Exhaust Gas Recycling Patents (Class 60/39.52)
  • Publication number: 20040200205
    Abstract: A gas turbine plant with a compressor, a combustion chamber, a turbine and at least one heat sink is operated with a working medium in the form of a carbon dioxide/water mixture. A hydrocarbon reacts as fuel with oxygen in the combustion chamber, and the excess carbon dioxide and water thereby occurring is tapped from the circuit. The compressor and the turbine have in each case a rotor with moving blades and a casing with flow ducts and with guide blade cascades. In the compressor and/or the turbine, matching to the expansion behavior of the working medium, which is different from that of air, is brought about by modifications of the flow ducts, of the moving blades and/or of the guide blade cascades.
    Type: Application
    Filed: March 23, 2004
    Publication date: October 14, 2004
    Inventors: Hans Ulrich Frutschi, Timothy Griffin, Roland Span, Dieter Winkler
  • Publication number: 20040177617
    Abstract: In a method for the operation of a power plant with a closed or quasi-closed cycle, the power plant substantially comprises at least one compressor unit (1) or a pump, at least one combustion chamber (2), at least one turbine (3) and at least one heat sink (4). In the combustion chamber (2), a fuel mass flow (14) reacts with at least one oxygen flow (12), the excess combustion products which are formed as a result (CO2, H20) are removed from the cycle at a suitable location (5, 6), and the oxygen stream (12) fed to the combustion chamber is obtained by means of an air fractionation installation (11). Means (9) for coarse fractionation of the supplied air (8) are connected upstream of the air fractionation installation (11) in order to supply oxygen-enriched air (10) to the air fractionation installation (11).
    Type: Application
    Filed: March 25, 2004
    Publication date: September 16, 2004
    Inventors: Hans Ulrich Frutschi, Timothy Griffin, Hans Wettstein, Dieter Winkler
  • Publication number: 20040065088
    Abstract: A combined cycle power system is provided which can convert an open combined cycle gas turbine into a reduced or zero emissions power system. The system includes a compressor which compresses air and combusts the air with a hydrocarbon fuel. The products of combustion and the remaining portions of the air form the exhaust which is expanded through a turbine. The turbine drives the compressor and outputs power. The exhaust exits the turbine and then is routed through a heat recovery steam generator. A bottoming cycle portion of the system includes a gas generator which combusts a hydrocarbon fuel with oxygen. Water is also entered into the gas generator where it is heated and combined with the products of combustion, before entering a bottoming turbine. The water is then separated and routed back to the gas generator after preheating within the heat recovery steam generator.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 8, 2004
    Inventors: Fermin Viteri, Roger E. Anderson
  • Patent number: 6684643
    Abstract: A process is described for the operation of a gas turbine plant with CO2 as working medium, in which in at least one combustion chamber hydrocarbons are combusted in a CO2 atmosphere enriched with oxygen to flue gases, which largely consist of CO2 and H2O and which are expanded within a turbine stage following the at least one combustion chamber, and are then compressed in a compressor stage and also at least partially condensed in a following condenser, so that at least portions of the CO2 and H2O are liquefied and partially drawn off together with uncondensed flue gas constituents, and so that a main portion, not drawn off, of liquid CO2 is compressed by means of a pump unit, preheated in at least one recuperator stage, and is again supplied to the combustion chamber. The invention is distinguished in that the compressed and preheated main portion CO2 is pre-expanded to a combustion pressure and is supplied to the combustion chamber for combustion with the main portion CO2.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 3, 2004
    Assignee: ALSTOM Technology Ltd
    Inventor: Hans Ulrich Frutschi
  • Publication number: 20040006965
    Abstract: A turbo shaft engine for amplifying an air stream flow rate includes a turbine fan assembly and gas generator. The gas generator includes a primary air duct defining intake and outlet ports. A combustion chamber is connected to the primary air duct for igniting an admixture of fuel and a portion of the intake flow to form an energized motive flow. The motive flow is discharged from the combustion chamber back into the primary air duct over a Coanda-profiled guide member so as to amplify the flow rate of incoming intake flow by momentum transfer. A portion of the motive flow is returned directly to the fan assembly for amplifying incoming intake flow. The remaining motive flow is again combusted and used to rotate turbine blades. A resonance chamber with volume adjustment is included for tuning a pulse of intake flow into the primary combustion chamber.
