Reactor Plus A Washer, Sorber Or Mechanical Separator Patents (Class 60/297)
  • Patent number: 8783011
    Abstract: Detecting particulate matter in an exhaust filter includes receiving data indicative of a time delay between transmission and reception of electromagnetic energy propagated through trapped particulate matter, and outputting a signal indicative of an amount of the trapped particulate matter responsive to the data.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: July 22, 2014
    Assignee: Caterpillar Inc.
    Inventor: Sergey Korenev
  • Patent number: 8783016
    Abstract: A system may include a hydrocarbon (HC) absorber positioned in an exhaust flow path and an electrically heated catalyst (EHC) positioned in the exhaust flow path downstream of the HC absorber.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: July 22, 2014
    Inventors: Eugene V. Gonze, Halim G Santoso, Frank Ament
  • Patent number: 8783015
    Abstract: In systems in which there is insufficient pressure difference between the intake and the exhaust to drive the EGR, an EGR pump is provided. In a dual-engine system, disclosed herein, the EGR system, i.e., the EGR cooler and EGR pump, is shared to obviate the need for two of each. Shutoff valves may be provided between the EGR system and a secondary of the two engines to isolate the secondary engine when it is not operating. When the engines are OPOC engines, exhaust aftertreatment devices, such as diesel oxidation catalysts and/or diesel particulate filters, may be placed upstream of where the EGR gases tee off from the engine's exhaust to thereby maintain a high pressure ratio across an exhaust turbine located downstream in the engine's exhaust.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: July 22, 2014
    Assignee: EcoMotors, Inc.
    Inventor: Peter Hofbauer
  • Publication number: 20140196444
    Abstract: A mixing device of an exhaust aftertreatment device includes: an elbow pipe attached to an outlet pipe of a filter device; a straight pipe connected to a downstream side of the elbow pipe to extend in a direction intersecting an axial line of the outlet pipe; and an injector attached to the elbow pipe, the injector injecting a reductant aqueous solution into inside the elbow pipe toward the straight pipe. The elbow pipe includes: an inlet connected with the outlet pipe; an outlet connected with the straight pipe; a direction-changing section provided between the inlet and the outlet; and an injector attachment provided outside the direction-changing section and attached with the injector. The injector attachment is offset toward the outlet. The direction-changing section includes a first bulging portion provided by bulging outward a portion thereof opposite to the injector attachment.
    Type: Application
    Filed: January 17, 2013
    Publication date: July 17, 2014
    Applicant: KOMATSU LTD.
    Inventors: Tatsuya Watahiki, Hidehiko Kobayashi, Hiroyuki Chino
  • Patent number: 8776499
    Abstract: Provided are exhaust systems, components, and catalytic articles that have been passivated for use in conjunction with diesel engines that includes a NOx abatement system that uses a reductant. These items are passivated in order to minimize degradation of a reductant in their presence when, for example, they have been subjected to temperatures in excess of 650° C.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: July 15, 2014
    Assignee: BASF Corporation
    Inventors: Edgar V. Huennekes, Martin Kalwei
  • Patent number: 8776507
    Abstract: A system for regenerating a particulate filter mounted on an exhaust pipe of a gasoline engine including a plurality of cylinders and an ignition device for igniting fuel and air in the cylinder, a three-way catalyst device mounted on the exhaust pipe connected to the gasoline engine, and to oxidize or reduce exhaust gas, the particulate filter mounted on the exhaust pipe downstream of the three-way catalyst device to trap particulate matter and regenerate the particulate matter using heat of the exhaust gas, a differential pressure sensor mounted upstream and downstream of the particulate filter and to measure a pressure difference of the particulate filter, and a control portion to receive the measured pressure difference and control parameters to determine an amount of non-ignited fuel which is not ignited and flows to the three-way catalyst device among the fuel flowing into the plurality of cylinders.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: July 15, 2014
    Assignee: Hyundai Motor Company
    Inventors: Chibum In, Ki Young Yoon
  • Patent number: 8776501
    Abstract: A power system comprising an engine that produces exhaust, a fuel system that injects a fuel into the engine, an aftertreatment system that treats the exhaust, and is controller. The aftertreatment system includes an oxidation catalyst that converts NO from the engine into NO2, a particulate filter that traps soot from the engine, and a sensor that provides an indication of the amount of soot in the particulate filter. The controller increases an engine fuel injection pressure when the amount of soot in the particulate filter is above a threshold.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: July 15, 2014
    Assignee: Perkins Engines Company Limited
    Inventors: Tom W. Carlill, Jason Soilleux, Alistair C. Farman, Guy Blundell, Anthony C. Rodman
  • Publication number: 20140190147
    Abstract: A method is applied to regenerate particulate matter in a particulate filter of a hybrid electric vehicle having a combination of a combustion engine and an electric motor for propelling the vehicle, the hybrid electric vehicle having an electrically heated catalyst disposed in flow communication with the particulate filter in an exhaust system of the vehicle. The method determines whether the combustion engine is or is not combusting fuel, and under a condition where the combustion engine is not combusting fuel, the catalyst is electrically heated until it has reached a temperature suitable to cause ignition of the particulate matter. The electric motor is used to facilitate rotation of the combustion engine at a rotational speed suitable to draw air into and be exhausted out of the combustion engine into the exhaust system, across the catalyst, and into the particulate filter to facilitate ignition of the particulate in the filter.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Bryan N. Roos, Eugene V. Gonze, Michael J. Paratore, JR.
