Motive Fluid Is Vaporized Liquid Patents (Class 60/618)
  • Patent number: 8621866
    Abstract: A steam power unit including a double-flow medium pressure turbine section that is fluidically connected to a low pressure turbine section is provided. A flow section of the medium pressure turbine section is configured to supply an external steam consumer. A throttle valve for adjusting the pressure in the steam extraction line is arranged only in a turbine discharge line.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: January 7, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Norbert Pieper, Rudolf Pötter
  • Patent number: 8613193
    Abstract: When a detection value of a temperature sensor exceeds a set temperature, an ECU increases an opening of a sub-port by controlling a solenoid valve, and as a result, an intake volume of an expander increases. The ECU then adjusts the mass flow rate of a coolant flowing through a boiler so that a detection value of a pressure sensor indicates a pressure as close as possible to an upper limit pressure, on condition that an upper limit temperature is not exceeded.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: December 24, 2013
    Assignee: Kabushiki Kaisha Toyota Jidoshokki
    Inventors: Hidefumi Mori, Masao Iguchi, Fuminobu Enokijima
  • Publication number: 20130333381
    Abstract: The present invention is an internal-combustion engine, for a motor vehicle, comprising at least one cylinder (16) with a combustion chamber (18), an air intake (20) and a burnt gas exhaust (22). The engine comprises a heat exchanger (28) having a Rankine cycle closed loop (12) and a circuit (14) for injecting water into the engine intake system.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 19, 2013
    Inventor: Guillaume BOURHIS
  • Publication number: 20130327041
    Abstract: In a waste heat utilization arrangement for an internal combustion engine of a motor vehicle including a waste heat utilization circuit in which a working medium is circulated, a pumping device for pressurizing the working medium, an evaporator for vaporizing the working medium by waste heat of the internal combustion engine, an expansion machine for expanding the working medium while extracting mechanical energy therefrom and a condenser for condensing the working medium in a resting state, the waste heat utilization circuit is in communication with a pressure store capable of maintaining a pressure for setting and ensuring a predetermined adjustable minimum pressure of the working medium in the waste heat utilization circuit.
    Type: Application
    Filed: June 15, 2013
    Publication date: December 12, 2013
    Applicant: DAIMLER AG
    Inventors: Jan Gaertner, Thomas Koch
  • Publication number: 20130318967
    Abstract: In an axial piston expander for a waste heat recovery device of a motor vehicle, the expander having a shaft with an axis of rotation around which a number of cylinders are arranged parallel to, and distributed around, the axis of rotation, each cylinder including a piston connected to a coupling plate which is pivotally mounted on the shaft so as to provide for an adjustable piston stroke and the cylinders having high pressure inlets and low pressure outlets with valve devices for the control of the operating fluid flow through the cylinders, a stroke adjustment arrangement is provided by which the stroke of the pistons is adjustable via a regulation of the pressure in an operating chamber at the back side of the pistons, the waste heat recovery device being coupleable with the drive train of the internal combustion engine for the transfer of mechanical driving power.
    Type: Application
    Filed: May 25, 2013
    Publication date: December 5, 2013
    Applicant: DAIMLER AG
    Inventors: Jan Gaertner, Thomas Koch
  • Patent number: 8590307
    Abstract: A waste heat recovery plant control system includes a programmable controller configured to generate expander speed control signals, expander inlet guide vane pitch control signals, fan speed control signals, pump speed control signals, and valve position control signals in response to an algorithmic optimization software to substantially maximize power output or efficiency of a waste heat recovery plant based on organic Rankine cycles, during mismatching temperature levels of external heat source(s), during changing heat loads coming from the heat sources, and during changing ambient conditions and working fluid properties. The waste heat recovery plant control system substantially maximizes power output or efficiency of the waste heat recovery plant during changing/mismatching heat loads coming from the external heat source(s) such as the changing amount of heat coming along with engine jacket water and its corresponding exhaust in response to changing engine power.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 26, 2013
    Assignee: General Electric Company
    Inventors: Herbert Kopecek, Gabor Ast, Thomas Johannes Frey, Sebastian Freund, Pierre Sebastien Huck
  • Patent number: 8584457
    Abstract: A cooler arrangement for a vehicle which is powered by a supercharged combustion engine. The vehicle has at least one charge air cooler (10) for cooling of compressed air which is led to the combustion engine (2), and an energy recovery system. The vehicle also has a cooler arrangement of a first cooling circuit with a first cooler (20) for cooling a circulating coolant, a second cooling circuit with a second cooler (26) for cooling a circulating coolant to a lower temperature than the first cooler (20), and a third cooling circuit with a third cooler (29) for cooling a circulating coolant to a lower temperature than the second cooler (26). The coolant in the third cooling circuit cools the compressed air in the charge air cooler (10) and/or a medium in a condenser (45) in a cooling medium line (32).
