With Condition Responsive Drive Means Control Patents (Class 60/608)
  • Patent number: 10443488
    Abstract: The present disclosure describes a supercharging device for an internal combustion engine of a motor vehicle comprising: a planetary mechanism, a first electric machine, a second electric machine, a compressor impeller, and an internal combustion engine attachment for fastening to a drive output shaft of the internal combustion engine. The first electric machine, the second electric machine and the compressor impeller are connected to one another via the planetary mechanism. Along a longitudinal axis of the supercharging device, the compressor impeller is arranged on a first side of one of the electric machines, and the other of the electric machines is arranged on the second side situated opposite said first side.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: October 15, 2019
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Jakob Epp, Andreas Schakies, Ingo Schulz, Wolfgang Vitzthum
  • Patent number: 10428749
    Abstract: Embodiments for operating an engine having parallel turbochargers and two fluidically coupleable, separated intake manifolds is provided. In one example, a method includes responsive to a first condition, operating a first cylinder group of an engine, deactivating a second cylinder group of the engine, and blocking fluidic communication between a first intake manifold coupled to the first cylinder group and a second intake manifold coupled to the second cylinder group, and responsive to a second condition, activating the second cylinder group and establishing fluidic communication between the first and second intake manifolds.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: October 1, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Frank Kraemer, Vanco Smiljanovski, Franz J. Brinkmann, Helmut Matthias Kindl, Franz Arnd Sommerhoff, Hanno Friederichs, Joerg Kemmerling, Andreas Kuske
  • Patent number: 10189470
    Abstract: A vehicle propulsion system includes an engine and a first electric machine each configured to selectively provide torque to propel the vehicle. A second electric machine is coupled to the engine to provide torque to start the engine from an inactive state. A high-voltage power source is configured to power both of the first electric machine and the second electric machine over a high-voltage bus. A propulsion controller is programmed to start the engine using cranking torque output from the second electric machine powered by the high-voltage power source. The controller is also programmed to operate both of the first electric machine and the combustion engine to propel the vehicle in response to an acceleration demand greater than a threshold. The controller is further programmed to decouple the engine and propel the vehicle using the first electric machine in response to vehicle speed less than a speed threshold.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: January 29, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Venkata Prasad Atluri, Peter Beller, Norman K. Bucknor, Tito R. Huffman, Derek F. Lahr, Chunhao J. Lee, Dongxu Li, Chandra S. Namuduri, Thomas W. Nehl, Madhusudan Raghavan, Alexandru Rajala, Farzad Samie, Neeraj S. Shidore
  • Patent number: 10184390
    Abstract: A method of operating an automotive system having an internal combustion engine equipped with an electric compressor and a turbocharger having a turbocharger compressor is disclosed. A surge threshold line and a pre-surge threshold line in a turbocharger compressor map are defined as a function of a turbocharger compressor pressure ratio and mass flow rate. The pre-surge threshold line is defined in terms of greater mass flow values for each corresponding pressure ratio value of the surge threshold line. The position of a turbocharger compressor working point in the turbocharger compressor map is monitored as a function of the turbocharger compressor pressure ratio and mass flow rate. When an increased torque request is detected, the electric compressor is activated to assist the turbocharger compressor in delivering the requested torque when the turbocharger compressor working point crosses the pre-surge threshold line in a direction towards the surge threshold line.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: January 22, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Alberto Racca
  • Patent number: 10174688
    Abstract: A method of controlling an engine system equipped with a supercharger may include determining a target value of boost pressure, depending on an rpm of an engine and then determining whether the supercharger is in an operable region, deducing a target rpm of the supercharger, based on a reference value previously input into the controller and a current state value of a vehicle input into the controller, when it has been determined in the operating-region determination that the supercharger is in the operable region, setting a maximum value, in the target rpm deduced in the target-rpm deduction, to a drive rpm of the supercharger, and verifying whether the set drive rpm is greater than or equal to a predetermined reference value previously input into the controller, and driving the supercharger at the set drive rpm, by closing the bypass valve to open the supercharger path.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: January 8, 2019