  • Patent number: 8763375
    Abstract: The present invention relates to an exhaust gas cleaning device (2) of an exhaust system (1) of a combustion engine, more preferably of a motor vehicle, with a catalytic converter unit (3) having a catalytic converter support pipe (7) and at least one oxidation catalytic converter element (8) mounted in the catalytic converter support pipe (7), and with a particle filter unit (4) having a particle filter support pipe (11) and at least one particle filter element (12) mounted in the particle filter support pipe (11). A simple handling with simple construction can be achieved with a receiving pipe (5) in which one of the support pipes (7, 11) is axially inserted, and with a clamp connection (6) which sets the receiving pipe (5), the catalytic converter support pipe (7) and the particle filter support pipe (11) against one another.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: July 1, 2014
    Assignee: J. Eberspaecher GmbH & Co. KG
    Inventors: Arthur Wieland, Michael Krause, Felix Neumann
  • Patent number: 8763373
    Abstract: A system for purifying an exhaust gas may include a lean NOx trap (LNT) catalyst adapted to absorb nitrogen oxides contained in the exhaust gas at a lean atmosphere, release the absorbed nitrogen oxides at a rich atmosphere, and reduce or slip the released nitrogen oxides according to a temperature thereof; a particulate filter adapted to trap particulate matters contained in the exhaust gas and regenerate the trapped particulate matters by using the nitrogen oxides slipped from the LNT catalyst; and a controller adapted to selectively create the rich atmosphere when the temperature of the LNT catalyst is higher than or equal to a first predetermined temperature or a temperature of the particulate filter is higher than or equal to a second predetermined temperature. A method for controlling the system is also disclosed.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: July 1, 2014
    Assignee: Hyundai Motor Company
    Inventor: Jae Beom Park
  • Patent number: 8756917
    Abstract: An exhaust gas treatment system for an internal combustion engine comprises a particulate filter assembly configured to receive exhaust gas from the engine. The particulate filter assembly comprises an electrically heated catalyst, a particulate filter disposed downstream of the electrically heated catalyst, a hydrocarbon injector, in fluid communication with the exhaust gas, upstream of the electrically heated catalyst and configured to inject excess hydrocarbon into the exhaust gas, an air pump in fluid communication with the exhaust gas upstream of the electrically heated catalyst and configured to deliver air to the exhaust gas to increase the volumetric gas flow rate through, and to decrease the heat residence time in, the particulate filter and a controller configured to operate the hydrocarbon injector, the electrically heated catalyst and the air pump based on predetermined exhaust gas flow rates, temperature thresholds and particulate loadings within the particulate filter.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: June 24, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Garima Bhatia
  • Patent number: 8756916
    Abstract: A hydraulic driving device for a working machine surely prevents behavior of a single rod double acting cylinder not intended by an operator when discharge pressure of a main pump is raised to raise exhaust gas temperature to temperature required for burning particulate matter. A selector valve 160 interposed between a spool valve 61 and a rod chamber of a single rod double acting cylinder 51 and a section (a filter regeneration time actuation valve 122, a vehicle body controller 150) controlling the selector valve, are provided. A switch control section prevents a flow of oil directed from the rod chamber of the cylinder toward the spool valve by actuating the selector valve by a poppet of the selector valve when a by-pass cut valve 110 is controlled to increase a load of an engine 21 to a degree exhaust gas temperature reaches temperature required for burning particulate matter.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: June 24, 2014
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventors: Kensuke Sato, Tsuyoshi Nakamura, Kouji Ishikawa, Yasuo Okano
  • Patent number: 8756912
    Abstract: A method of defining a target regeneration temperature setpoint for exhaust gas upstream of a particulate filter of an exhaust gas treatment system includes as defining the regeneration temperature setpoint to include an idle temperature setpoint when the current vehicle operating mode is classified as an idle mode, and defining the regeneration temperature setpoint to include a driving temperature setpoint when the current vehicle operating mode is classified as a driving mode. The idle temperature setpoint and the driving temperature setpoint are derived individually of and separately from each other, and are based on different criteria.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: June 24, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael V. Taylor, Giuseppe Schiavone, Andrea Gravili, Pantaleo Barbera
