Exhaust Gas Recycling Patents (Class 60/39.52)
  • Publication number: 20140250911
    Abstract: The present techniques are directed to a system and method for generating power and producing liquefied natural gas (LNG). The system includes a power plant configured to generate power, wherein an exhaust gas from the power plant provides a gas mixture including nitrogen and carbon dioxide. The system also includes a dehydration system configured to dehydrate the gas mixture to generate a nitrogen refrigerant stream and a refrigeration system configured to produce LNG from a natural gas stream using the nitrogen refrigerant stream.
    Type: Application
    Filed: February 17, 2014
    Publication date: September 11, 2014
    Inventors: Richard A. Huntington, Stanley O. Uptigrove, Russell H. Oelfke, O. Angus Sites
  • Patent number: 8826639
    Abstract: A thermal/electrical power converter includes a gas turbine with an input couplable to an output of an inert gas thermal power source, a compressor including an output couplable to an input of the inert gas thermal power source, and a generator coupled to the gas turbine. The thermal/electrical power converter also includes a heat exchanger with an input coupled to an output of the gas turbine and an output coupled to an input of the compressor. The heat exchanger includes a series-coupled super-heater heat exchanger, a boiler heat exchanger and a water preheater heat exchanger. The thermal/electrical power converter also includes a reservoir tank and reservoir tank control valves configured to regulate a power output of the thermal/electrical power converter.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: September 9, 2014
    Assignee: Hi Eff Rescue LLC
    Inventor: William Edward Simpkin
  • Publication number: 20140245714
    Abstract: The invention relates to a turbine engine including a detonation chamber and an aircraft provided with such a turbine engine. The chamber (4) of the turbine engine (1) comprises a continuous detonation wave engine (6) provided with an annular detonation chamber (7) and associated means (8, 9) that can be used to generate a continuous production of hot gases from a detonation mixture of fuel and air. The continuous detonation wave engine (6) is arranged such as to form, from a flow of incoming air (E), a first flow (F1) which enters the detonation chamber (7) and which is used by the engine (6) and a second flow (F2) which bypasses the chamber. The turbine engine (1) also includes auxiliary means (10) for mixing the hot gases (F3) leaving the detonation chamber (7) with the second flow of air (F2) before directing same towards the turbine (5). A plurality of detonation chambers (7) are arranged concentrically to one another relative to the axis of the turbine engine.
    Type: Application
    Filed: May 9, 2012
    Publication date: September 4, 2014
    Applicant: MBDA FRANCE
    Inventors: François Falempin, Bruno Le Naour
  • Patent number: 8813507
    Abstract: A method for producing electric energy from solid and liquid fuels is provided. The fuels are first subjected to a gasification process at high pressure, and the scrubbed gasification gas is fed to a gas and steam turbine process. The combustion of the scrubbed gasification gas in the gas turbine chamber does not occur with air, but with a mixture made of the three components oxygen, carbon dioxide and water vapor. As a result, the waste gas of the gas turbine is made only of carbon dioxide and water vapor. After the condensation thereof, technically pure carbon dioxide remains, which can be dissipated by storage in the deep substrate of the atmosphere.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: August 26, 2014
    Assignees: Siemens Aktiengesellschaft, Siemens Fuel Gasification Technology GmbH & Co. KG
    Inventors: Frank Hannemann, Martin Pfund, Manfred Schingnitz
  • Patent number: 8813472
    Abstract: A system includes a controller configured to control a semi-closed power cycle system. The controller is configured to receive at least one of a first signal indicative of an oxygen concentration within a first gas flow through a primary compressor, a second signal indicative of power output by the semi-closed power cycle system, a third signal indicative of a temperature of a second gas flow through a turbine, and a fourth signal indicative of a mass flow balance within the semi-closed power cycle system. The controller is also configured to adjust at least one of the first gas flow through the primary compressor, a fuel flow into a combustor, a fraction of the first gas flow extracted from the primary compressor, and an air flow through a feed compressor based on the at least one of the first signal, the second signal, the third signal, and the fourth signal.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: August 26, 2014
    Assignee: General Electric Company
    Inventors: James Anthony West, Alan Meier Truesdale
  • Publication number: 20140230401
    Abstract: Disclosed is a semi-closed cycle turbine engine power system, operating with air, enriched air, or oxygen as the oxidizer, is made non-emissive via the semi-closed cycle, in a manner which produces saleable CO2 product at pressure. In an embodiment of the present disclosure, the system includes, among other elements, an oxidizer supply subsystem for producing an oxidizer and a turbine engine. The oxidizer supply subsystem provides at least a portion of the oxidizer produced by the oxidizer supply sub-system to a main compressor stage of the turbine engine. A fuel supply system is also included for providing fuel to turbine engine. Operation of the turbine engine produces power and an exhaust gas. At least a portion of the exhaust gas is recirculated via a recirculation subsystem to the main compressor stage of the turbine engine.