    Assignee: Hyundai Motor Company
    Inventors: Kyoung Chan Han, Seung Eun Yu
  • Patent number: 10174689
    Abstract: A method for operating a drive system including an internal combustion engine, the drive system including an electromotively-assisted exhaust-driven supercharging device or a strictly electrically operated supercharging device, the method including checking on whether a gear change has been initiated and a drive train has been disengaged accordingly; upon detecting an initiated gear change, adjusting the compressor power of the supercharging device by additionally facilitating electric power to the electromotively-assisted exhaust-driven supercharging device or to the strictly electrically operated supercharging device, in such a way that, at least toward the end of the gear change, a charging pressure is made available in a charging pressure section of the drive system which is higher than a charging pressure resulting at a compressor power, which corresponds to the exhaust gas enthalpy of the internal combustion engine provided during the gear change.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: January 8, 2019
    Assignee: ROBERT BOSCH GMBH
    Inventors: Florian Schmitt, Udo Schulz
  • Patent number: 10161319
    Abstract: An exemplary method of providing torque-assist to a crankshaft of an internal combustion engine includes, among other things, assisting a rotation of the crankshaft using an electric machine during the transition between stages of a multi-stage forced induction system.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: December 25, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Ashish Kumar Naidu, Steve Johnson, Peter George Brittle, James Wright
  • Patent number: 10094270
    Abstract: An internal combustion engine includes: plural cylinders, a first exhaust gas turbocharger having a high-pressure turbine and a high-pressure compressor, a second exhaust gas turbocharger having a low-pressure turbine and a low-pressure compressor, and an SCR catalytic converter positioned between the high-pressure turbine and the low-pressure turbine, via which exhaust gas leaving the high-pressure turbine is conducted upstream of the low-pressure turbine. The low-pressure compressor is assigned a power take-in, via which the low-pressure compressor can be driven when as a consequence of a relatively large exhaust gas temperature drop at the SCR catalytic converter via the low-pressure turbine an adequate amount of energy required to supply the cylinders of the internal combustion engine with a desired quantity of charge air can no longer be provided.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: October 9, 2018
    Assignee: MAN Energy Solutions SE
    Inventors: Andreas Döring, Julia Maier
  • Patent number: 10066541
    Abstract: Control techniques for a turbocharger of an engine utilize a wastegate valve configured to divert exhaust gas from a turbine of the turbocharger that is rotatably coupled to a compressor of the turbocharger. A controller is utilized to obtain a torque request for the engine, determine a target compressor power based on the engine torque request, determine a normalized target turbine power based on the target compressor power, determine a target position for the wastegate valve based on the normalized target turbine power and a normalized exhaust flow, and actuate the wastegate valve to the target position. Such control techniques involve the actual calculation of much less intermediate parameters, such as target turbine pressure ratio, which results in more efficient calibration and implementation.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: September 4, 2018
    Assignee: FCA US LLC
    Inventors: Yang Li, Songping Yu
  • Patent number: 10047666
    Abstract: An object is to enable low fuel-consumption operation of an engine by controlling a back pressure and a power generation amount taking account of a trade-off relationship between deterioration of fuel efficiency due to an increase in pumping loss due to a back-pressure rise of the engine and improvement of fuel efficiency due to recovery of exhaust energy by a turbo compound.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: August 14, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yukio Yamashita, Ko Takayanagi, Ryo Sase, Atsushi Matsuo, Rikikazu Hayashi
  • Patent number: 10024225
    Abstract: In a controller of an internal combustion engine equipped with an electric supercharger driven by a motor, an object is to attempt to improve fuel consumption of a vehicle. The controller includes an electric supercharger driven by a motor; a generator that performs power generation using the output of the internal combustion engine as power; a charging device which is charged by the generator and can store electricity; and an accelerator opening degree detector that detects an accelerator opening degree. In the controller, a configuration is made such that, the controller controls supply electricity to the electric supercharger and generated electricity by the generator by the output of the accelerator opening degree detector, output needed for the electric supercharger calculated depending on the accelerator opening degree, and an state of charge in the charging device.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: July 17, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yohei Akashi, Hideyuki Tanaka