  • Patent number: 8756926
    Abstract: An exhaust system (10) for a lean-burn internal combustion engine (12) comprises a first substrate monolith (16) comprising a catalyst for oxidizing nitric oxide (NO) comprising a catalytic oxidation component followed downstream by a second substrate monolith (18) which is a wall-flow filter having inlet channels and outlet channels, wherein the inlet channels comprise a NO x absorber catalyst (20) and the outlet channels comprise a catalyst for selective catalytic reduction (22) of nitrogen oxides with nitrogenous reductant.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: June 24, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Guy Richard Chandler, Neil Robert Collins, Paul Richard Phillips, Daniel Swallow
  • Patent number: 8752368
    Abstract: A diagnostic method is provided for a particle filter arranged in exhaust-gas flow of an internal combustion engine. A particle concentration is detected by a particle sensor positioned downstream of the particle filter. The combustion-relevant engine parameters are briefly changed by an engine controller in such a way that an untreated emissions concentration from the engine is significantly increased. A filter fault message is output if the detected associated measurement values of the particle concentration exceed a detection threshold value of the particle sensor, which is in particular considerably greater than a predefined, preferably volume-related particle limit value.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: June 17, 2014
    Assignee: Continental Automotive GmbH
    Inventors: Johannes Ante, Manfred Weigl
  • Publication number: 20140161693
    Abstract: A catalysed soot filter for a diesel engine comprises a wall flow substrate having a substrate axial length, wherein surfaces of both the internal walls of a plurality of inlet and a plurality of outlet channels comprise a catalytic washcoat of at least one on-wall coating composition for oxidising NO in exhaust gas to NO2, wherein the washcoat on the inlet channels extends for an axial inlet coating length from an open inlet end to a downstream inlet coating end, the washcoat on the outlet channels extends for an axial outlet coating length from an upstream outlet end to an open outlet end, the axial inlet coating length and the axial outlet coating length are both less than the substrate axial length and the outlet coating length is greater than the inlet coating length.
    Type: Application
    Filed: October 31, 2013
    Publication date: June 12, 2014
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Gavin Michael BROWN, Andrew Francis CHIFFEY, David MARVELL
  • Patent number: 8745972
    Abstract: An exhaust purification system of an internal combustion engine includes an NOX storage reduction catalyst device which is arranged in an engine exhaust passage. The NOX storage reduction catalyst device stores SOX simultaneously with NOX. When the stored SOX amount exceeds a predetermined allowable amount, the SOX is made to be released by SOX release control which raises the temperature of the NOX catalyst device to the SOX releasable temperature, then makes the air-fuel ratio of the exhaust gas which flows into the NOX catalyst device the stoichiometric air-fuel ratio or rich. The NOX catalyst device has a residual SOX storage amount which finally remains even if performing SOX release control depending on the temperature of the NOX catalyst device when performing SOX release control. The system uses the residual SOX storage amount of the current SOX release control as the basis to calculate the SOX release speed at each timing in the current SOX release control.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: June 10, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kohei Yoshida, Takamitsu Asanuma, Masahide Iida, Yuichi Sobue
  • Patent number: 8745971
    Abstract: A system includes an internal combustion ignition engine with an exhaust gas flow, a particulate filter in the exhaust gas flow, a NOx reduction catalyst in the exhaust gas flow downstream of the particulate filter, a first oxygen sensor coupled to the exhaust gas flow downstream of the NOx reduction catalyst, and a second oxygen sensor coupled to the exhaust gas flow between the particulate filter and the NOx reduction catalyst. A controller includes an exhaust conditions module that interprets a first oxygen signal from the first oxygen sensor and a second oxygen signal from the second oxygen sensor and a combustion control module that commands a high engine-out air-fuel ratio when the first oxygen signal indicates a low oxygen content and commands a low engine-out air-fuel ratio when the first oxygen signal indicates a high oxygen content.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: June 10, 2014
    Assignee: Cummins Inc.