    Type: Application
    Filed: August 29, 2013
    Publication date: August 21, 2014
    Applicant: ENHANCED ENERGY GROUP LLC
    Inventor: Paul M. Dunn
  • Publication number: 20140230445
    Abstract: The present techniques are directed to systems and a method for combusting a fuel in a gas turbine. An exemplary method includes providing a fuel to a combustor on a gas turbine, providing an oxidant to the combustor, and combusting the fuel and the oxidant in the combustor to produce an exhaust gas. At least a portion of the exhaust gas is passed through a water-gas shifting catalyst to form a low CO content product gas.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 21, 2014
    Inventor: Richard A. Huntington
  • Publication number: 20140230446
    Abstract: The present techniques are directed to a system and methods for operating a gas turbine system. An exemplary gas turbine system includes an oxidant system, a fuel system, and a control system. A combustor is adapted to receive and combust an oxidant from the oxidant system and a fuel from the fuel system to produce an exhaust gas. A catalyst unit including an oxidation catalyst that includes an oxygen storage component is configured to reduce the concentration of oxygen in the exhaust gas to form a low oxygen content product gas.
    Type: Application
    Filed: February 17, 2014
    Publication date: August 21, 2014
    Inventors: Tilman W. Beutel, Sulabh K. Dhanuka
  • Patent number: 8807989
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: August 19, 2014
    Assignee: Ener-Core Power, Inc.
    Inventors: Jeffrey Armstrong, Richard Martin, Douglas Hamrin, Joe Perry
  • Patent number: 8806849
    Abstract: A method of operating a turbine engine system and a turbine engine system are provided. The method comprises supplying a flow of oxygen to a combustion chamber defined within a plurality of turbines coupled serially together within the turbine engine system, supplying a flow of hydrocarbonaccous fuel to the combustion chambers of each of the plurality of turbines in the turbine engine system, and supplying a working fluid to an inlet of a first turbine engine coupled within the turbine engine system, wherein the working fluid is substantially nitrogen-free and wherein each of the turbines coupled within the turbine engine system is operable with the resulting fuel-oxygen-working fluid mixture.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: August 19, 2014
    Assignees: The University of Wyoming, General Electric Company
    Inventors: John Frederick Ackerman, Matthew Timothy Franer, Randy Lee Lewis, David Allen Bell, Morris Dee Argyle, Brian Francis Towler
  • Patent number: 8793972
    Abstract: A method and installation are disclosed which can, for example, provide for reliable, low-Nox-emission operation of a gas turbine installation with hydrogen-rich fuel gas. An exemplary gas turbine installation includes an arrangement for flue gas recirculation into a compressor inlet and for fuel gas dilution. Oxygen content in combustion air can be reduced by recirculation of recooled flue gas, and the fuel gas can be diluted with compressed flue gas. The oxygen reduction in the combustion air can lead to minimum residual oxygen in the flue gas which can be used for fuel gas dilution. As a result of the flue gas recirculation, water content in the combustion air can be increased by feedback of the water which results as a combustion product. The oxygen reduction, increased water content, and fuel dilution can reduce the flame velocity of hydrogen-rich fuel gases and enable a robust, reliable and low-emission combustion.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: August 5, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Andreas Brautsch, Dieter Winkler, Richard Carroni
  • Publication number: 20140196464
    Abstract: A system includes a gas turbine engine that includes a turbine section having one or more turbine stages between an upstream end and a downstream end, an exhaust section disposed downstream from the downstream end of the turbine section, and a fluid supply system coupled to the exhaust section. The fluid supply system is configured to route an inert gas to the exhaust section.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 17, 2014
    Applicants: EXXONMOBIL UPSTREAM RESEARCH COMPANY, GENERAL ELECTRIC COMPANY
    Inventors: Pramod K. Biyani, Rajarshi Saha, Anil Kumar Dasoji, Richard A. Huntington, Franklin F. Mittricker
  • Patent number: 8776532
    Abstract: The present disclosure relates to a power production system that is adapted to achieve high efficiency power production with complete carbon capture when using a solid or liquid hydrocarbon or carbonaceous fuel. More particularly, the solid or liquid fuel first is partially oxidized in a partial oxidation reactor. The resulting partially oxidized stream that comprises a fuel gas is quenched, filtered, cooled, and then directed to a combustor of a power production system as the combustion fuel. The partially oxidized stream is combined with a compressed recycle CO2 stream and oxygen. The combustion stream is expanded across a turbine to produce power and passed through a recuperator heat exchanger. The expanded and cooled exhaust stream is scrubbed to provide the recycle CO2 stream, which is compressed and passed through the recuperator heat exchanger and the POX heat exchanger in a manner useful to provide increased efficiency to the combined systems.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: July 15, 2014