  • Patent number: 9989020
    Abstract: Embodiments of an internal combustion engine are provided. In one example, an engine includes at least one cylinder, an intake system for supplying charge air to the at least one cylinder, an exhaust-gas discharge system for discharging exhaust gas from the at least one cylinder, a first exhaust-gas turbocharger including a first turbine arranged in the exhaust-gas discharge system and a first compressor arranged in the intake system; and an exhaust-gas recirculation (EGR) system. The EGR system includes a line which branches off from the exhaust-gas discharge system and opens into the intake system, a second exhaust-gas turbocharger comprising an EGR turbine arranged in the line on a shaft and an EGR compressor arranged in the line on the shaft upstream of said EGR turbine, and an EGR cooler positioned between the EGR turbine and the EGR compressor.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: June 5, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Vanco Smiljanovski, Joerg Kemmerling, Helmut Matthias Kindl, Andreas Kuske, Franz Arnd Sommerhoff, Franz J. Brinkmann, Werner Willems, Claudia Conee, Michael Forsting, Claudia Katharina Herudek, Tim Franken
  • Patent number: 9896997
    Abstract: A control apparatus for an internal combustion engine executes shaft heating control that controls the energization of an electric motor so that a driving torque and a braking torque are alternately imparted from the electric motor to a rotary shaft when the temperature of a lubricating oil (lubricant) is less than or equal to a predetermined value. According to the shaft heating control, in a case where a target intake air pressure Pt is higher than an actual intake air pressure P, a proportion that a driving torque impartation period ?D occupies in a cycle T is increased relative to a case where Pt and P are equal or substantially equal, and in a case where Pt is lower than P, the proportion ?D that the driving torque impartation period occupies in the cycle T is decreased relative to a case where Pt and P are equal or substantially equal.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: February 20, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masayuki Tanada
  • Patent number: 9890691
    Abstract: Methods and systems for operating an engine that includes a compressor and charge air cooler are disclosed. In one example, air flow through the charge air cooler is increased in response to condensation accumulating in the charge air cooler without increasing engine torque. Air flow through the charge air cooler is increased to gradually reduce condensation within the charge air cooler.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: February 13, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Adam Nathan Banker, Baitao Xiao, Hamid-Reza Ossareh
  • Patent number: 9840980
    Abstract: Additional approaches for the reduction of particulate emissions in gasoline engines using optimized port+direct injection are described. These embodiments include control of the amount of directly injected fuel so as to avoid a threshold increase in particulates due to piston wetting and reduction of cold start emissions by use of air preheating using variable valve timing.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: December 12, 2017
    Assignee: Ethanol Boosting Systems, LLC
    Inventors: Daniel R. Cohn, Leslie Bromberg
  • Patent number: 9810169
    Abstract: Starting an internal combustion engine may be difficult as a consequence of the operating conditions of the engine. Even after the engine has started, it may take a long period of time for the engine to reach operating temperatures. In the present disclosure, when engine start difficulty is expected, before starting the engine a forced induction compressor arranged with the engine may be turned on to increase the engine intake air pressure before the engine is started.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: November 7, 2017
    Assignee: Perkins Engines Company Limited
    Inventor: Paresh Rameshchandra Desai
  • Patent number: 9765688
    Abstract: Systems and methods for operating a compressor and a compressor recirculation valve of a turbocharged engine to avoid the possibility of compressor surge are presented. The systems and methods position the compressor recirculation valve responsive to a compressor surge line that is based on two other compressor surge lines that may be a function of compressor pressure ratio and compressor flow.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: September 19, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Hamid-Reza Ossareh, Todd Anthony Rumpsa, Adam Nathan Banker, Matthew John Gerhart, Gregory Patrick McConville, Baitao Xiao
  • Patent number: 9739281
    Abstract: The invention relates to a method for determining the pressure Pavcm upstream of a mechanical compressor (3) equipped with a double supercharging circuit of a combustion engine. The pressure Pavcm is determined by a dynamic model based on a law of conservation of flow rate in the volume upstream of the mechanical compressor. The model links the pressure Pavcm upstream of the mechanical compressor (3) to a temperature Tavcm upstream of the mechanical compressor (3), to a boost pressure Psural and boost temperature Tsural on the intake side of the engine, and to an openness Bypass of the bypass valve (4).
