With Additional Drive Means For Supercharging Means Patents (Class 60/607)
  • Patent number: 7484368
    Abstract: A method of controlling an internal combustion engine boosting system of the type including an exhaust-driven turbocharger and a mechanically-driven supercharger. The supercharger includes rotors and a clutch operable in a first condition to transmit torque from a mechanical drive source to a supercharger input in response to a positive input, and operable in a second condition to interrupt the transmission of torque from the source to the input. The method is characterized by determining possible operation of the clutch in a first condition; and commanding a bypass valve toward a closed position, forcing air through the supercharger. The airflow causes the supercharger rotors to rotate, thus rotating the input of the supercharger prior to the clutch operating in the first condition.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: February 3, 2009
    Assignee: Eaton Corporation
    Inventor: Rory E. Jorgensen
  • Publication number: 20090025386
    Abstract: An electrically assisted turbocharger is provided having an electric motor cartridge comprising a first cartridge housing portion (2) and a second cartridge housing portion (3). The cartridge housing portions (2, 3) are coupled together so as to assembly the electric motor cartridge (1) by radially and axially positioning a stator (4) there between. A shaft (34) is supported by a ball bearing assembly (35).
    Type: Application
    Filed: October 12, 2004
    Publication date: January 29, 2009
    Inventor: Peer Rumsby
  • Publication number: 20080289333
    Abstract: A turbocharger includes a turbine wheel, a compressor wheel connected thereto, an electric motor situated on the side of the compressor wheel which is distant to the turbine wheel, and a rotor connected to the compressor wheel in a rotationally fixed manner and designed in a freely projecting manner. A drive system for motor vehicles includes a turbocharger. The turbocharger is characterised by a very spontaneous response behaviour, as well as the possibility for energy recovery.
    Type: Application
    Filed: July 23, 2007
    Publication date: November 27, 2008
    Inventors: Holger Godeke, Rudolf Loffler, Ralf Heber, Thomas Bischof, Sandra Maier, Oliver Kampfer
  • Publication number: 20080216477
    Abstract: “The invention concerns a turbo compound system, including a crankshaft driven by an internal combustion engine; a blowdown turbine arranged in the exhaust line of the internal combustion engine; a hydrodynamic clutch, comprising a driving torus and a driven torus, which form with each other a working chamber that is fillable or filled with working fluid; where the driven torus of the hydrodynamic clutch is arranged on a shaft on the crankshaft side, which is in drive connection with the crankshaft and is geared up relative to the crankshaft; and where the driving torus of the hydrodynamic clutch is arranged on a shaft on the blowdown turbine side, which is in drive connection with the blowdown turbine, and where—a rotary pump is arranged on the shaft on the crankshaft side or on the shaft on the blowdown turbine side, whose impeller is driven by this shaft.
    Type: Application
    Filed: December 3, 2005
    Publication date: September 11, 2008
    Applicant: VOITH TURBO GMBH & CO. KG
    Inventors: Markus Kley, Kai Kamossa
  • Publication number: 20080124233
    Abstract: A turbocharger comprises a turbine wheel and a compressor wheel mounted to a turbocharger shaft. An electric induction motor is provided for assisting rotation of the compressor wheel in predetermined circumstances. The motor comprises a fixed stator having motor field coils which generate a rotating magnetic field when energised by an AC control signal which induces eddy current flow in a rotor to generate a rotor magnetic field which in turn interacts with the stator magnetic field producing torque in the rotor.
    Type: Application
    Filed: August 20, 2007
    Publication date: May 29, 2008
    Inventor: Edward Spooner
  • Patent number: 7367189
    Abstract: As the integral value of power obtained by integrating supply power to the three-phase stator coil of an assist motor with respect to time becomes larger, a motor temperature becomes higher. Then, the integral value of power obtained by integrating supply power to the three-phase stator coil of the assist motor with respect to time is detected and when this detected integral value of power is equal to or larger than a first determination value, supply power to the three-phase stator coil of the assist motor is limited. Then, when this detected integral value of power is equal to or larger than a second determination value, supply power to the three-phase stator coil of the assist motor is stopped.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: May 6, 2008
    Assignee: Denso Corporation
    Inventor: Yuji Ishiwatari
  • Patent number: 7367190
    Abstract: In a supercharger (10) with an electric motor in accordance with the present invention, the electric motor (20) is arranged at a position adjacent to a compressor impeller (6), a center housing (14) has a cooling fluid flow path (34) formed in such a manner as to surround the electric motor (20) and be adjacent to a diffuser portion (25). A first cooling structure portion (38) is formed at a position in the electric motor (20) side in the cooling fluid flow path (34), a second cooling structure portion (39) is formed at a position in the diffuser portion (25) side in the cooling fluid flow path (34). The electric motor (20) is cooled by the first cooling structure portion (38). The diffuser portion (25) is cooled by the second cooling structure portion (39).