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: November 19, 2013
    Assignee: Scania CV AB
    Inventors: Zoltan Kardos, Kristoffer Klingberg
  • Publication number: 20130283784
    Abstract: An energy recovery arrangement is disclosed for use with an engine. The energy recovery arrangement may include a closed circuit containing a high-pressure working fluid, a first boiler configured to receive waste heat from a first source on the engine, and a second boiler disposed upstream of the first boiler and configured to receive waste heat from a second source on the engine. The energy recovery arrangement may also include an energy extractor disposed at a location downstream of the first and second boilers, a condenser disposed at a location downstream of the energy extractor, and a pump disposed at a location downstream of the condenser and upstream of the first and second boilers. The energy recovery arrangement may further include a recuperator disposed in parallel with the second boiler and configured to transfer heat from working fluid exiting the extractor to working fluid exiting the pump.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventors: Teoman UZKAN, Thomas G. Gallagher
  • Patent number: 8567193
    Abstract: The present invention provides a waste heat recovering device capable of recovering waste heat with good efficiency from various heat sources in an internal combustion engine.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: October 29, 2013
    Assignee: Isuzu Motors Limited
    Inventors: Koji Terashima, Makoto Abe, Yasushi Yamamoto
  • Publication number: 20130277968
    Abstract: The invention concerns a stationary power plant, in particular a gas power plant, to generate electricity; having an internal combustion engine, comprising a fuel medium inlet and an exhaust gas outlet, whereas an exhaust-gas flow of the internal combustion engine is discharged via the exhaust gas outlet; having an electrical generator, which is driven by the internal combustion engine to generate electricity, and which is coupled or can be coupled to an electrical grid, in order to feed the generated electricity into said grid; having a fuel medium supply, which is connected to the fuel medium inlet; wherein steam circuit, in which a working medium is circulated by means of a feed pump, is provided, comprising a heat exchanger arranged in the exhaust gas flow, by means of which waste heat of the exhaust gas flow is transferred to the working medium for partially or completely evaporating the working medium, further comprising a condenser, in which the working medium partially or completely condenses.
    Type: Application
    Filed: January 31, 2012
    Publication date: October 24, 2013
    Inventors: Jens Grieser, Jurgen Berger, Stephan Bartosch
  • Patent number: 8561405
    Abstract: A waste heat recovery system includes at least two integrated rankine cycle systems coupled to at least two separate heat sources having different temperatures. The first rankine cycle system is coupled to a first heat source and configured to circulate a first working fluid. The second rankine cycle system is coupled to at least one second heat source and configured to circulate a second working fluid. The at least one second heat source includes a lower temperature heat source than the first heat source. The first and second working fluid are circulatable in heat exchange relationship through a cascading heat exchange unit for condensation of the first working fluid in the first rankine cycle system and evaporation of the second working fluid in the second rankine cycle system.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: October 22, 2013
    Assignee: General Electric Company
    Inventors: Gabor Ast, Michael Adam Bartlett, Thomas Johannes Frey, Matthew Alexander Lehar
  • Patent number: 8555640
    Abstract: The present invention relates to a waste heat auxiliary power unit. In one embodiment, the present invention is a heat exchange unit for an automobile including a core unit configured to be connected to a catalytic converter of the automobile, the core unit generating vapor, and a first energy generation module connected to the core unit, the first energy generation module receiving the vapor from the core unit and generating energy from the vapor.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 15, 2013
    Assignee: Toyota Motor Engineering and Manufacturing North America, Inc.
