the burner 14 and the fuel tank 16 through the feed and return pipes 17 and 18 under a condition of ambient air temperature during vehicle travel being at or below a predetermined temperature.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: November 11, 2014
    Assignee: Hino Motors, Ltd.
    Inventors: Toshikatsu Muramatsu, Hisaki Torisaka
  • Patent number: 8875489
    Abstract: A method for controlling emissions from an engine includes reducing trapped nitrogen oxides to ammonia on an LNT catalyst while concurrently oxidizing soot accumulated on the LNT catalyst, and, flowing the ammonia so formed to an SCR catalyst.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Karen Marie Adams, Yisun Cheng, Giovanni Cavataio
  • Patent number: 8875494
    Abstract: A system for filtering and oxidizing particulate matter produced by a gasoline direct injection engine is disclosed. In one embodiment, engine cylinder air-fuel is adjusted to allow soot to oxidize at an upstream particulate filter while exhaust gases are efficiently processed in a downstream catalyst.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Carolyn Parks Hubbard, Robert Walter McCabe, Eva Thanasiu, Jeffrey Scott Hepburn, Helmut Hans Ruhland, Moritz Klaus Springer, Thomas Lorenz, Georg Louven, David Karl Bidner
  • Patent number: 8875497
    Abstract: An exhaust purification system for an internal combustion engine is provided that can steadily maintain a NOx purification rate of a selective reduction catalyst to be high without allowing the fuel economy or marketability to deteriorate. The exhaust purification system includes a NO2—NOx ratio adjustment mechanism that causes a NO2—NOx ratio to change; and a NO2—NOx ratio perturbation controller that executes NO2—NOx ratio perturbation control so that a NO2 balance of the selective reduction catalyst in a predetermined time period, with NO2 adsorption being positive and NO2 release being negative, is 0. Herein, NO2—NOx ratio perturbation control is defined as control that alternately executes NO2 increase control to cause the NO2—NOx ratio to be greater than a reference value near 0.5, and NO2 decrease control to cause the NO2—NOx ratio to be less than the reference value.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 4, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hideki Matsunaga, Yuji Yasui, Eiji Hashimoto, Hisao Haga, Naohiro Sato, Masafumi Sakota
  • Patent number: 8869928
    Abstract: A regeneration apparatus for executing a regeneration process to an exhaust gas purifying apparatus and an engine control device that controls a rotational speed of an engine according to an instruction value by a rotational speed instruction apparatus are provided. When a directional control valve is in a neutral position, the engine control device controls the rotational speed of the engine to an automatic idle rotational speed (Nai) by an automatic idle selection unit regardless of the instruction value. However, when it is determined that the regeneration process of the exhaust gas purifying apparatus is executed in a state of controlling the rotational speed of the engine at the automatic idle rotational speed (Nai), the engine control device increases the rotational speed of the engine to a regeneration processing rotational speed (N1) higher than the automatic idle rotational speed (Nai).
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 28, 2014
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Hajime Yoshida, Hajime Ishii, Shuuhei Noguchi
  • Patent number: 8869753
    Abstract: An engine and related control system determine an amount of fuel diluting the engine oil in the oil pan. Such information can be used to recommend an oil change and to estimate a fraction of biodiesel in the fuel supplied to the engine. According to one embodiment, actual oil volume in the oil pan is based on a signal from a level sensor in the oil and a theoretical oil volume is determined based on initial oil volume and fuel entering the oil in the oil pan, fuel leaving the oil pan due to evaporation, and oil being consumed in the combustion chamber. Based on the difference between the actual and theoretical oil volumes, a proportion of heavy fuel components or biodiesel can be determined and transmitted to an engine control system.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 28, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Matthew Allen Schneider, Yasser Mohamed sayed Yacoub, Mario Balenovic