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: May 6, 2008
    Assignee: IHI Corp.
    Inventors: Yasuyuki Shibui, Masahiro Shimizu
  • Patent number: 7263832
    Abstract: The invention is directed to a method and an arrangement (10) for controlling an electrically operated charger (1), which essentially prevent a sudden drop in voltage with the run-up of the electric charger. A drive signal (AS) is formed, which drives the electric charger (1). The rate of change of speed for an increase of the rpm of the electric charger (1) is pregiven in dependence upon the instantaneous supply voltage (UV).
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: September 4, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Michael Nau, Ingo Immendoerfer, Martin-Peter Bolz, Michael Baeuerle, Carsten Reisinger, Guido Porten
  • Patent number: 7076954
    Abstract: A system for controlling intake pressure of a combustion engine operably coupled to a power generation system includes a sensor configured to output a signal indicative of a pressure in an intake system of the combustion engine and a sensor configured to output a signal indicative of a load on the power generation system. The system further includes a turbocharger operably coupled to the intake system. The system also includes an electric machine operably coupled to the turbocharger. The electric machine is configured to supply torque to the turbocharger. The system further includes a turbocharger controller operably coupled to the electric machine. The turbocharger controller is configured to control operation of the electric machine such that the turbocharger supplies a desired intake pressure to the combustion engine based at least partially on the signal indicative of a pressure in the intake system and the signal indicative of a load on the power generation system.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 18, 2006
    Assignee: Caterpillar Inc.
    Inventors: Thomas Michael Sopko, Jr., Michael Edward Vanderham, Kent Allen Casey, Brian D. Kuras
  • Patent number: 7043916
    Abstract: A control device for a turbocharger with an electric motor includes a turbocharger which is provided along with an internal combustion engine and supercharges air taken in the internal combustion engine using a compressor; an electric motor which can increase a supercharging pressure by running the compressor of the turbocharger; and a controller. The controller calculates a base amount of electric power to be supplied to the electric motor based on a target supercharging pressure and an actual supercharging pressure, decides an amount of electric power to be supplied to the electric motor, controls the electric motor based on the decided amount of electric power to be supplied, and sets the amount of electric power to be supplied to a maximum amount of electric power in a beginning state of an electric power supplied motor, only when the compressor is out of a region where a surge occurs, regardless of the calculated base amount of electric power.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: May 16, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kei Masuda
  • Patent number: 6957535
    Abstract: In a variable exhaust gas turbocharger for an internal combustion engine including an exhaust gas turbocharger to which exhaust gas is supplied from the engine to provide a torque for driving the turbocharger, an additional device is provided which includes an electrical or mechanical drive for supplying an additional torque to the exhaust gas turbocharger in order to maintain the exhaust gas turbocharger at a certain speed at which it is capable of generating a desired inlet air pressure for the charge air supplied to the internal combustion engine.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: October 25, 2005
    Assignee: DaimlerChrysler AG
    Inventors: Siegfried Sumser, Peter Fledersbacher, Helmut Finger, Manfred Stute
  • Patent number: 6931850
    Abstract: A hybrid electric vehicle includes an internal combustion engine, an electric motor and a transmission. A turbocharger is in fluid communication with the internal combustion engine. Moreover, a generator is mechanically coupled to the turbocharger and thereby driven by exhaust gas from the internal combustion engine. The generator can provide electricity to the motor and/or a battery while simultaneously providing altitude compensation for the internal combustion engine so that the internal combustion engine output remains at the same power and efficiency as altitude and environmental conditions change. The turbocharger can also be used for power boost if desired. The exhaust gas driven generator system can be deployed in conventional vehicles as well to charge the battery and/or power electrical accessories, thereby replacing the alternator.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: August 23, 2005
    Assignee: The Regents of the Univesity of California
    Inventors: Andrew A. Frank, Thomas E. Darlington
  • Patent number: 6907867
    Abstract: A control apparatus for an internal combustion engine has a supercharger connected to an intake passage of the internal combustion engine and driven by a motor, a bypass passage which is provided for the intake passage in such a manner as to bypass the supercharger, flow amount adjustment device which arbitrarily adjusts a flow amount of air flowing through the bypass passage, and controller which controls the motor and the flow amount adjustment device. The flow amount adjustment device is electrically driven. The controller stops the supercharger from performing supercharging after driving the flow amount adjustment device and starting suction of air via the bypass passage.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: June 21, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Osamu Igarashi, Koichi Akita, Shoji Sasaki, Hiromasa Hashimoto
  • Patent number: 6895745
    Abstract: A system and device for providing secondary combustion for regeneration of catalyst in a catalytic converter (24) and/or for regeneration of a particulate trap (21) is provided. The secondary combustion takes place in the exducer chamber (13) of a turbine of a turbocharger (2), and generates heat for bringing a catalyst up to peak oxidation or reduction temperature, for regeneration of a catalyst, and incineration of particulates in a trap. The system takes advantage of heat and turbulence in the exducer chamber for promoting fuel/air mixture and for simplifying the amount of parts needed to incorporate a secondary combustion means into a turbocharger equipped primary combustion system (1).