    Type: Application
    Filed: July 8, 2003
    Publication date: January 15, 2004
    Inventor: James R. Schierbaum
  • Patent number: 6651421
    Abstract: An improved turbine engine topology, wherein the improvement comprises a repositioning, with respect to a conventional intercooled regenerative turbine engine topology, of exhaust gas output from a low pressure turbine stage to a regenerator, to an exhaust gas output from a high pressure turbine stage to the regenerator. The engine topology may additionally employ, as an intermediate stage between the high pressure turbine and the low pressure turbine, a feedback control system, whereby the exhaust gas output from the high pressure turbine stage to the regenerator flows through the feedback control. The engine topology may advantageously also employ an additional cooler and an additional exhaust gas output in the feedback control, whereby exhaust gas flows from the feedback control through the additional cooler to a high pressure compressor stage, or the exhaust gas can flow from the feedback control through a bottoming cycle to the high pressure compressor stage.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: November 25, 2003
    Inventor: Richard R. Coleman
  • Patent number: 6637183
    Abstract: A combined cycle power system is provided which can convert an open combined cycle gas turbine into a reduced or zero emissions power system. The system includes a compressor which compresses air and combusts the air with a hydrocarbon fuel. The products of combustion and the remaining portions of the air form the exhaust which is expanded through a turbine. The turbine drives the compressor and outputs power. The exhaust exits the turbine and then is routed through a heat recovery steam generator. A bottoming cycle portion of the system includes a gas generator which combusts a hydrocarbon fuel with oxygen. Water is also entered into the gas generator where it is heated and combined with the products of combustion, before entering a bottoming turbine. The water is then separated and routed back to the gas generator after preheating within the heat recovery steam generator.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: October 28, 2003
    Assignee: Clean Energy Systems, Inc.
    Inventors: Fermin Viteri, Roger E. Anderson
  • Patent number: 6622470
    Abstract: A semi-closed combined cycle power system is provided which can also convert an open combined cycle gas turbine into a non-polluting zero emissions power system. The exhaust is not emitted into the atmosphere as with typical open combined cycles, but rather is routed to a divider. The divider splits the exhaust into either a return duct or a separation duct. The return duct routes a portion of the exhaust back to the compressor. Before reaching the compressor, an oxygen duct adds additional oxygen to the exhaust to form a gas mixture which includes and steam from the exhaust and oxygen from the oxygen duct. This gas mixture has characteristics which mimic those of air, so that the compressor need not be modified to effectively compress the gas mixture.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: September 23, 2003
    Assignee: Clean Energy Systems, Inc.