    Inventors: Aleksey Yezerets, Timothy R. Frazier, Marten H. Dane, Samuel C. Geckler, Govindarajan Kothandaraman
  • Patent number: 8739518
    Abstract: Methods and systems for controlling operation of exhaust of an engine including a particulate filter are described. One example method includes generating compressed air during engine operation, and storing the compressed air. The method further includes, during or after engine shutdown, pushing the compressed air through the particulate filter using a pressure of the compressed air.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: June 3, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Michiel J. Van Nieuwstadt
  • Patent number: 8733083
    Abstract: Described herein are various embodiments of an apparatus, a system, and a methods for reducing NOx emissions using ammonia storage on an SCR catalyst. For example, according to one embodiment, an apparatus for controlling an SCR system of an internal combustion engine system includes an ammonia storage module and a reductant dosing module. The ammonia storage module determines an ammonia storage surface coverage on an SCR catalyst of the SCR system and an ammonia compensation value based on one of an excess ammonia flow rate entering the SCR catalyst and an excess NOx flow rate entering the SCR catalyst. The reductant dosing module that generates a reductant dosing command based on the ammonia compensation value.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: May 27, 2014
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Abdul R. Ofoli, Hasan Mohammed
  • Patent number: 8733084
    Abstract: A bypass HC—NOx system includes a NOx conversion control module that generates a signal indicating whether a close coupled catalyst is active. The system further includes a bypass valve control module that, in response to the signal, opens a bypass valve located in an active HC—NOx adsorber assembly to purge hydrocarbons from an HC adsorber, wherein the bypass valve is located upstream from the HC adsorber and a NOx adsorber. The bypass valve control module also determines a temperature of a three way catalyst and closes the bypass valve to purge nitrogen dioxide from the NOx adsorber if the temperature of the three way catalyst is greater than a predetermined temperature threshold.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 27, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso
  • Patent number: 8726639
    Abstract: The invention provides methods for regenerating pollutant storage and catalytic components of an internal combustion engine's exhaust gas aftertreatment system. These methods include introducing reductant in to catalytic components requiring regeneration in series of discreet portions during a Scheduled Regeneration Event. Typically the flow of exhaust gas to the catalytic component undergoing regeneration is at least partially reduced.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: May 20, 2014
    Assignee: Cummins Inc.
    Inventors: Bradlee Stroia, Michael Cunningham
  • Patent number: 8726642
    Abstract: A method of regenerating a particulate filter that includes an electric heater is provided. The method includes determining a location of particulate matter that remains within at least one region of the particulate filter based on a regeneration event being extinguished; and selectively controlling current to a zone of a plurality of zones of the electric heater to initiate a restrike of the regeneration event based on the location of particulate matter.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: May 20, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr.
  • Patent number: 8726638
    Abstract: The reduction of a NOx trap upon engine shutdown is disclosed. One disclosed embodiment comprises adjusting a timing of creating a reductive environment in the exhaust conduit upstream of the lean NOx trap based upon the determined engine stop position. The creation of a reductive environment in the exhaust conduit upstream of the lean NOx trap may help to at least partially reactivate the lean NOx trap during engine shutoff.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: May 20, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: John William Hoard, Lifeng Xu, Robert Walter McCabe, Karen Marie Adams
  • Patent number: 8728192
    Abstract: A filter housing has first and second housing parts connected to each other to be openable and secured by a latching element. The latching element is connected to the first housing part by a moveable connection with a predetermined breaking point and is pivotable by the movable connection into the closed state. The latching element has two positioning elements and the housing parts have counter positioning elements. In the closed state, the counter positioning elements are axially arranged between the two positioning elements and the positioning elements form a stop for the counter positioning elements. The latching element has an element locking section locking at a housing locking section on the first or second housing part. The predetermined breaking point is subjected to mechanical stress such that the predetermined breaking point breaks upon locking or release of the latching element.