    Inventor: Woodson Wayne Samuel
  • Publication number: 20130263594
    Abstract: An arrangement and a method for converting thermal energy to mechanical energy. The arrangement has a line circuit (3), circulation device (4) for circulating a zeotropic refrigerant mixture in the line circuit (3), an evaporator (6) in which the refrigerant mixture is vaporised by a heat source (7), a turbine (9) driven by the vaporised refrigerant mixture, and a condenser (12) which cools the refrigerant mixture so that it condenses. A control unit assesses whether the refrigerant mixture does not become fully vaporised in the evaporator (6) and, leads incompletely vaporised refrigerant mixture leaving the evaporator to a separating device (14) in which a liquid portion of the refrigerant mixture is separated from the gaseous portion, after which only the gaseous portion proceeds towards the turbine (9).
    Type: Application
    Filed: November 22, 2011
    Publication date: October 10, 2013
    Inventor: Ola Hall
  • Patent number: 8549856
    Abstract: A method of assembling an energy harvesting system is provided. The method includes coupling at least one energy storage device in flow communication with at least one apparatus that is configured to generate thermal energy and to transfer the thermal energy into at least one fluid stream. The energy storage device is configured to store the fluid stream. Moreover, the method includes coupling at least one fluid transfer device downstream from the energy storage device. The fluid transfer device receives the fluid stream from the energy storage device. A bladeless turbine is coupled in flow communication with the fluid transfer device, wherein the bladeless turbine receives the fluid stream to generate power.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: October 8, 2013
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Juan Cepedarizo, Gam B. Ganapathi
  • Patent number: 8544270
    Abstract: A waste heat recovery system of an internal combustion engine, in which regenerative energy transmitted to the internal combustion engine is increased with a simple mechanism. A controller of the waste heat recovery system of an internal combustion engine makes a determination as to whether it is necessary to increase the pressure of heat-transfer media in a heat exchanger, on the basis of the pressure detected by the high-pressure sensor. When it is necessary to increase the pressure in the heat exchanger, the controller causes a flow-rate regulating valve to start regulating the flow rate of the heat-transfer media while leaving the pump working. The controller causes the flow-rate regulating valve to continue the regulation at least until it is not necessary to increase the pressure in the heat exchanger, and then terminates the regulation.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 1, 2013
    Assignee: Sanden Corporation
    Inventor: Junichiro Kasuya
  • Publication number: 20130239571
    Abstract: A steam generator (1) is provided for a Rankine cycle, especially for a waste heat recovery device (37) of an internal combustion engine (36), and preferably in a motor vehicle. The steam generator includes: a heat exchanger channel (2), in which a heat exchanger (3) is arranged, and a bypass channel (4) for bypassing the heat exchanger channel (2). A heating fluid can flow through the heat exchanger channel (2) and bypass channel (4) during the operation of the steam generator (1). A medium to be evaporated can flow through the heat exchanger (3) during operation of the steam generator (1). A compact structural shape with high energy efficiency is achieved with the heat exchanger channel (2) enveloping the bypass channel (4).
    Type: Application
    Filed: March 14, 2013
    Publication date: September 19, 2013
    Applicant: Eberspächer Exhaust Technology GmbH & Co. KG
    Inventor: Eberspächer Exhaust Technology GmbH & Co. KG
  • Patent number: 8534067
    Abstract: Disclosed is an energy retriever system and methods for absorbing energy and using that energy elsewhere or converting it to other useful forms of energy or work. The energy retriever system consists of a series of components interconnected by a plurality of conduits containing a fluid. Working as a self-contained thermodynamic system, the energy retriever system allows the fluid to circulate through all of these elements. Heat added to the energy capture subsystem heats the fluid. The fluid becomes more pressurized and moves into the expansion cycle subsystem. The energy extraction subsystem transforms the thermal energy of the fluid into work, kinetic energy or thermal energy. The reservoir subsystem compresses the fluid and reintroduces it into the energy capture subsystem. One-way valves are used throughout the system to keep the flow of the fluid in one direction and separate sections of the system that contain different pressures.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 17, 2013
    Assignee: Harlequin Motor Works, Inc.