    Inventors: Fermin Viteri, Roger E. Anderson
  • Patent number: 6598402
    Abstract: An exhaust gas recirculation type gas turbine apparatus includes a compressor for compressing air, a combustion chamber for burning fuel and compression air exhausted from the compressor, a gas turbine driven by exhaust gas from the combustion chamber, a recirculation path for recirculating a part of the exhaust gas to an intake of the compressor, a recirculation amount control unit for adjusting the amount of exhaust gas to be returned to the intake of the compressor corresponding to a change in load of the gas turbine, and a spray unit for introducing liquid droplets into the interior of the compressor in which mixing gas, consisting of gas turbine exhaust gas passing through the recirculation path and air, flows so as to vaporize the introduced liquid droplets appearing to flow in the compressor.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: July 29, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Kataoka, Motoaki Utamura, Takaaki Kuwahara
  • Patent number: 6536205
    Abstract: Provided is turbine plant using methanol as fuel in which working fluid is compressed by compressor 1 and led into combustor 2. A mixture of H2 and CO2 as fuel added with O2 is burned to generate high temperature gas, which works at high temperature turbine 3, flows through heat exchangers 4, 5 and returns partly to the compressor 1 and enters partly low pressure turbine 7 of bottoming system to work. Condensed water from condenser 9 of the bottoming system is pressurized by pressure pump 10 and flows through the heat exchangers 4, 5 to become high temperature steam and to work at high pressure turbine 6. Exhaust gas thereof is mixed into the combustor 2. A mixture of methanol and water is supplied into reformer 13 to absorb heat from the heat exchanger 4 to be reformed into H2 and CO2, which is supplied into the combustor 2.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: March 25, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hideaki Sugishita, Hidetaka Mori, Ichiro Fukue, Kazuo Uematsu
  • Patent number: 6532745
    Abstract: A partially-open turbine cycle for use with a modified gas turbine wherein the cycle's working motive fluid replaces the predominant air-derived nitrogen working motive fluid contained in a conventional gas turbine cycle. The working motive fluid comprises a mixture of predominantly carbon dioxide and water vapor in a Mol percent ratio identical to that of the same molecular components Mol percentage as generated from the combustion of the fuel used. The cycle's is susceptible to a 98 percent reduction of fugitive nitrogen oxide and carbon monoxide mass flow emissions as emitted by present art gas turbines on a rated shaft-horsepower basis, and is further susceptible to high simple cycle and cogeneration plant thermal efficiencies at greatly reduced operating pressures.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: March 18, 2003
    Inventor: David L. Neary
  • Publication number: 20020134085
    Abstract: A process is described for the operation of a gas turbine plant with CO2 as working medium, in which in at least one combustion chamber hydrocarbons are combusted in a CO2 atmosphere enriched with oxygen to flue gases, which largely consist of CO2 and H2O and which are expanded within a turbine stage following the at least one combustion chamber, and are then compressed in a compressor stage and also at least partially condensed in a following condenser, so that at least portions of the CO2 and H2O are liquefied and partially drawn off together with uncondensed flue gas constituents, and so that a main portion, not drawn off, of liquid CO2 is compressed by means of a pump unit, preheated in at least one recuperator stage, and is again supplied to the combustion chamber.
    Type: Application
    Filed: December 6, 2001
    Publication date: September 26, 2002
    Inventor: Hans Ulrich Frutschi
  • Publication number: 20020121079
    Abstract: A ramjet for amplifying an air stream flow rate includes a plurality of blades positioned within a turbine housing for rotation by an intake flow received through a housing inlet port. A gas generator having a primary air duct defines intake and outlet ports, the intake port receiving the intake flow from the housing. A combustion chamber is connected to the primary air duct for igniting an admixture of fuel and a portion of the intake flow to form an energized motive flow. The motive flow is discharged from the combustion chamber back into the air intake of the primary air duct so as to amplify the flow rate of incoming intake flow by momentum transfer. A portion of the motive flow is returned directly to the housing inlet port for amplifying incoming intake flow. The remaining motive flow is again combusted and used to rotate the turbine blades.
    Type: Application
    Filed: February 7, 2001
    Publication date: September 5, 2002
    Inventor: James R. Schierbaum
  • Publication number: 20020100271
    Abstract: A semi-closed combined cycle power system 100 is provided which can also convert an open combined cycle gas turbine 10 into a non-polluting zero emissions power system. The prior art open combined cycle gas turbine 10 includes a compressor 20 which compresses air A′ and combusts the air A′ with a fuel, such as natural gas. The products of combustion and the remaining portions of the air form the exhaust E′ which is expanded through the turbine 40. The turbine 40 drives the compressor 20 and outputs power. The exhaust E′ exits the turbine 40 and then can optionally be routed through a heat recovery steam generator 50 to function as a combined cycle. According to this invention, the exhaust E′ is not emitted into the atmosphere, but rather is routed to a divider 110. The divider 110 includes two outlets for the exhaust E′ including a return duct 120 and a separation duct 130 which both receive a portion of the exhaust E′.