    Assignees: Palmer Labs, LLC, 8 Rivers Capital, LLC
    Inventors: Rodney John Allam, Jeremy Eron Fetvedt, Miles R. Palmer
  • Patent number: 8776517
    Abstract: The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: July 15, 2014
    Assignee: Cummins Intellectual Properties, Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Publication number: 20140190173
    Abstract: A gas turbine including a compressor and a combustor, an SOFC including an air electrode (cathode) and a fuel electrode (anode), a first compressed air supply line adapted to supply a compressed air compressed by the compressor to the combustor, a second compressed air gas supply line adapted to supply a part of a compressed air compressed by the compressor to the air electrode (cathode), a first fuel gas supply line adapted to supply a fuel gas to the combustor, a second fuel gas supply line adapted to supply a fuel gas to the fuel electrode (anode), a fuel gas recirculation line adapted to return an exhausted fuel gas discharged from the fuel electrode (anode) to the fuel electrode (anode), a cooler provided in the fuel gas recirculation line are provided.
    Type: Application
    Filed: December 24, 2013
    Publication date: July 10, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventor: Hiroyuki OZAWA
  • Publication number: 20140182301
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow separator configured to separate a first exhaust flow from an oxidant flow. The flow separator is configured to direct the first exhaust flow into the head end chamber. The turbine combustor also includes a mixing region configured to mix the first exhaust flow with the oxidant flow to provide an oxidant-exhaust mixture.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Elizabeth Angelyn Fadde, William Lawrence Byrne, Carolyn Ashley Antoniono
  • Publication number: 20140182303
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute an exhaust flow circumferentially around the head end chamber. The flow distributor includes at least one exhaust gas flow path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182302
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute at least one of an exhaust flow, an oxidant flow, an oxidant-exhaust mixture, or any combination thereof circumferentially around the head end chamber.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182304
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, and a flow distributor configured to distribute an oxidant flow circumferentially around the head end chamber. The flow distributor includes at least one oxidant flow path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140182305
    Abstract: A system includes a turbine combustor that includes a head end portion having a head end chamber, a combustion portion having a combustion chamber disposed downstream from the head end chamber, a cap disposed between the head end chamber and the combustion chamber, a mixing region configured to mix an exhaust flow with an oxidant flow to provide an oxidant-exhaust mixture, and a flow distributor configured to distribute the oxidant-exhaust mixture circumferentially around the head end chamber. The flow distributor includes at least one oxidant-exhaust mixture path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Carolyn Ashley Antoniono, William Lawrence Byrne, Elizabeth Angelyn Fadde
  • Publication number: 20140150402
    Abstract: In one aspect, a combustion system is configured to facilitate preventing the formation of vanadium pentoxide (V2O5) and decrease a concentration of at least one of vanadium trioxide (V2O3) and vanadium tetroxide (V2O4) particles in an exhaust. The combustion system includes a vanadium-containing fuel supply and a combustor. The combustor is configured to generate a combustor exhaust gas including vanadium trioxide (V2O3) and/or vanadium tetroxide (V2O4) particles and to combust a reduced-oxygen mixture including the vanadium-containing fuel, ambient air, and a portion of the combustor exhaust gas. The combustion system also includes a particle separator configured to remove substantially all of the V2O3 and/or V2O4 particles from the combustor exhaust gas. A method for combusting fuel and a power generation system are also provided.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: General Electric Company
    Inventors: Ahmed Mostafa ElKady, Sherif Hatem Abdulla Mohamed, Narendra Digamber Joshi, Hasan Karim, Gilbert Otto Kraemer, Samuel David Draper, Ashwin Raman
  • Patent number: 8726628
    Abstract: A combined cycle power plant includes a compressor section including a compressor inlet and a compressor outlet, and a turbine section operatively connected to the compressor section. The turbine section includes a turbine inlet and a turbine outlet. A heat recovery steam generator (HRSG) is fluidly connected to the turbine outlet. A combustor includes a head end and a combustor discharge. The head end is fluidly connected to the compressor outlet and the combustor discharge is fluidly connected to the turbine inlet. A carbon dioxide collection system is fluidly connected to one of the compressor outlet and the head end of the combustor. The carbon dioxide collection system is configured and disposed to extract a first fluid comprising carbon dioxide and a second fluid from a substantially oxygen free fluid flow passed from the one of the compressor outlet and the head end of the combustor.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 20, 2014