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: May 24, 2005
    Assignee: BorgWarner Inc.
    Inventor: Steve Roby
  • Patent number: 6886337
    Abstract: The invention relates to a drive unit, comprising an internal combustion engine with a crankshaft; an exhaust line; an exhaust gas turbine which is acted on by the exhaust gas line, which is arranged downstream of the internal combustion engine and has the purpose of transmitting a positive torque to the crankshaft in the traction mode; a hydrodynamic unit which is arranged downstream of the exhaust gas turbine and has two turbine blades which form a torus-shaped working chamber; the hydrodynamic unit has a drive connection to the drive train; and a parking brake is provided for securing the primary turbine wheel of the exhaust gas turbine.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: May 3, 2005
    Assignee: Voith Turbo GmbH & Co. KG
    Inventors: Jürgen Friedrich, Peter Heilinger, Kai Kamossa
  • Patent number: 6880337
    Abstract: A control device for a turbocharger with an electric motor includes a turbocharger which is provided along with an internal combustion engine and supercharges air taken in the internal combustion engine using a compressor; an electric motor which can increase a supercharging pressure by running the compressor of the turbocharger; and a controller. The controller calculates a base amount of electric power to be supplied to the electric motor based on a target supercharging pressure and an actual supercharging pressure, decides an amount of electric power to be supplied to the electric motor, controls the electric motor based on the decided amount of electric power to be supplied, and sets the amount of electric power to be supplied to a maximum amount of electric power regardless of the calculated base amount of electric power when high supercharging responsiveness by the turbocharger is required.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: April 19, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kei Masuda
  • Patent number: 6871499
    Abstract: Turbocharger control systems used with electric assist turbochargers include an electric motor for controlling turbocharger operation. The system comprises an oil pressure sensor attached to the turbocharger for sensing oil pressure for lubricating a shaft bearing assembly. The pressure sensor provides oil pressure information to a control system that controls the operation of the electric motor and/or other operating parameters of the turbocharger and/or the vehicle. The control system regulates operation of the electric motor during operating conditions where a low oil pressure condition is detected when compared to a predetermined minimum. The control system reactivates the electric motor once a desired minimum oil pressure has been detected.
    Type: Grant
    Filed: December 20, 2003
    Date of Patent: March 29, 2005
    Assignee: Honeywell Interntional, Inc.
    Inventors: John F. Allen, Gerhard E. Delf, Rhett Hedrick, Daniel Black, Kevin Birch
  • Patent number: 6845616
    Abstract: The invention provides an internal combustion engine which can be run optionally on various fuels of different energy density, in particular for a motor vehicle drive, characterised in that the engine is equipped with a supercharging compressor which can be connected up when using a low-energy-density fuel at least when power requirements are elevated, so that the engine works as a supercharged engine, whereas the supercharging compressor is shut off when using a high-energy-density fuel and the engine works as a naturally aspirating engine.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: January 25, 2005
    Assignee: General Motors Corporation
    Inventor: Andreas Jauss
  • Patent number: 6845617
    Abstract: An electric assisted turbocharger has an electric motor with a stator and a rotor that is coupled to a turbocharger shaft carried by a bearing assembly. The stator has a left-hand winding and a right hand-winding each projecting axially outwardly therefrom. The winds each extend a different distance radially along the motor (and are thus asymmetrical with respect to one another), thereby forming a radial gap along an axial end of the stator. The so-formed stator is disposed within a motor housing and together, the stator and motor housing, facilitate placement center housing axial end therein to minimize turbocharger axial length. The rotor is configured to prevent migration of oil into the motor housing, to improve dynamic balance, and comprises an integral thrust washer for placement against the bearing assembly.