    Type: Application
    Filed: May 14, 2001
    Publication date: August 1, 2002
    Inventors: Fermin Viteri, Roger E. Anderson
  • Patent number: 6412284
    Abstract: A gas turbine engine assembly including a gas turbine engine mounted within a module and including an inlet in flow communication with a module inlet area and a module exhaust area is described. The turbine engine also includes an exhaust, and is mounted within an engine area between the module inlet and exhaust areas. More specifically, the gas turbine engine is mounted such that the engine exhaust is in flow communication with the module exhaust area. Because the module also includes a secondary supply duct, the gas turbine engine is in flow communication with the module inlet and exhaust areas.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: July 2, 2002
    Assignee: General Electric Company
    Inventor: Michael William Horner
  • Patent number: 6389796
    Abstract: A gas turbine system and a combined plant including the gas turbine system provides a higher effect in realizing a high plant efficiency and reduction of NOx generation. The gas turbine system includes a compressor (1) for compressing combustion air, a combustor (2) for burning fuel with the combustion air, and a gas turbine (3) driven by high temperature gas generated at the combustor (2). A portion of the exhaust gas discharged from the gas turbine (3) is recirculated back into the combustor (2). A combined plant can also include the gas turbine system.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: May 21, 2002
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shigemi Mandai, Hidetaka Mori, Hideaki Sugishita, Eiji Akita
  • Publication number: 20020043063
    Abstract: Widening a partial load operation range of an exhaust gas recovery type combined cycle plant in which a gas turbine and steam turbine are combined and further improving heat efficiency.
    Type: Application
    Filed: September 6, 2001
    Publication date: April 18, 2002
    Inventors: Masaki Kataoka, Motoaki Utamura, Takaaki Kuwahara
  • Patent number: 6363709
    Abstract: An exhaust gas recirculation type gas turbine apparatus includes a compressor for compressing air, a combustion chamber for burning fuel and compression air exhausted from the compressor, a gas turbine driven by exhaust gas from the combustion chamber, a recirculation path for recirculating a part of the exhaust gas to an intake of the compressor, a recirculation amount control unit for adjusting the amount of exhaust gas to be returned to the intake of the compressor corresponding to a change in load of the gas turbine, and a spray unit for introducing liquid droplets into the interior of the compressor in which mixing gas, consisting of gas turbine exhaust gas passing through the recirculation path and air, flows so as to vaporize the introduced liquid droplets appearing to flow in the compressor.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: April 2, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Kataoka, Motoaki Utamura, Takaaki Kuwahara
  • Patent number: 6353789
    Abstract: A computer-implemented model of fan section of a gas turbine engine accounts for the turbulence in the gas flow emanating from the rotor assembly and impinging upon an inlet to the stator vane cascade. The model allows for user-input variations in the sweep and/or lean angles for the stator vanes. The model determines the resulting acoustic response of the fan section as a function of the turbulence and the lean and/or sweep angles of the vanes. The model may be embodied in software that is rapidly executed in a computer. This way, an optimum arrangement in terms of fan noise reduction is quickly determined for the stator vane lean and sweep physical positioning in the fan section of a gas turbine engine.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: March 5, 2002
    Assignee: United Technologies Corporation
    Inventor: Donald B. Hanson
  • Patent number: 6293338
    Abstract: A recuperator for a gas turbine engine comprises a plurality of cells that are orientated in an annular array and attached to one another at only the radially inner edges thereof. Each cell comprises a high pressure plate having spaced integral ribs thereon defining a plurality of low temperature compressed air passages and a low pressure plate having a plurality of spaced ribs defining a plurality of high temperature exhaust gas passages.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: September 25, 2001
    Assignee: Williams International Co. L.L.C.