    Assignee: General Electric Company
    Inventors: Lisa Anne Wichmann, Samuel David Draper, Gilbert Otto Kraemer, Alan Meier Truesdale, James Anthony West
  • Patent number: 8720179
    Abstract: A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: May 13, 2014
    Assignee: General Electric Company
    Inventors: Ashok Kumar Anand, Thirumala Reddy Nagarjuna Reddy, Jason Brian Shaffer, William David York
  • Publication number: 20140123660
    Abstract: A system includes a turbine combustor, which includes a first wall disposed about a combustion chamber, a second wall disposed about the first wall, and a third wall disposed about the second wall. The third wall is configured to combine an exhaust gas with an oxidant and the combustion chamber is configured to combust a mixture of a fuel, the oxidant, and the exhaust gas.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Lucas John Stoia, Richard Martin DiCintio, Patrick Benedict Melton, Bryan Wesley Romig, Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20140123620
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Publication number: 20140123659
    Abstract: A system includes a gas turbine engine that includes a combustor section having one or more combustors configured to generate combustion products, a turbine section having one or more turbine stages between an upstream end and a downstream end, an exhaust section disposed downstream from the downstream end of the turbine section, and a fluid supply system coupled to the exhaust section. The one or more turbine stages are driven by the combustion products. The exhaust section has an exhaust passage configured to receive the combustion products as an exhaust gas. The fluid supply system is configured to route a cooling gas to the exhaust section. The cooling gas has a temperature lower than the exhaust gas. The cooling gas includes an extracted exhaust gas, a gas separated from the extracted exhaust gas, carbon dioxide, carbon monoxide, nitrogen oxides, or a combination thereof.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Pramod K. Biyani, Scott Walter Leyers, Carlos Miguel Miranda
  • Publication number: 20140123668
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel and a first diluent, and the second flow includes a first oxidant. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Publication number: 20140123669
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel, and the second flow includes a first oxidant and a first diluent. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
    Type: Application
    Filed: October 30, 2013
    Publication date: May 8, 2014
    Applicants: EXXONMOBIL UPSTREAM RESEARCH COMPANY, GENERAL ELECTRIC COMPANY
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Patent number: 8713947
    Abstract: A power plant arrangement and method of operation is provided. The power plant arrangement includes at least one main air compressor and at least one gas turbine assembly. Each assembly includes a turbine combustor for mixing a portion of compressed ambient gas with a portion of a recirculated low oxygen content gas flow and a fuel stream for burning to form the recirculated low oxygen content gas flow. A recirculation loop for recirculating at least a portion of the recirculated low oxygen content gas flow from the turbine to a turbine compressor is provided. At least one auxiliary apparatus is fluidly connected to the main air compressor and may be at least partially powered by the compressed ambient gas flow.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: May 6, 2014
    Assignee: General Electric Company
    Inventors: Samuel David Draper, Kenneth William Kohl
  • Publication number: 20140116023
    Abstract: A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ashok Kumar Anand, Thirumala Reddy Nagarjuna Reddy
  • Publication number: 20140102071
    Abstract: A system for heating fuel in a combined cycle gas turbine includes a fuel heat exchanger downstream from a turbine outlet, and the fuel heat exchanger has an exhaust gas inlet, an exhaust gas outlet, a fuel inlet, and a fuel outlet. A first exhaust gas plenum has a first exhaust gas inlet connection between the turbine outlet and a heat exchanger and a first exhaust gas outlet connection upstream from the exhaust gas inlet. A second exhaust gas plenum has a second exhaust gas inlet connection downstream from at least a portion of the heat exchanger and a second exhaust gas outlet connection upstream from the exhaust gas inlet.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Wesley Ball, JR., Korey Frederic Rendo, Dean Matthew Erickson, Diego Fernando Rancruel, Leslie Yung-Min Tong
  • Publication number: 20140083109
    Abstract: Systems, methods, and apparatus are provided for generating power in combined low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust from multiple turbine systems is combined, cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream. Portions of the recycled exhaust streams and the product streams may be used as diluents to regulate combustion in each combustor of the turbine systems.