    Type: Grant
    Filed: December 20, 2003
    Date of Patent: January 25, 2005
    Assignee: Honeywell International Inc
    Inventors: John F. Allen, Gerhard E. Delf
  • Patent number: 6813887
    Abstract: An exhaust-gas turbocharger for an internal combustion engine includes an exhaust-gas turbine in the exhaust section and a compressor in the intake tract. The compressor includes a compressor impeller in an inflow passage in the compressor housing. Furthermore, there is an auxiliary-air feed device, which is assigned to the compressor region and has an auxiliary-air passage, in the compressor housing for supplying auxiliary air, which can be introduced via an injection opening in the wall of the inflow passage of the compressor into the flow-facing region of the compressor impeller.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: November 9, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Siegfried Sumser, Aloysius Schunk, Peter Fledersbacher
  • Publication number: 20040216457
    Abstract: The invention is an apparatus and method for detecting and responding to a surge event in a locomotive engine system including a turbocharger and a diesel engine. The apparatus includes a sensor for detecting an operating parameter of the turbocharger or the engine and generating a sensor signal indicative of the detected operating parameter. An engine control system is responsive to the sensor signal for controlling a plurality of operational controls of the diesel engine system. The engine control system modifies one or more operational controls of the diesel engine system when the sensor signal indicates a surge event. The invention also provides a method for detecting and controlling a surge event of a locomotive engine system including a turbocharger and a diesel engine operable at a plurality of discrete speeds.
    Type: Application
    Filed: October 21, 2003
    Publication date: November 4, 2004
    Applicant: General Electric Company
    Inventors: Dennis Brian Shea, Eric Richard Dillen, Vincent F. Dunsworth, Shawn Michael Gallagher
  • Patent number: 6782877
    Abstract: The invention is directed to a method and an arrangement for controlling a charger (2000, 1000) which make possible a reduction of the load on the on-board electrical system especially during run-up of the charger (2000, 1000). A drive signal is formed which drives the charger (2000, 10000 1000). In dependence upon a first operating state of the engine (1005) which directly precedes an increase of the driver command torque, the drive signal is so formed that the charger (2000, 1000) increases its rpm already during this first operating state.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: August 31, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Michael Nau, Michael Baeuerle, Carsten Reisinger, Guido Porten
  • Patent number: 6735945
    Abstract: The present invention relates to a turbocharger and motor assembly, in which the motor (20) is coupled to one side of the turbocharger (10) to provide additional acceleration of the turbocharger rotor (11) at low engine speeds and to reduce the power provided from the exhaust gases at higher speeds.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: May 18, 2004
    Assignee: The Turbo Genset Company Limited
    Inventors: Justin Arthur Hall, Hassan Mansir, Ross Waring
  • Publication number: 20040088977
    Abstract: An exhaust device includes a housing, a drive unit, and an electric generator. The housing includes a tubular wall with a tube axis, and a mounting wall transverse to the tube axis. The tubular wall has an inlet end portion to be connected to a source of exhaust gas. The housing is formed with a vent for discharging the exhaust gas. The drive unit includes a drive shaft disposed in the housing, and an impeller connected to the drive shaft such that the exhaust gas received from the source can drive rotation of the drive shaft. The electric generator includes a stator mounted on the mounting wall, and a rotor coupled to the drive shaft such that the rotor is rotatable with the drive shaft relative to the stator to generate electricity for operating a load, such as a lamp unit.
    Type: Application
    Filed: April 16, 2003
    Publication date: May 13, 2004
    Inventor: Kuo-Lin Huang
  • Patent number: 6718768
    Abstract: A flywheel assembly for use with a supercharger having a rotatable shaft is provided. The flywheel assembly includes a flywheel configured to rotate about an axis of and be supported by the rotatable shaft and a clutch configured to selectively couple the flywheel to the rotatable shaft.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: April 13, 2004
    Assignee: Caterpillar Inc
    Inventor: Bradley J. Shaffer
  • Patent number: 6647724
    Abstract: Exemplary methods, devices and/or system for enhancing engine performance through use of one or more compressors and/or one or more turbines. An exemplary system includes an electric compressor to boost intake charge pressure supplied to an internal combustion engine; an electric turbine to generate electrical power from exhaust received from the internal combustion engine; and an electric power control to provide electrical power from a power storage to the electric compressor upon a request for boost and to provide electrical power generated by the electric turbine to the electric compressor after a request for boost and upon a depletion of the power storage to a predetermined power storage level. Various other exemplary methods, devices and/or systems are also disclosed.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: November 18, 2003
    Assignee: Honeywell International Inc.