    Inventors: William I. Chapman, Samuel B. Williams
  • Patent number: 6282883
    Abstract: Easy plant starting is provided in a hydrogen burning turbine plant for burning hydrogen and oxygen to generate high temperature steam for driving a turbine. There is constructed a semi-closed cycle such that low temperature steam from compressor 1 enters combustion chamber 2, hydrogen and oxygen are burned in the combustion chamber 2 to become high temperature steam for driving turbine 3, and the steam provides exhaust heat at heat exchanger 4 and then returns to low pressure compressor 1-1. Steam from midway of the heat exchanger 4 enters low pressure turbine 6 for work therein, and is condensed to water. The water from condenser 7 is heated at heat exchangers 4-4, 4-3, 4-2 to become steam for driving high pressure turbine 5, and returns to the combustion chamber 2 through the heat exchanger 4. An a auxiliary boiler is provided at inlet side of the compressor 1, and the high temperature steam generated at the combustion chamber 2 at the starting time is diluted and supplied into the turbine 3.
    Type: Grant
    Filed: September 1, 1998
    Date of Patent: September 4, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kazuo Uematsu, Takashi Sonoda
  • Patent number: 6269624
    Abstract: In a method of operating a power station plant with a closed or virtually closed CO2 process, a fuel quantity (21) and oxygen (18) required in this regard for the oxidation are introduced into the cycle for the internal combustion. A recuperator (8) acts on the downstream side of a turbine (2) belonging to the power station plant, at least one heat sink (24) operating downstream of this recuperator before the cycle medium (6) flows back into a compressor (1) which likewise belongs to the power station plant. A partial quantity of the compressed cycle medium (10) is directed into a condensing plant, the liquid CO2 formed here being disposed of in the best possible way.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: August 7, 2001
    Assignee: Asea Brown Boveri AG
    Inventors: Hans Ulrich Frutschi, Hans Wettstein
  • Patent number: 6260348
    Abstract: Provided is turbine plant using methanol as fuel in which working fluid is compressed by compressor 1 and led into combustor 2. A mixture of H2 and CO2 as fuel added with O2 is burned to generate high temperature gas, which works at high temperature turbine 3, flows through heat exchangers 4, 5 and returns partly to the compressor 1 and enters partly low pressure turbine 7 of bottoming system to work. Condensed water from condenser 9 of the bottoming system is pressurized by pressure pump 10 and flows through the heat exchangers 4, 5 to become high temperature steam and to work at high pressure turbine 6. Exhaust gas thereof is mixed into the combustor 2. A mixture of methanol and water is supplied into reformer 13 to absorb heat from the heat exchanger 4 to be reformed into H2 and CO2, which is supplied into the combustor 2.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: July 17, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hideaki Sugishita, Hidetaka Mori, Ichiro Fukue, Kazuo Uematsu
  • Patent number: 6256976
    Abstract: An exhaust gas recirculation type gas turbine apparatus includes a compressor for compressing air, a combustion chamber for burning fuel and compression air exhausted from the compressor, a gas turbine driven by exhaust gas from the combustion chamber, a recirculation path for recirculating a part of the exhaust gas to an intake of the compressor, a recirculation amount control unit for adjusting the amount of exhaust gas to be returned to the intake of the compressor corresponding to a change in load of the gas turbine, and a spray unit for introducing liquid droplets into the interior of the compressor in which mixing gas, consisting of gas turbine exhaust gas passing through the recirculation path and air, flows so as to vaporize the introduced liquid droplets appearing to flow in the compressor.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: July 10, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Masaki Kataoka, Motoaki Utamura, Takaaki Kuwahara
  • Patent number: 6212871
    Abstract: A gas turbine engine that has a turbine (1) mounted downstream of a combustor (5), a compressor turbine (2) mounted downstream of turbine (1) for producing power for driving a compressor (3), a heat exchanger (6) having a first circuit (61) connected to compressor turbine (2) and a second circuit (62) connected between compressor (2) and turbine (1) and a fluid discharge device (7) between compressor (3) and combustor (5). The gas turbine engine has a reactor (8) that has a heating device (9), inlets (F, W) connected to sources of fuel and water and an outlet connected to combustor (5). Heating device (9) is connected the outlet of compressor turbine (2). The engine also has a system for keeping the temperature at the outlet of compressor turbine (2) constant.
    Type: Grant
    Filed: March 11, 1999
    Date of Patent: April 10, 2001
    Assignee: ALM Development, Inc.
    Inventor: Anatoly Rakhmailov