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: August 22, 2017
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Thomas Leroy, Jonathan Chauvin, Alexandre Chasse
  • Patent number: 9638096
    Abstract: A vehicle is equipped with an internal combustion engine having a forced-induction apparatus with variable boost pressure, a first motor generator for generating electricity while applying negative torque to the engine, and a battery for storing the electricity generated by the first motor generator. During the operation of the engine, a target boost pressure is set lower as the rotational speed of the first motor generator is increased. The engine is controlled such that, with the boost pressure adjusted to the target boost pressure, the output torque of the engine has a required value determined by the accelerator operation amount. Further, while the output torque of the engine is adjusted to the required value, the magnitude of the negative torque by the first motor generator acting on the engine is adjusted such that the engine rotational speed has a target value.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: May 2, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yusuke Kamijo, Keisuke Morisaki
  • Patent number: 9528432
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine fluidly coupled to an exhaust manifold of the engine and a compressor fluidly coupled to an intake manifold of the engine, and an electric motor coupled to a rotatable shaft connected between the compressor and the variable geometry turbine. A target torque required to drive the compressor to achieve target compressor operating parameters is determined, a maximum available torque that can be supplied by the variable geometry turbine in response to a target exhaust gas flow through the variable geometry turbine is determined, and the electric motor is enabled to supply supplemental torque to the rotatable shaft if the target torque is greater than the maximum available torque.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: December 27, 2016
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Patent number: 9512843
    Abstract: A turbocharger system for achieving both improvement of fuel efficiency by engine downsizing and excellent shock loading resistance. The system includes: a power-assisted turbocharger mounted on a vehicle having an accessory and including a turbine disposed on an exhaust passage of an engine and driven by exhaust, a compressor disposed on an intake passage and driven by a rotational torque of the turbine, and an electric motor that assists a drive force of the compressor; and an electric motor control unit that drives the electric motor when the accessory is being driven.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 6, 2016
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Isao Kitsukawa, Tomohiro Sugano, Yoshiyuki Abe, Haruyo Kimura, Akira Iijima, Naoki Ishibashi, Syougo Sakashita
  • Patent number: 9481371
    Abstract: A method and apparatus for controlling a speed change of a hybrid vehicle are provided. The apparatus includes an engine for combustion of fuel to generate power and a motor that is configured to supplement the power from the engine and operate as a generator during braking to generate electrical energy and store the generated electrical energy generated a battery. A transmission is configured to convert the power from the engine to a required torque based on a speed and transmit the power to wheels and is directly connected to the motor. In addition, a controller is configured to operate the transmission to shift in a constant power section of the motor when the motor is performing regenerative braking. The apparatus minimizes the sense of difference felt by a driver by shifting in the constant power section of the motor during the regenerative braking of a hybrid vehicle.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: November 1, 2016
    Assignee: Hyundai Motor Company
    Inventor: Joonyoung Park
  • Patent number: 9404413
    Abstract: The invention relates to an internal combustion machine (10), comprising a combustion engine (1) having an exhaust gas side (AGS) and a charging fluid side (LLS), and having a supercharger system (14) comprising an exhaust gas turbo charger (40) for charging the combustion engine (1), having a condenser array (41) on the charging fluid side (LLS) and a turbine arrangement (42) on the exhaust gas side (AGS), a compressor (3), the primary side (I) of which is connected to the charging fluid side (LLS), and the secondary side (II) of which is connected to the exhaust gas side (AGS). An electric machine (4) configured as a motor/generator is coupled to the combustion engine (1), wherein the electric machine (4) as a generator can be powered by the combustion engine (1), or can power the combustion engine (1) as a motor, wherein the compressor (3) can be powered directly by the electric machine (4) via a mechanical drive coupling (13).
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: August 2, 2016
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Claus-Oliver Schmalzing, Holger Frank, Philippe Gorse, Peter Riegger
  • Patent number: 9388774
    Abstract: A pressure-assisted precision purge valve system is provided in an evaporative emission control system that provides flow of fuel vapor-air mixture from a fuel tank to an intake manifold. The pressure-assisted precision purge valve system comprises an absorbent canister through which the fuel vapor-air mixture flows, a purge valve configured to regulate flow of the fuel vapor-air mixture to the intake manifold and a fuel vapor pump configured to provide a forced flow to the purge valve dependent on a system differential pressure. The output of the purge valve can be connected to an upstream injection point and/or a downstream injection point of a forced induction device.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: July 12, 2016
    Assignee: Discovery Technology International, Inc.