    Type: Grant
    Filed: March 24, 2012
    Date of Patent: May 20, 2014
    Assignee: Mann + Hummel GmbH
    Inventors: Michael Metzger, Bernd Joos, Ettore Nocera, Thomas Jessberger, Alexander Seifert, Stefan Walz
  • Patent number: 8726641
    Abstract: A method is provided for controlling injection of Diesel Exhaust Fluid into an exhaust pipe of an internal combustion engine equipped with a Selective Reduction Catalyst. The method includes, but is not limited to monitoring a value of a control parameter influencing an operation of the Selective Reduction Catalyst, injecting a quantity of Diesel Exhaust Fluid, controlling the quantity of Diesel Exhaust Fluid to be injected employing a closed loop procedure or an open loop procedure, switching between the closed loop procedure and the open loop procedure, when value of the control parameter crosses a first threshold value of the control parameter.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 20, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Igor Zanetti, Emiliano Santillo
  • Patent number: 8720191
    Abstract: An object is to provide a diesel engine that eliminates discomfort when an operator of a working, machine coupled to the diesel engine is at work while a particulate filter is being regenerated. A diesel engine includes an exhaust emission purifier and selecting means capable of selecting any one control method from isochronous control and droop control. The exhaust emission purifier includes a particulate filter and a pressure regulation valve. The particulate filter is disposed along an exhaust stream to purify exhaust gas. The pressure regulation valve is configured to apply a load onto the diesel engine so as to raise a temperature of the particulate filter so that a particulate accumulable in the particulate filter is forcibly removed and that the particulate filter is regenerated. The selecting means is configured to select the isochronous control to control the diesel engine when the load is applied by the pressure regulation valve.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: May 13, 2014
    Assignee: Yanmar Co., Ltd.
    Inventors: Hiroshi Masuda, Michihiko Hara
  • Patent number: 8720192
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided. The internal combustion engine has an engine off condition. The exhaust gas treatment system includes particulate filter (“PF”) device in fluid communication with an exhaust gas conduit, an electric heater, a primary energy storage device, a plurality of secondary energy storage devices, and a control module. The PF device has a filter structure for removal of particulates in the exhaust gas, and is selectively regenerated based on an amount of particulates trapped within the filter structure of the PF device. The electric heater is disposed upstream of the filter structure and is selectively energized to provide heat for regeneration of the PF device. The plurality of secondary energy storage devices are selectively connected to the primary energy storage device. The secondary energy storage devices selectively energize the electric heater.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: May 13, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Michael G. Reynolds
  • Patent number: 8722000
    Abstract: Catalytic articles, systems and methods for treating exhaust gas streams are described. A catalytic article comprising a wall flow filter having gas permeable walls, a hydrolysis catalyst, an optional soot oxidation catalyst, a selective catalytic reduction catalyst permeating the walls, an ammonia oxidation catalyst and an oxidation catalyst to oxidize CO and hydrocarbons is described. Methods of treating exhaust gas streams comprising soot, an ammonia precursor such as urea, ammonia, NOx, CO and hydrocarbons are also provided.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 13, 2014
    Assignee: BASF Corporation
    Inventor: R. Samuel Boorse
  • Patent number: 8720193
    Abstract: A catalyst heating system includes a monitoring module, a mode selection module and an electrically heated catalyst (EHC) control module. The monitoring module monitors at least one of (i) a first active volume of a catalyst assembly in an exhaust system of an engine and (ii) a first temperature of a non-EHC of the catalyst assembly. The mode selection module is configured to select a non-EHC radiant heating mode and generate a mode signal based on the at least one of the first active catalyst volume and the first temperature. An EHC control module increases temperature of the EHC to an elevated temperature that is greater than a stabilization temperature based on the mode signal. The stabilization temperature is greater than a catalyst light off temperature.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: May 13, 2014
    Inventors: Eugene V. Gonze, Halim G. Santoso, Brian L. Spohn, Bryan Nathaniel Roos
  • Patent number: 8720190
    Abstract: A method for predicting sulfur oxides (SOx) stored at a denitrification (DeNOx) catalyst may include calculations of the mass flow of SOx poisoned at the DeNOx catalyst, the mass flow of SOx released from the DeNOx catalyst, and the SOx amount poisoned at the DeNOx catalyst by integrating the value obtained by subtracting the released mass flow of SOx from the poisoned mass flow of SOx. An exhaust system using the method may comprise an engine having a first injector, an exhaust pipe, a second injector mounted at the exhaust pipe and injecting a reducing agent, a DeNOx catalyst mounted at the exhaust pipe and reducing SOx or nitrogen oxides (NOx) or both contained in the exhaust gas by using the reducing agent, and a control portion electrically connected to the system and performing the calculations and controls.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: May 13, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation, FEV Motorentechnik GmbH
    Inventors: Jin Ha Lee, Jin Woo Park, Christopher Severin, Thomas Wittka
  • Publication number: 20140123630
    Abstract: The invention relates to a method for reactivating a system composed of an oxidation catalytic converter (5) followed by a possibly catalytically coated particle filter (6), and to a correspondingly adapted exhaust-gas purification system for lean-burn engines (1) with low pressure EGR (14). The present invention relates in particular to the reactivation of such a system during over run operation of the engine.