    Type: Application
    Filed: March 5, 2012
    Publication date: March 27, 2014
    Inventors: Russell H. Oelfke, Richard A. Huntington, Sulabh K. Dhanuka, Dennis M. O'Dea, Robert D. Denton, Omar Angus Sites, Franklin F. Mittricker
  • Patent number: 8661780
    Abstract: A gas turbine plant is provided with exhaust gas recirculation and includes a main gas turbine having a main compressor and main turbine driving a main generator, and a combustion chamber, with an outlet connected to the inlet of the main gas turbine, has a fuel feed, and via the recuperator's high-pressure side obtains combustion air from the main gas turbine's compressor outlet. The outlet of the main turbine and the inlet of the main compressor are connected via the recuperator's low-pressure side and a cooler for exhaust gas recirculation. On the recuperator's low-pressure side, a charging unit, with a compressor and a turbine is arranged, and draws in air via an air intake and by the outlet of its compressor is connected to the recuperator's low-pressure side outlet and by the inlet of its turbine is connected to a surplus-gas extraction line on the recuperator's low-pressure side.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: March 4, 2014
    Assignee: Alstom Technology Ltd.
    Inventors: Hans Wettstein, Manfred Wirsum, Steffen Schulz
  • Publication number: 20140020398
    Abstract: Systems and methods are provided for varying the exhaust gas recycle circuit of low emission gas turbines. In one or more embodiments, the systems and methods incorporate alternatives to the use of a direct contact cooler. In the same or other embodiments, the systems and methods incorporate alternatives intended to reduce or eliminate the erosion or corrosion of compressor blades due to the presence of acidic water droplets in the recycled gas stream.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 23, 2014
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Loren K. Starcher, Omar Angus Sites
  • Patent number: 8631639
    Abstract: A turbine power generation system with enhanced cooling provided by a stream of carbon dioxide from a carbon dioxide source and a method of using a stream of carbon dioxide to cool hot gas path components. The turbine power generating system includes a compressor, a combustor, a turbine, a generator, and at least one shaft linking the compressor and turbine and generator together such that mechanical energy produced from the turbine is used to drive the compressor and the generator. Carbon dioxide that is sequestered from the exhaust of the turbine may be stored and injected back into the turbine to cool hot gas path components of the turbine.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 21, 2014
    Assignee: General Electric Company
    Inventors: Andres Garcia-Crespo, Lewis Berkley Davis, Jr., George Martin Gilchrist, III, Amit Toprani
  • Patent number: 8621842
    Abstract: An example auxiliary power unit (APU) exhaust silencer includes cooling features to protect the outer skin and other components from heat generated by gases passing through an exhaust duct. Cooling air flow through a cooling air passage in thermal contact with the exhaust silencer carries heat away from other nearby components and the aircraft skin.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: January 7, 2014
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jay M. Francisco, Greg R. Giddings, Anthony C. Jones, Nagamany Thayalakhandan
  • Publication number: 20140000271
    Abstract: Systems, methods, and apparatus are provided for controlling the oxidant feed in low emission turbine systems to maintain stoichiometric or substantially stoichiometric combustion conditions. In one or more embodiments, such control is achieved by diverting a portion of the recirculating exhaust gas and combining it with the oxidant feed to maintain a constant oxygen level in the combined oxidant-exhaust stream fed to the combustion chamber.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 2, 2014
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Sulabh K. Dhanuka, Omar Angus Sites
  • Publication number: 20130340404