    Inventors: Valentin Zhelyaskov, Mark Oudshoorn, Serhiy Petrenko
  • Patent number: 9334833
    Abstract: A turbocharger system for ensuring a sufficient exhaust gas recirculation (“EGR”) amount in all operating conditions, and reducing NOx emission from an engine. The system includes an EGR controller that re-circulates a part of exhaust gas discharged from the engine to an intake side. The turbocharger is a power-assisted turbocharger including an electric motor that assists a drive force of a compressor. The EGR controller controls an amount of exhaust gas recirculated to the intake side so as to inhibit the generation of NOx regardless of an amount of oxygen necessary for combustion of the engine. An electric motor control unit drives the electric motor, by the control of the EGR controller, when the amount of oxygen necessary for the combustion of the engine is deficient.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: May 10, 2016
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Isao Kitsukawa, Tomohiro Sugano, Yoshiyuki Abe, Haruyo Kimura, Akira Iijima, Naoki Ishibashi, Syougo Sakashita
  • Patent number: 9297341
    Abstract: Systems and methods are provided for engine systems including a multiple tap aspirator with a throat tap and a diffuser tap. Suction passages coupled to the throat and diffuser taps, respectively, may fluidly communicate via a leak passage with a flow restriction. During conditions where the pressure at a suction flow source of the diffuser tap is less than the pressure at the diffuser tap, backflow from the diffuser tap may travel through the leak passage into the throat tap.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: March 29, 2016
    Assignee: Ford Global Technologies, LLC
    Inventor: Brad Alan VanDerWege
  • Patent number: 9266523
    Abstract: Disclosed is a vehicle control apparatus that can concurrently achieve an improved drivability and an excellent restart performance of an internal combustion engine. The vehicle control apparatus includes an eco-run system that automatically stops the engine when an automatic stop condition is established and restarts the engine when a restart condition is established, a throttle motor that opens and closes a throttle valve adjusting air amount to be sucked into the engine, and a vehicle speed sensor that detects the vehicle speed. The vehicle control apparatus is adapted to control the throttle motor to enlarge the throttle valve opening degree in response to the higher vehicle speed, according to the vehicle speed information from the vehicle speed sensor (Step S3 to Step S7), when the engine is automatically stopped while the vehicle is travelling (Step S2).
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 23, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukihiko Ideshio, Susumu Kojima, Naoki Nakanishi, Akihiro Sato
  • Patent number: 9267442
    Abstract: A method of operating a generator arrangement includes selecting an operating mode as a function of at least one of: a speed of an engine, a temperature of at least a portion of the engine, a property of an exhaust fluid of the engine, and whether an engine braking command signal is received by the controller; controlling the flow of fluid from a first engine outlet to a first turbine by setting, based on the selected operating mode, an operating condition of a first flow control mechanism, the first turbine being part of a turbocharger having a compressor in fluid flow communication with an engine inlet; and controlling the flow of fluid from a second engine outlet to a second turbine by setting, based on the selected operating mode, an operating condition of a second flow control mechanism, the second turbine being parallel to the first turbine and being part of an electrical generator.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: February 23, 2016
    Assignee: Cummins Limited
    Inventors: Tim Denholm, Toshihiko Nishiyama, Owen Alistair Ryder
  • Patent number: 9238997
    Abstract: An exhaust gas turbocharger for an internal combustion machine, in particular a diesel engine, having an unburnt mixture supply device, includes at least one compressor; at least one exhaust gas turbine; a turbocharger shaft by which the compressor and the exhaust gas turbine are rotationally fixedly coupled; and an energy store for increasing a mass moment of inertia. The energy store is rotationally fixedly coupled to the at least one compressor and the at least one exhaust gas turbine by the turbocharger shaft. An arrangement for supplying unburnt gas to an internal combustion machine includes such an exhaust gas turbocharger and an unburnt gas supply device.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: January 19, 2016
    Assignee: KNORR-BREMSE Systeme fuer Nutzfahrzeuge GmbH
    Inventors: Eduard Gerum, Manuel Marx
  • Patent number: 9228472