    Inventors: Steven Don Arnold, Syed M. Shahed
  • Patent number: 6637204
    Abstract: In a two-stage concept for supercharging of internal combustion engines, in which the first stage is performed by an exhaust-gas turbocharger and the second stage by an electrically driven compressor, the compressor is also used to provide the secondary air used for the heating of a catalytic converter. In this manner, the catalytic converter quickly reaches an efficient operating temperature.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: October 28, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dietmar Ellmer, Jörg Neugärtner
  • Patent number: 6637205
    Abstract: Methods, devices, and/or systems for controlling intake to and/or exhaust from an internal combustion engine. An exemplary method for controlling intake charge pressure to an internal combustion engine includes determining one or more control parameters based at least partially on an intake charge target pressure; and outputting the one or more control parameters to control an electric motor operatively coupled to a compressor capable of boosting intake charge pressure and to control a variable geometry actuator capable of adjusting exhaust flow to a turbine.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: October 28, 2003
    Assignee: Honeywell International Inc.
    Inventors: Samir S. Ahmad, Steven Don Arnold, Gary D. Vrbas
  • Patent number: 6609375
    Abstract: A system for controlling the temperature of an electric motor in an electric assisted turbocharger that is coupled to an internal combustion engine has a turbocharger with an electric motor disposed within a motor housing. The motor housing has a motor housing inlet and a motor housing outlet. The turbocharger has a compressor with a compressor inlet and a compressor outlet. The turbocharger also has a turbine. A first cooling hose is coupled to the compressor outlet and coupled to the motor housing inlet. A second cooling hose is coupled to the motor housing outlet and coupled to the compressor inlet.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: August 26, 2003
    Assignee: Honeywell International Inc.
    Inventors: John Allen, Gerhard Delf, Kevin Birch, Daniel Black, Rhett Hedrick, Len Wedman
  • Patent number: 6571558
    Abstract: In an exhaust gas turbocharger for an internal combustion engine having an exhaust gas turbine arranged in an exhaust gas line, and a compressor arranged in an in-take duct and connected to the turbine by way of a shaft, the compressor includes a compressor wheel forming at the same time a rotor of an electric motor.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: June 3, 2003
    Assignee: Daimler Chrysler AG
    Inventors: Helmut Finger, Peter Fledersbacher, Paul Löffler, Siegfried Sumser, Friedrich Wirbeleit
  • Patent number: 6502398
    Abstract: An exhaust power recovery system for internal combustion engines. The engine exhaust gases drive a gas turbine that in turn drives a hydraulic turbine pump pressurizing a hydraulic fluid which then in turn is the driving source for a hydraulic motor which transmits power to the engine shaft. In a preferred embodiment for a turbocharged engine, the hydraulic fluid is also used as the drive fluid in a hydraulic supercharger system that provides additional supercharging at low engine speeds to supplement the exhaust driven turbocharging system. In this embodiment the pressurized hydraulic fluid for driving the supercharger hydraulic turbine is provided by a pump driven by the engine shaft. A hydraulic fluid control system is provided to match compressed air flow with engine needs. In this preferred embodiment more than enough energy is recovered from the exhaust gasses by the exhaust power recovery system to operate the hydraulic supercharger system.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: January 7, 2003
    Inventor: Davorin D. Kapich
  • Patent number: 6474066
    Abstract: An electric-controlled idler-type supercharger mainly includes a free rotor, an electric rotor, and an electric control gear mounted inside a turbine casing. The electric rotor includes an electromagnet screwed to a transmission shaft of the electric rotor, and the free rotor is rotatably mounted to an end of the transmission shaft with a permanent magnet thereof corresponding to the electromagnet. A conductive coil is wound around the electromagnet with two coil leads connected to two collector rings of the electric control gear. The collector rings are then connected to a power switch via two carbon brushes, two expansion springs and two conductive terminals. By turning the power switch on or off, it is possible to control working characteristics of the supercharger.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: November 5, 2002
    Inventor: Chiways Lin
  • Patent number: 6450156
    Abstract: An air compressor for charging an internal combustion engine includes a compressor for blowing compressed air into the intake manifold of the engine and a gas powered turbine for driving the compressor. In a first embodiment, the exhaust from a small gas powered turbine is coupled to the driving turbine of a standard turbocharger. In a second embodiment, the drive shaft of a small gas powered turbine is coupled to the drive shaft of a standard supercharger. In a third embodiment, a compressor turbine having an air intake, a compressed air outlet, and a bleed air outlet is coupled to a small gas powered turbine such that the bleed air outlet supplies the combustor intake of the gas turbine. The gas powered turbine drives the compressor and receives compressed air from the compressor via the bleed outlet. The system provides a constant boost, does not use engine horsepower, is easy to install, and does not need to be coupled to a rotating shaft or the exhaust system of the engine.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: September 17, 2002
    Inventor: Albert F. Araujo
  • Patent number: 6449950
    Abstract: A turbocharger having an electric motor for assisting spin up of the rotor employs a shaft carrying the turbine and compressor impeller with a unitary pinned semi-floating bearing supporting the shaft and a spacer collar carrying the electric motor magnet. The unitary bearing has integral thrust faces engaging a hub of the turbine wheel and the spacer collar. A reduced diameter of the shaft received in the spacer collar allows the collar to engage a greater diameter bearing land allowing the attachment of the compressor impeller with a nut on the shaft extending through a bore in the impeller to firmly engage the impeller, spacer collar and bearing land of the shaft to fix the rotor length. The pinned semi-floating bearing with integral thrust faces provides enhanced reaction moments for negative spring forces created by the electric motor in operation and the additional length of the rotor created by the motor.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: September 17, 2002
    Assignee: Honeywell International Inc.