    Abstract: In one embodiment, a system includes a turbine combustor of a turbine system with the turbine combustor at least partially enclosed within a compressor discharge casing. The turbine system also includes an exhaust gas recovery system that includes an exhaust gas recirculation duct. The exhaust gas recirculation duct is configured to recirculate exhaust gas from a downstream end of the turbine combustor to an upstream end of the turbine combustor. This exhaust gas recirculation duct is entirely enclosed within the compressor discharge casing.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: General Electric Company
    Inventor: Michael John Hughes
  • Publication number: 20130340403
    Abstract: A compressor blade for use in a compressor section of a gas turbine engine, comprising: a martensitic stainless steel compressor blade and an abrasive coating having an anodic component. The compressor blade has a blade portion, a dovetail portion and a platform portion intermediate the blade portion and the dovetail portion, the blade portion terminating in a tip opposite the dovetail portion. A cobalt-based coating overlies at least the blade portion of the compressor blade. The cobalt-based coating comprises a cobalt based material that includes precipitates of tungsten carbide that provide erosion resistance and particles of a sacrificial metal-based material distributed through the cobalt-based coating that provide galvanic corrosion resistance to the system.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Krishnamurthy ANAND, Yuk-Chiu LAU, Paul MATHEW, Surinder Singh PABLA, Guruprasad SUNDARARAJAN, Mohandas NAYAK
  • Publication number: 20130327050
    Abstract: A method and apparatus for controlling a flame stability at a gas turbine generator is disclosed. The method includes forming combustible mixtures at a plurality of fuel nozzles of a combustor of the gas turbine generator; altering an oxygen concentration of at least one of the combustible mixtures at a selected fuel nozzle of the plurality of fuel nozzles; and burning the combustible mixtures at the plurality of fuel nozzles to control the flame stability at the gas turbine generator.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ilya Aleksandrovich Slobodyanskiy, Michael John Hughes, Vijaykant Sadasivuni
  • Patent number: 8596075
    Abstract: The present invention provides methods and system for power generation using a high efficiency combustor in combination with a CO2 circulating fluid. The methods and systems advantageously can make use of a low pressure ratio power turbine and an economizer heat exchanger in specific embodiments. Additional low grade heat from an external source can be used to provide part of an amount of heat needed for heating the recycle CO2 circulating fluid. Fuel derived CO2 can be captured and delivered at pipeline pressure. Other impurities can be captured.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: December 3, 2013
    Assignees: Palmer Labs, LLC, 8 Rivers Capital, LLC
    Inventors: Rodney John Allam, Miles Palmer, Glenn William Brown, Jr.
  • Patent number: 8572944
    Abstract: A portion of the exhaust generated by a turbomachine is recirculated through an inlet portion by an exhaust gas recirculation system. The system reduces the level of constituents within the exhaust before the exhaust is recirculated. The turbomachine may be utilized to drive the exhaust gas through the system.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: November 5, 2013
    Assignee: General Electric Company
    Inventors: Rahul J. Chillar, Douglas S. Byrd, Robert W. Taylor, Joell R. Hibshman, II
  • Publication number: 20130283808
    Abstract: A system for cooling a gas turbine with an exhaust gas provided by the gas turbine generally includes an exhaust gas recirculation system including an exhaust gas scrubber. The exhaust gas recirculation system is disposed downstream from the gas turbine and may receive at least a portion of the exhaust gas provided by the gas turbine. The system may also include a moisture separator located downstream from the exhaust gas recirculation system, and a cooling circuit configured to connect to one or more cooling circuit inlets. The one or more cooling circuit inlets may provide fluid communication between the cooling circuit and the gas turbine.