    Type: Application
    Filed: June 22, 2012
    Publication date: May 8, 2014
    Applicant: UMICORE AG & CO. KG
    Inventors: Stephan Eckhoff, Stefan Franoschek
  • Patent number: 8713920
    Abstract: An exhaust gas treatment device includes at least a housing and a second exhaust gas treatment unit which is disposed at a distance from the housing and extends into the housing. The housing has an opening that is disposed laterally relative to the second exhaust gas treatment unit and extends laterally at least across 50% of the second exhaust gas treatment unit which extends into the housing. A motor vehicle having the exhaust gas treatment device is also provided.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 6, 2014
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Rolf Brück, Conny Johansson, Mats Laurell
  • Patent number: 8713913
    Abstract: A method for operating a particle filter that filters particles contained in the exhaust of motor vehicle combustion engines. A conditioning step is performed such that the separation efficiency of the particle filter for particles is increased relative to the value existing in the new condition.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: May 6, 2014
    Assignee: Daimler AG
    Inventors: Guenter Wenninger, Ronny Meissner
  • Patent number: 8713925
    Abstract: The present invention relates to a sliding seat for mounting a thermally impacted pipe on a structural part so as to be axially movable, in particular in an exhaust gas system of a combustion engine, with a bearing material which is radially supported against pipe on the outside thereof and which is fixed on structural part via a retaining pipe fastened on structural part.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: May 6, 2014
    Assignee: J. Eberspaecher GmbH & Co. KG
    Inventors: Michael Krause, Arthur Wieland, Georg Wirth, Kresimir Jambrosic
  • Publication number: 20140116033
    Abstract: A wall flow type particulate filter is arranged inside the exhaust passage of an internal combustion engine where combustion is performed under an excess of oxygen. The particulate filter carries a solid acid. The solid acid has a Hammett acidity function smaller than ?0.83 and larger than ?12 in the standard state. To remove the ash from the particulate filter, ash atomization processing for rendering the state of the particulate filter a state where the exhaust gas which flows into the particulate filter is lowered in concentration of oxygen and the particulate filter is raised in temperature is temporarily performed.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 1, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Otsuki, Shigeki Nakayama, Hiromasa Nishioka, Katsuhiko Oshikawa, Yoshihisa Tsukamoto, Junichi Matsuo, Yuichi Sobue, Daichi Imai, Kou Sugawara
  • Publication number: 20140116034
    Abstract: A wall flow type particulate filter is arranged inside the exhaust passage of an internal combustion engine where combustion is performed under an excess of oxygen. The particulate filter carries an ash atomization agent. To remove the ash from the particulate filter, ash atomization processing for rendering the state of the particulate filter a state where the exhaust gas which flows into the particulate filter is lowered in concentration of oxygen and the particulate filter is raised in temperature is temporarily performed.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 1, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Otsuki, Shigeki Nakayama, Hiromasa Nishioka, Katsuhiko Oshikawa, Yoshihisa Tsukamoto, Junichi Matsuo, Yuichi Sobue, Daichi Imai, Kou Sugawara
  • Patent number: 8707684
    Abstract: Control methods for regenerating particulate filter and an apparatus that includes an internal combustion engine, an exhaust gas conduit in fluid communication with and configured to receive exhaust gas from the internal combustion engine, and a particulate filter assembly in fluid communication with the exhaust gas conduit and configured to receive exhaust gas flowing therethrough. The particulate filter assembly includes a particulate filter to remove particulates from the exhaust gas, a heater device disposed near a front face of the particulate filter, to supply heat for regeneration of the particulate filter after shut-off of the internal combustion engine, and an air pump to input air into the particulate filter to transfer the supplied heat from the heater device to the particulate filter.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: April 29, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr.