    Abstract: A method, comprising during a vehicle engine cold start, opening a first valve coupled between a first container containing an adsorbent and a second container containing an adsorbate, circulating a first fluid through a first conduit coupled to a first heat exchanger located within the first container and a second heat exchanger located outside the first container, and circulating a second fluid through a second conduit coupled to the second heat exchanger. In this way, heat may be generated at the adsorber during a cold start and subsequently transferred to the cooling jacket of the vehicle engine and/or other vehicle compartments, thereby decreasing the warm-up time for the engine.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: January 5, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Christopher Mark Greiner, Poyu Tsou, Kai Wang
  • Patent number: 9212601
    Abstract: A device for a vehicle or a production machine, having: a first hydraulic pump, which hydraulically drives a load; an internal combustion engine, which mechanically drives the first hydraulic pump; a second hydraulic pump, which is hydraulically coupled to the first hydraulic pump; an apparatus, which drives the second hydraulic pump while utilizing the energy in the exhaust gas stream of the internal combustion engine; the load on the output side being directly connected to a tank.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: December 15, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Hinrich Meinheit, Boris Buchtala, Bojan Ferhadbegovic
  • Patent number: 9169770
    Abstract: An engine system for ensuring a sufficient boost pressure during engine braking and improving a braking force of a compression release brake. The system includes: a compression release brake device that operates a compression release brake to obtain a braking force during engine braking by forcibly opening an exhaust valve and releasing a compressive pressure near a compression top dead center of an engine; a power-assisted turbocharger including a turbine disposed on an exhaust passage of the engine and driven by exhaust, a compressor disposed on an intake passage and driven by a rotational torque of the turbine, and an electric motor that assists a drive force of the compressor; and an electric motor control unit that drives the electric motor when the compressor release brake is operated.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: October 27, 2015
    Assignee: ISUZU MOTORS LIMITED
    Inventors: Isao Kitsukawa, Tomohiro Sugano, Yoshiyuki Abe, Haruyo Kimura, Akira Iijima, Naoki Ishibashi, Syougo Sakashita
  • Patent number: 9151266
    Abstract: Improvements in an ocean wave energy conversion unit that converts kinetic energy from oceanic waves into useable form of energy that will benefit society called and Aqua-tamer. The unit is designed to be modular in nature where the units can be deployed to function individually or assembled into groups where units will rely on each other and function together as a whole. Each individual unit has an electrical output. As a group (Colony) during deep sea surface applications, the electrical output of each Aqua-Tamer unit will be consolidated and used to operate a water-electrolysis operation that produces Oxygen Gas (O2) and Hydrogen Gas (H2). This production of O2 and H2, instead of electrical output, is designed to eliminate the requirements of an Ocean-wide electrical grid system and still facilitate an economic logistically efficient) method of energy transportation (energy in a gas state.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: October 6, 2015
    Inventor: Anthony Lim Bulaclac, Jr.
  • Patent number: 9133761
    Abstract: A method of operating a supercharger (10) for an automotive engine (20) is disclosed. A supercharger (10) has an input shaft (30) for coupling to a crank shaft (22) of the engine and also for coupling to the rotor of a first electrical machine (40) and the annulus of an epicyclic gear train (60). An output shaft (70) is connected to a compressor (80) and a sun gear of the epicyclic gear train (60). A carrier carrying planet gears of the epicyclic gear train (60) is connected to the rotor of a second electrical machine (50). The first electrical machine (40) is selectively operable to supply electrical energy to the second electrical machine (50). The second electrical machine (50) is selectively operable as a motor or a generator to accelerate or decelerate the compressor (80), thereby tending to increase or decrease the power output of the engine.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: September 15, 2015
    Assignees: NEXXTDRIVE LIMITED, INTEGRAL POWERTRAIN LIMITED
    Inventor: Ruaraidh McDonald-Walker
  • Patent number: 9132842
    Abstract: A fuel supply arrangement adapted for use with a locomotive system. The fuel supply arrangement includes a flow line to supply the fuel from a tender car to an engine car. Further, a quick disconnect coupling is provided on the flow line. A first control system is provided on the flow line configured to stop the supply of the fuel in an event of breaking of the flow line.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: September 15, 2015
    Assignee: Caterpillar Inc.