    Inventors: John Allen, Gerald Duane LaRue, Elias E. Barrios, Gerhard Delf
  • Patent number: 6434940
    Abstract: An air compressor for charging an internal combustion engine includes a compressor for blowing compressed air into the intake manifold of the engine and a fuel powered turbine for driving the compressor. According to a first embodiment, the exhaust from a small gas powered turbine is coupled to the driving turbine of a standard turbocharger. According to a second embodiment, the drive shaft of a small gas powered turbine is coupled to the drive shaft of a standard supercharger. According to a third embodiment, a compressor turbine having an air intake, a compressed air outlet and a bleed air outlet is coupled to a small gas powered turbine such that the bleed air outlet supplies the combustor intake of the gas turbine. The gas powered turbine drives the compressor and receives compressed air from the compressor via the bleed outlet.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: August 20, 2002
    Inventor: Albert F. Araujo
  • Patent number: 6415606
    Abstract: The method for turbocharging an engine of a locomotive in which the engine is operable at a plurality of discrete operating power levels includes controlling at least one of energy to a motor-assisted turbocharger at a plurality of discrete energy levels and air pressure from the motor-assisted turbocharger to the engine at a plurality of discrete air pressure levels above ambient air pressure based on at least some of the plurality of discrete operating power levels (e.g., low power levels) of the engine. Desirably, the method also includes controlling generation of electrical energy from the motor-assisted turbocharger at some of the plurality of discrete operating power levels (e.g., high power levels) of the engine. Apparatus for turbocharging a diesel engine of a locomotive incorporating the above methods are also disclosed.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: July 9, 2002
    Assignee: General Electric Company
    Inventors: Michael John Bowman, Gregory James Hampson, Anthony Holmes Furman
  • Patent number: 6412278
    Abstract: A hydraulically powered exhaust gas recirculation system for an internal combustion engine includes a hydraulically driven turbine (71) that powers a compressor (72). The compressor (72) pressurizes a portion of the exhaust gas from an internal combustion engine (10) and supplies it to a mixer (40). Another portion of the exhaust gas drives the turbine (21) of a turbocharger (20), which in turn powers a compressor (23) that delivers intake air to the mixer (40). The mixer (40) combines the air and the recirculated exhaust gas and delivers the mixture to the intake manifold (11) of the engine (10). The hydraulically powered turbine (71) may be driven by any of a number of systems, such as the power steering system of an automobile, high pressure oil from a diesel fuel injection system or an auxiliary hydraulic system. The flow of recirculated exhaust gas may be regulated in any number of manners, such as by controlling the pressure and displacement of the hydraulic pump (82) or by a valve (50).
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: July 2, 2002
    Assignee: BorgWarner, Inc.
    Inventor: Patrick Matthews
  • Patent number: 6408625
    Abstract: An electric power generation system is disclosed, which includes a back-up electric power generator driven by a four-cycle internal combustion engine. The engine includes a plurality of reciprocating cylinders each rotatably coupled to a crankshaft, which drives the electric power generator. The engine also includes a compressor along an intake pathway to deliver pressurized air to the cylinders and a turbine along an exhaust pathway to power the compressor when driven by exhaust discharged from the cylinders. The engine is prepared to accept a generator load by increasing boost pressure provided by the compressor. This increase is accomplished by skip-firing the cylinders in a selected pattern, retarding ignition timing for the cylinders, or a combination of these techniques. A unique skip-fueling control pattern is also disclosed.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: June 25, 2002
    Assignee: Cummins Engine Company, Inc.