  • Patent number: 8707680
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, air-fuel ratio sensors each of which has a solid electrolyte, electrodes which respectively cover the two side surfaces of the solid electrolyte, and a diffusion resistance layer which covers one of electrodes are arranged. In operation, the greater the amounts of deposition of sulfur ingredients at the air-fuel ratio sensors, the smaller the amounts of change of the air-fuel ratios detected by the air-fuel ratio sensor and the longer the time period of change of the air-fuel ratios. The amounts of sulfur poisoning of the air-fuel ratio sensors are detected from the changes of the air-fuel ratios detected by the air-fuel ratio sensors.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: April 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuki Bisaiji
  • Patent number: 8707678
    Abstract: A system for improving operation of an engine having a particulate matter sensor is presented. The system may be used to improve engine operation during cold starts especially under conditions where water vapor or entrained water droplets are present in vehicle exhaust gases. In one embodiment, an engine controller that activates a heater of an exhaust gas sensor after an output of a particulate matter sensor exceeds a threshold value after an engine is started.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 29, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Garry Anthony Zawacki, Robert F. Novak, Roberto Teran, Jr., Dave Charles Weber, Michiel J. Van Nieuwstadt, Michael Hopka, William Charles Ruona
  • Patent number: 8707685
    Abstract: An exhaust gas purification device for an engine has a filter in an engine exhaust passage, a diesel oxidation catalyst upstream of the filter, and a control unit which effects combustion using the catalyst to perform Active Regeneration of the filter by injecting fuel when no contribution is made to combustion in a combustion chamber when the quantity of particles collected in the filter reaches a predetermined quantity, or is less than the predetermined quantity and an elapsed time from the last filter reconditioning reaches a predetermined time. In the control unit, a mixing quantity of the fuel in oil at Active Regeneration and an evaporation quantity of the fuel from the oil are calculated, whereby a mixing ratio of the fuel in the oil is calculated, and the predetermined time or an engine operation mode is adjusted such that the mixing ratio does not exceed a prescribed control value.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 29, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yasumichi Aoki, Kazuki Nishizawa, Tomotsugu Masuda, Kazunari Ide
  • Patent number: 8701388
    Abstract: A method of controlling an exhaust treatment system, comprising: selectively determining a first control state from a plurality of control states based on an exhaust temperature and a plurality of activation temperatures; estimating a reductant dose based on the control state; and controlling an injection of a reductant to the exhaust treatment system based on the reductant dose.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: April 22, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr.
  • Patent number: 8701393
    Abstract: An internal combustion engine in which an SOx trap catalyst (13) for trapping SOx contained in the exhaust gas contains an oxygen adsorbing and releasing material (54) which can adsorb SO2 contained in the exhaust gas and an SOx storage material (55) which can store SOx in the form of sulfates. The SO2 which is contained in the exhaust gas is chemically adsorbed at the oxygen adsorbing and releasing material (54) without being oxidized. If the temperature of the SOx trap catalyst (13) becomes higher than the start temperature of adsorbed SO2 movement, the SO2 which is chemically adsorbed at the oxygen adsorbing and releasing material (54) is oxidized and stored in the form of sulfates in the SOx storage material (55).