    Inventor: Cory A. Brown
  • Patent number: 9115642
    Abstract: A turbocharger for a supercharged internal combustion engine; the turbocharger has: a turbine, which is provided with a shaft mounted in a rotatory manner; a compressor, which is provided with a shaft mounted in a rotatory manner and is mechanically independent from the shaft of the turbine; and a single electrical machine, which is interposed between the turbine and the compressor, and is provided with a first rotor, which is mechanically connected to the shaft of the turbine, and with a second rotor which is mechanically connected to the shaft of the compressor to work as an electromagnetic joint between the shaft of the turbine and the shaft of the compressor.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: August 25, 2015
    Assignee: Ferrari S.p.A.
    Inventor: Fabrizio Favaretto
  • Patent number: 9038383
    Abstract: A flywheel assembly for a turbocharger a rotatable flywheel shaft that is separate from a turbocharger shaft, and a flywheel body coupled to the flywheel shaft. A flywheel sensor determines a flywheel operating parameter and supplies a flywheel feedback signal indicative of the flywheel operating parameter, and a flywheel clutch selectively couples the flywheel shaft to the turbocharger shaft. A controller operates the flywheel clutch based on the flywheel feedback signal. The flywheel shaft and flywheel body may be disposed in a flywheel housing that is separate and spaced from a turbocharger housing.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: May 26, 2015
    Assignee: Caterpillar Inc.
    Inventor: Evan Earl Jacobson
  • Patent number: 9027343
    Abstract: A method for supplying vacuum in an engine is disclosed. The method includes controlling a throttle valve positioned upstream of a supercharger arranged in series with and upstream of a turbocharger to draw a fluid from a vacuum line positioned intermediate the throttle valve and a supercharger inlet.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Publication number: 20150113980
    Abstract: A system and method for operating an engine turbocharger is described. In one example, the turbocharger is rotated in different directions in response to operating conditions. The system and method may reduce engine emissions.
    Type: Application
    Filed: January 6, 2015
    Publication date: April 30, 2015
    Inventors: William Charles Ruona, Kevin Durand Byrd, Keith Michael Plagens
  • Patent number: 9010114
    Abstract: An air charge system for an internal combustion engine may include a charge path having a charge inlet configured to receive air, and a charge outlet configured to convey air to an intake of the internal combustion engine; a first compressor in the charge path, the first compressor being driven by a motor and configured to receive the air from the charge inlet and increase temperature, pressure and volumetric flow rate of the air in the charge path; a first valve in the charge path downstream of the first compressor configured to divert at least a portion of the air leaving the first compressor from exiting the charge path through the charge outlet; and a controller configured to modulate at least one of the first valve and a speed of the motor to adjust a volumetric flow rate of air leaving the charge outlet.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: April 21, 2015
    Assignee: The Boeing Company
    Inventors: David S. Krug, Travis A. Reynolds, Ian Whiteside, Christopher J. Thompson, Phil McGovern, Steve Higginson, Vladimir Anton
  • Patent number: 9008945
    Abstract: A method of controlling an internal combustion engine supercharged by a turbosupercharger having a turbine and a compressor; the control method including the steps of: determining, in a reduced mass flow/compression ratio graph, at least one limit operation curve of the compressor representing a limit of the operating range of the compressor; controlling the turbosupercharger to keep the actual reduced mass flow and actual compression ratio of the compressor within the limit defined by the limit operation curve of the compressor; determining an index as a function of the dynamics of the reduced mass flow of the compressor; and modifying the limit operation curve of the compressor as a function of the index.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: April 14, 2015
    Assignee: Magneti Marelli S.p.A.