    Inventors: Peter V. Woon, Axel O. Zur Loye, Larry J. Brackney, Jay F. Leonard, Eric K. Bradley, Terry M. Vandenberghe, Jacqueline M. Yeager, Julie A. Wagner, Greg A. Moore
  • Patent number: 6408626
    Abstract: The invention relates to an arrangement for power transmission in a combustion engine, comprising an outgoing exhaust pipe, at least one device for absorbing energy from exhaust gases in the exhaust pipe and/or at least one device for compressing air to the engine and a power transmission between at least one of said devices and a crankshaft of the engine. The invention is characterized in that said power transmission comprises power transmission means for the transfer of power via the shearing forces of a viscous medium. By means of the invention an improved power transmission in a turbo compound unit for combustion engines is obtained.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: June 25, 2002
    Assignee: AB Volvo
    Inventor: Jan Arnell
  • Publication number: 20020040581
    Abstract: In an exhaust gas turbocharger for an internal combustion engine having an exhaust gas turbine arranged in an exhaust gas line, and a compressor arranged in an intake duct and connected to the turbine by way of a shaft, the compressor includes a compressor wheel forming at the same time a rotor of an electric motor.
    Type: Application
    Filed: August 17, 2001
    Publication date: April 11, 2002
    Inventors: Helmut Finger, Peter Fledersbacher, Paul Loffler, Siegfried Sumser, Friedrich Wirbeleit
  • Patent number: 6145314
    Abstract: An improved supercharging apparatus combines the elements of a rotary electric machine and an air compressor, such as in a turbocharger. A plurality of permanent magnets are encapsulated by a multi-layer carbon filament winding wound around the plurality of permanent magnets for retention of the plurality of magnets as the rotor of an electric motor for driving a charge air compressor for an internal combustion engine. The plurality of permanent magnets are preferably located on an inner core and on a magnet mounting surface formed on the rear face of the compressor wheel of the charge air compressor and spaced intermediately of the shaft portion and periphery of the compressor wheel before encapsulation by winding a carbon filament in a multi-layer coil over the plurality of magnets and the magnet mounting surface of the compressor wheel.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: November 14, 2000
    Assignee: Turbodyne Systems, Inc.
    Inventors: William E. Woollenweber, Edward M. Halimi
  • Patent number: 6085527
    Abstract: An integral turbocharger-electric motor assembly permits the elements of an operating electric motor and turbocharger to be easily assembled into a relatively compact and reliable operating unit. To act as an electric motor rotor, the turbocharger shaft carries a magnet assembly in its central portion between the shaft bearings, in such proximity to the stator windings to provide electromagnetic coupling for the effective conversion of electric energy applied to the stator winding into rotational force applied by the magnet assembly to the turbocharger shaft. The magnet assembly includes a plurality of permanent magnets located around a central core and secured against centrifugal force on a non-magnetic outer sleeve. Such magnet assemblies are preferably formed as a unit that can be assembled onto the turbocharger shaft by retaining an annular arrangement of motor magnets in an assembly between central and outer sleeves.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: July 11, 2000
    Assignee: Turbodyne Systems, Inc.
    Inventors: William E. Woollenweber, Edward M. Halimi
  • Patent number: 6046509
    Abstract: A steam turbine-driven generator for generating electric power is comprised of an electric generator having a vertical shaft journalled for rotation between bearings contained in a generator housing. An axial flow impulse turbine wheel with peripheral vanes is secured to an unsupported upper end of the shaft protruding from the top of the generator housing. The turbine wheel is enclosed within a turbine housing secured to the top of the generator housing. The turbine housing includes an inlet and an outlet for accommodating a through flow of steam, with internally arranged nozzles for directing the steam flow against the vanes of the turbine wheel.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: April 4, 2000
    Assignee: Tuthill Corporation
    Inventor: William P. LaBaire
  • Patent number: 6032466
    Abstract: A particularly efficient and reliable motor-assisted turbocharger for internal combustion engines includes an assisting electric motor, a combination flow turbine wheel which may be inserted and removed from the turbocharger assembly through the exhaust opening of the turbine casing, and a divided volute turbine casing designed in a unique way so that the tips of the turbine blades can be extended to be closely adjacent to the turbine casing divider wall without complicating the mechanical design of the turbine, thereby providing an economical assembly with high-turbine efficiency compared with conventional, radial turbines used in turbochargers, and by providing in preferred embodiments, improved bearing support for the shaft, including reliable, stable shock- and vibration-resistant, high efficient, simple and economical bearing systems that are insertable and, permit inexpensive manufacture, maintenance, and repair of the turbochargers in which they are used.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: March 7, 2000
    Assignee: Turbodyne Systems, Inc.