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takamitsu Asanuma, Yoshihisa Tsukamoto, Kazuhiro Umemoto, Junichi Matsuo, Hiromasa Nishioka
  • Patent number: 8702832
    Abstract: A securable mounting material comprises: a mounting material comprising inorganic fibers and having a major surface; and a layer of thermally activatable adhesive inwardly disposed on the inorganic fibers proximate the major surface. The thermally activatable adhesive comprises at least one compound represented by the formula: (Mm+)d((ZpOq(OH)r)n?)e.(H2O)f M represents a cationic species other than H+; O represents oxygen; Z represents boron or phosphorus; f is a real number greater than or equal to zero; d, n, q, and r are integers greater than or equal to zero; e, m, and p are integers greater than or equal to one; and d times m equals e times n. The mounting material is useful in pollution control devices. A method of making the mounting material is also disclosed.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 22, 2014
    Assignee: 3M Innovative Properties Company
    Inventor: Peter T. Dietz
  • Patent number: 8695329
    Abstract: The adherence to future legally obligatory exhaust gas limit values for diesel vehicles in Europe, North America and Japan requires not only the removal of particles but also effective removal of nitrogen oxides from the exhaust gas (‘deNOx’). The ‘active SCR process’ is the preferred method for this. The nitrogen oxide conversions achieved by means of this process are particularly high when an optimal NO2/NOx ratio, preferably 0.5, is set upstream of the SCR catalyst. The invention proposes a process which solves the problem of supplying NO2 in accordance with requirements by means of temperature control of the precatalyst which is decoupled from the operating state of the engine.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 15, 2014
    Assignee: UMICORE AG & Co. KG
    Inventors: Lothar Mussmann, Ingo Lappas, Andreas Geisselmann, Wilfried Mueller
  • Patent number: 8689546
    Abstract: An exhaust purification system of an internal combustion engine is provided with an exhaust purification catalyst which removes NOx and a post treatment device. The exhaust purification catalyst has the property of reducing NOx if making the concentration of hydrocarbons vibrate by within a predetermined range of amplitude and within a predetermined range of period and furthermore has the function of oxidizing hydrocarbons. The exhaust purification system feeds hydrocarbons to the exhaust purification catalyst and raises the temperature of the post treatment device as temperature elevation control. The exhaust purification catalyst has a high purification rate range where the NOx purification rate becomes higher than a predetermined rate. In the temperature elevation control, the total feed amount of hydrocarbons is set and the feed period of hydrocarbons is set in the high purification rate range in a region at the end at the short side of feed period of hydrocarbons.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: April 8, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mikio Inoue, Kohei Yoshida, Yuki Bisaiji
  • Publication number: 20140090364
    Abstract: An exhaust gas treatment device includes at least a housing and a second exhaust gas treatment unit which is disposed at a distance from the housing and extends into the housing. The housing has an opening that is disposed laterally relative to the second exhaust gas treatment unit and extends laterally at least across 50% of the second exhaust gas treatment unit which extends into the housing. A motor vehicle having the exhaust gas treatment device is also provided.
    Type: Application
    Filed: December 3, 2013
    Publication date: April 3, 2014
    Applicant: EMITEC GESELLESCHAFT FUER EMISSIONSTECHNOLOGIE MBH
    Inventors: ROLF Brück, CONNY JOHANSSON, MATS LAURELL
  • Publication number: 20140090361
    Abstract: A method for controlling a particulate matter sensor heater is provided. The method includes operating the heater to burn-off soot accumulated on the sensor; and adjusting the heater level based on sensor output generated during the heater operation. In this way, improved heater control can be achieved using the sensor output already available.
    Type: Application
    Filed: December 2, 2013
    Publication date: April 3, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Michael Hopka, Michiel J. Van Nieuwstadt, Robert F. Novak
  • Patent number: 8688360
    Abstract: A motor vehicle having an internal combustion engine, a differential pressure sensor or two pressure sensors for detecting a pressure difference, which may be in an exhaust tract of the internal combustion engine, and an evaluation unit for evaluating the detected pressure difference. Moreover, the present invention relates to a method for operating a motor vehicle. A controlling arrangement is provided for controlling an automatic start-stop system or an ignition system of the motor vehicle as a function of the result of the evaluation of the detected pressure difference used to detect immersion or submersion of a tailpipe of the exhaust tract in water, sludge, or a similar liquid medium in order to prevent the internal combustion engine from shutting off when the tailpipe is immersed or submerged.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: April 1, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Roland Norden, Michael Bildstein, Herbert Prickarz, Kaspar Schmoll Genannt Eisenwerth
  • Patent number: 8685140
    Abstract: The present invention relates to a particle filter and a method for operating a particle filter. The particle filter includes at least one filter portion forming an open filter system and also a heatable particle collecting element which is arranged adjacently to this filter portion and comprises a material having temperature-dependent electrical resistance. The method for operating the particle filter includes heating the particle collecting element and measuring the electrical resistance of the particle collecting element to determine whether to regenerate the particle filter.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: April 1, 2014
    Assignee: Ford Global Technologies, LLC
    Inventor: Yasser Yacoub