    Type: Application
    Filed: April 26, 2012
    Publication date: October 31, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Sandra Beverly Kolvick
  • Publication number: 20130269311
    Abstract: A power plant configured to include a recirculation loop about which a working fluid is recirculated, the recirculation loop comprising a plurality of components configured to accept an outflow of working fluid from a neighboring upstream component and provide an inflow of working fluid to a neighboring downstream component. The recirculation loop may include: a recirculation compressor; an upstream combustor; a high-pressure turbine; a downstream combustor; a low-pressure turbine; and a recirculation conduit configured to direct the outflow of working fluid from the low-pressure turbine to the recirculation compressor. The power plant may include: an oxidant compressor configured to provide compressed oxidant to both the upstream combustor and the downstream combustor; and means for extracting a portion of the working fluid from an extraction point disposed on the recirculation loop.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Inventors: Lisa Anne Wichmann, Stanley Frank Simpson
  • Publication number: 20130269357
    Abstract: Embodiments of the present invention provide to a cooling and sealing air system for reheat gas turbine powerplant operating in a configuration that includes stoichiometric exhaust gas recirculation configuration. A user may have the flexibility in determining where the cooling and sealing flow derives. This may include and enhanced oil recovery system, a concentrated carbon system, etc.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Inventors: Lisa Anne Wichmann, Stanley Frank Simpson
  • Publication number: 20130269310
    Abstract: A power plant configured to include a recirculation loop about which a working fluid is recirculated. The recirculation loop may include a plurality of components configured to accept an outflow of working fluid from a neighboring upstream component and provide an inflow of working fluid to a neighboring downstream component. The recirculation loop may include: a recirculation compressor; an upstream combustor; a high-pressure turbine; a downstream combustor; a low-pressure turbine; and a recirculation conduit configured to direct the outflow of working fluid from the low-pressure turbine to the recirculation compressor. The power plant further may include: an oxidant compressor configured to provide compressed oxidant to one of the upstream combustor and the downstream combustor; and means for extracting a portion of the working fluid from an extraction point disposed at a predetermined location on the recirculation loop.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Inventors: Lisa Anne Wichmann, Stanley Frank Simpson
  • Patent number: 8539749
    Abstract: A power plant configured to include a recirculation loop about which a working fluid is recirculated, the recirculation loop comprising a plurality of components configured to accept an outflow of working fluid from a neighboring upstream component and provide an inflow of working fluid to a neighboring downstream component. The recirculation loop may include: a recirculation compressor; an upstream combustor; a high-pressure turbine; a downstream combustor; a low-pressure turbine; and a recirculation conduit configured to direct the outflow of working fluid from the low-pressure turbine to the recirculation compressor. The power plant may include: an oxidant compressor configured to provide compressed oxidant to both the upstream combustor and the downstream combustor; and means for extracting a portion of the working fluid from an extraction point disposed on the recirculation loop.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: September 24, 2013
    Assignee: General Electric Company
    Inventors: Lisa Anne Wichmann, Stanley Frank Simpson
  • Patent number: 8534073
    Abstract: An embodiment of the present invention may take the form of a system that may use the heat removed from an exhaust stream during an exhaust gas recirculation process to heat the fuel consumed by a turbomachine.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: September 17, 2013
    Assignee: General Electric Company
    Inventors: Andres J. Garcia-Crespo, Amit S. Toprani
  • Publication number: 20130229018
    Abstract: An energy generation system and method are presented for use in operating a heat engine. The energy generation method comprises: reducing a CO2 gas into CO and O2 gases; reacting said CO and O2 gases, thus combusting the CO gas, and yielding a substantially pure CO2 outlet gas; and supplying said CO2 outlet gas to the heat engine as a working gas in its heat-to-work generation process.
    Type: Application
    Filed: September 7, 2011
    Publication date: September 5, 2013
    Applicant: YEDA RESEARCH AND DEVELOPMENT CO. LTD.
    Inventors: Jacob Karni, Uri Garbi
  • Patent number: 8506678
    Abstract: Provided is a power plant for generating electrical energy comprising a combustion chamber for producing steam, at least one downstream flue gas purification stage, a separation stage for CO2, a recycling circuit for the flue gas, and a high-temperature O2 membrane, which is connected upstream of the combustion chamber. The high-temperature O2 membrane has an inlet and an outlet on the feed side which are thermally coupled by way of a heat exchanger. On the permeate side, the high-temperature O2 membrane has only an outlet which is connected to the combustion chamber and/or the flue gas recycling circuit and a means for cooling and/or compression which is disposed in this outlet.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: August 13, 2013
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Wilhelm Albert Meulenberg, Stefan Baumann, Ludger Blum, Ernst Riensche