    Inventors: William E. Woollenweber, Edward M. Halimi
  • Patent number: 5870894
    Abstract: An improved machine includes a combination of elements of a rotary electric machine and an air compressor, such as in a turbocharger, and provides an improved turbocharging device for enhancing turbocharged internal combustion engine performance. The improved turbocharger includes a plurality of magnets which are mounted in a generally circumferential arrangement about the back face of the compressor wheel. A stator winding is mounted in opposing relation to the motor magnets. Torque can be applied to the magnets and hence to the compressor wheel when the stator is energized by an appropriate energizing circuit, thereby improving engine performance especially at low engine speeds.
    Type: Grant
    Filed: July 16, 1996
    Date of Patent: February 16, 1999
    Assignee: Turbodyne Systems, Inc.
    Inventors: William E. Woollenweber, Edward M. Halimi
  • Patent number: 5857332
    Abstract: In a unique turbocharger shaft bearing system, a thrust bearing is provided inboard of the compressor end shaft bearing. Removable parts of the turbocharger housing permit assembly of a first thrust bearing part with an outwardly extending flange forming at least one thrust bearing interface to be fastened to the rotating shaft for rotation therewith and a separate stationary thrust bearing part to be carried by the housing, providing thrust bearing interface for the thrust bearing interface of the rotating first thrust bearing part inboard of the compressor end of shaft bearing. The removable parts can include a separate supporting member for the compressor end shaft bearing. The remainder of the turbocharger housing supports the second shaft bearing adjacent its turbine end and, through the separate bearing supporting member, the first shaft bearing.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: January 12, 1999
    Assignee: Turbodyne Systems, Inc.
    Inventors: Bevan H. Johnston, Edward M. Halimi, William E. Woollenweber
  • Patent number: 5771695
    Abstract: A method and apparatus for improving the time response of a turbo-compressor assisted internal combustion engine wherein the turbo-compressor is driven by an electric motor at a speed somewhat less than its full-load operating speed until such time as the turbo-compressor is driven at a higher speed by an exhaust gas turbine. The electric motor is provided to maintain the minimum rotational speed of the turbo-compressor when the engine load is low so that the turbo-compressor is ready for prompt response when driven by increasing exhaust gas as a result of additional load demand on the internal combustion engine.
    Type: Grant
    Filed: February 24, 1993
    Date of Patent: June 30, 1998
    Inventor: Edward M. Halimi
  • Patent number: 5729978
    Abstract: A supercharged internal combustion engine has an exhaust gas turbocharger which includes an exhaust gas turbine and a compressor. The exhaust gas turbine and the compressor are connected to a turbocharger shaft and an appliance for the transmission of power for the purpose of a mechanical step-up drive capability for the exhaust gas turbocharger arranged between the turbocharger shaft and the crankshaft of the internal combustion engine. The appliance includes at least one step-up gear and a controllable hydrodynamic coupling for torque transmission arranged between the crankshaft and the turbocharger shaft.
    Type: Grant
    Filed: August 23, 1995
    Date of Patent: March 24, 1998
    Assignee: Mercedes-Benz AG
    Inventors: Herman Hiereth, Harald Dauble, Klaus-Jurgen Marquardt, Michael Hoffmann
  • Patent number: 5704323
    Abstract: Arrangement and method for an internal combustion engine (2), preferably a vehicle engine (2) provided with a turbo unit (14), whereby a compressed air device (18), preferably a compressor driven by an electric motor, builds up the charging pressure and thereby raises the air temperature in the engine combustion chamber (4) before the engine (2) starts. The result is a reduction in the environmentally harmful discharges which may otherwise occur when starting, owing to incomplete combustion.
    Type: Grant
    Filed: June 5, 1996
    Date of Patent: January 6, 1998
    Assignee: Scania CV Aktiebolag
    Inventors: Lars Gardell, Gunter Friedel
  • Patent number: 5605045
    Abstract: An exhaust gas-driven turbine drives a compressor to charge an internal combustion engine. An integral motor is positioned on the connecting shaft to add power to the turbocharging shaft, especially at low exhaust gas volume. Cooling for this motor includes circulation of engine oil therearound and may include insulation to limit heat inflow from the turbine and may include air flow through the motor to carry away heat inflow from the turbine.
    Type: Grant
    Filed: September 18, 1995
    Date of Patent: February 25, 1997
    Assignee: Turbodyne Systems, Inc.
    Inventors: Edward M. Halimi, Ralph P. Maloof, William E. Woollenweber