    Inventor: Marco Panciroli
  • Patent number: 8997462
    Abstract: An engine system comprising: an exhaust gas system for removing exhaust gas from the engine; a turbocharger comprising a compressor for inducing air towards the engine and a turbine provided along the exhaust gas system and driven by removed exhaust gas for powering the compressor; a hydrogen delivery apparatus adapted to deliver hydrogen to the exhaust gas system such that the hydrogen can combust and expand, thereby increasing the speed of the turbine. The increased speed of the turbine operation decreases turbo lag and increases engine responsiveness.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: April 7, 2015
    Assignee: Ford Global Technologies, LLC
    Inventor: Jonathan Edward Caine
  • Patent number: 8991172
    Abstract: A control device of a premix combustion engine includes a hybrid turbocharger including a turbocharger having a compressor and a turbine, and a motor generator coupled with the compressor. A control unit controls the motor generator based on the operating conditions regarding a generator or the premix combustion engine and includes: an airflow rate computing unit for computing the necessary airflow rate required for the premix combustion engine, and an arithmetic unit for computing the power output or the rotation speed regarding the hybrid turbocharger to obtain the necessary airflow rate required for the premix combustion engine. Feedback control regarding the power output or the rotation speed as to the hybrid turbocharger is performed based on the computed results obtained by the arithmetic unit.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: March 31, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yuuichi Shimizu, Yuta Furukawa
  • Publication number: 20150063967
    Abstract: A shovel includes a boom cylinder that drives a boom and an arm cylinder that drives an arm. A hydraulic pump supplies operating oil to the boom cylinder and the arm cylinder. An engine is connected to the hydraulic pump and equipped with a supercharger. The engine is controlled to maintain a revolution speed within a certain definite range. A controller controls a rotating speed of the supercharger. The controller performs a process of increasing the rotating speed of the supercharger so as to increase a supercharging pressure generated by the supercharger before a hydraulic load is applied to the engine.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Inventor: Kenji MORITA
  • Patent number: 8959912
    Abstract: A vehicle includes an internal-combustion engine for driving a drive train of the vehicle, at least one charger for increasing the pressure of the air supplied to the internal-combustion engine and an electrical machine which can be or is coupled to the charger in a torque-transmitting manner and is provided for driving or supporting the drive of the charger. The drive train can be or is coupled with the electrical machine in a torque-transmitting manner.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: February 24, 2015
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Bernhard Hoess, Jens Neumann, Armin Engstle
  • Patent number: 8931273
    Abstract: Methods and systems are provided for raising an exhaust temperature to spin a turbocharger turbine and reduce turbo-lag. Pressurized air is discharged from a boost reservoir into an intake manifold while spark retard is increased to expedite exhaust heating while also increasing a net combustion torque. By expediting turbine spin-up in response to a tip-in, turbo-lag is reduced and engine performance is improved.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: January 13, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: John Eric Rollinger, Alex O'Connor Gibson, Julia Helen Buckland, Robert Andrew Wade
  • Patent number: 8925316
    Abstract: A method of controlling airflow of an engine system is provided. The method includes determining a supercharger operating mode and a turbocharger operating mode based on engine load; selectively generating a control signal to a turbocharger based on the turbocharger operating mode; and selectively generating a control signal to a supercharger bypass valve based on the supercharger operating mode.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: January 6, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven J. Andrasko, Christopher J. Kalebjian, Yun Xiao, Bryan A. Kuieck
  • Patent number: 8915082
    Abstract: An engine is described having an engine control unit and two or more hydraulically operated wheels, wherein a fluid is flowed from an accumulator to the engine via the first wheel to assist in acceleration of the turbocharger in response to an acceleration signal from the engine control system and wherein the fluid is flowed from the engine to the accumulator via the second wheel to decelerate the turbocharger in response to a deceleration signal from the engine control unit. In one particular embodiment, the second wheel absorbs energy from the turbocharger in response to the deceleration signal from the engine control unit to decelerate the turbocharger. In some embodiments, the hydraulically operated wheels may be positioned on the same shaft of, and between, the turbine and compressor of the turbocharger.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: December 23, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Harold Huimin Sun, David R. Hanna, Michael Levin, Eric Warren Curtis, F. Zafar Shaikh
  • Publication number: 20140305412
    Abstract: Methods and systems are provided for adjusting intake airflow through two induction passages. In response to increased torque demand, intake airflow may be directed through a first induction passage including an exhaust-driven turbocharger compressor and through a second induction passage including an electric compressor. Further, after the turbocharger compressor increases speed, intake airflow may be directed again through the first induction passage to further increase boost.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 16, 2014
    Applicant: Ford Global Technologies, LLC
    Inventor: Chris C. Ahrns
  • Publication number: 20140305413
    Abstract: Methods and systems are provided for adjusting intake airflow through two parallel induction passages. In response to increased torque demand, intake airflow may be directed through a first induction passage including an exhaust-driven turbocharger compressor and through a second induction passage including an electric compressor. Further, after the turbocharger compressor increases speed, intake airflow may be directed again through the first induction passage to further increase boost.
    Type: Application
    Filed: April 15, 2013
    Publication date: October 16, 2014
    Applicant: Ford Global Technologies, LLC
    Inventor: Chris C. Ahrns