    Inventor: Paul W. Corley
  • Patent number: 8528333
    Abstract: A system for controlled recovery of thermal energy and conversion to mechanical energy. The system collects thermal energy from a reciprocating engine, specifically from engine jacket fluid and/or engine exhaust and uses this thermal energy to generate a secondary power source by evaporating an organic propellant and using the gaseous propellant to drive an expander in production of mechanical energy. A monitoring module senses ambient and system conditions such as temperature, pressure, and flow of organic propellant at one or more locations; and a control module regulates system parameters based on monitored information to optimize secondary power output. A tertiary, or back-up power source may also be present. The system may be used to meet on-site power demands using primary, secondary, and tertiary power.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: September 10, 2013
    Inventor: Victor Juchymenko
  • Publication number: 20130227946
    Abstract: The invention relates to a tube bundle heat exchanger having a plurality of tube windings (1) through which a heat transfer medium flows in parallel. The tube windings start from a common inlet chamber (2) for the heat transfer medium and open into a common outlet chamber (3). Each tube winding comprises an alternating sequence of tube sections (6) running alternately in two planes parallel to each other, and tube bends (7) connecting same, wherein within each of the two planes four or more pipe sections extend disposed side by side or parallel to each other, and wherein the pipe bends are designed to have a change of direction through 180° with respect to an associated bend axis and have the same bend radii.
    Type: Application
    Filed: September 27, 2011
    Publication date: September 5, 2013
    Inventors: JĂĽrgen Berger, Christian Bausch, Jens Grieser, Andreas Lorenz
  • Publication number: 20130205776
    Abstract: A waste heat recovery system includes a hot gas stream flow path, a pump, an expander, a first working fluid flow path fluidly connecting a pump outlet and an expander inlet, a second working fluid flow path fluidly connecting an expander outlet and a pump inlet, a first heat exchange section that transfers heat from the hot gas stream to working fluid traveling along the first working fluid flow path, a second heat exchange that transfers heat from the hot gas stream to working fluid traveling along the first working fluid flow path between the pump and the first heat exchange section, and a third working fluid flow path fluidly connecting a first point of the first working fluid path to a second point of the second working fluid path to permit at least a portion of the working fluid to bypass the first heat exchange section and the expander.
    Type: Application
    Filed: August 26, 2011
    Publication date: August 15, 2013
    Applicant: MODINE MANUFACTURING COMPANY
    Inventors: JianMin Yin, Eric P. Steinbach, JR.
  • Publication number: 20130192225
    Abstract: The invention relates to a device and a method for the recovery of waste heat from an internal combustion engine (2). A feed pump (6), a heat exchanger (8), an expansion engine (10) and a capacitor (12) are arranged in a circuit (4) containing a circulating working medium. A steam accumulator (40) for storing the vaporous working medium is also arranged in the circuit (4).
    Type: Application
    Filed: September 7, 2011
    Publication date: August 1, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Gregory Rewers, Nadja Eisenmenger, Achim Brenk, Dieter Seher, Hans-Christoph Magel, Andreas Wengert
  • Publication number: 20130186087
    Abstract: A waste heat recovery apparatus for use with an internal combustion engine includes a working fluid circuit having a first heating line and a second heating line parallel to the first heating line, a first heat exchanger in the first heating line operatively connected to transfer heat energy to the working fluid from a waste exhaust flow of an internal combustion engine, a second heat exchanger in the second heating line operatively connected to transfer heat energy to the working fluid from recirculating exhaust gas the internal combustion engine, and a recuperative heat exchanger operatively connected to transfer heat energy to the working fluid in the first heating line from the working fluid at a junction of an expander outlet and condenser inlet.
    Type: Application
    Filed: July 14, 2011
    Publication date: July 25, 2013
    Applicant: MACK TRUCKS, INC.
    Inventors: John Gibble, Arne Andersson
  • Patent number: 8468825
    Abstract: One or more methods for generating electricity using waste heat are provided herein. The method can include providing an exhaust gas to a first silencing chamber within an inner housing of a heat recovery silencer, flowing the exhaust gas from the first silencing chamber to a second silencing chamber within the inner housing, flowing the exhaust gas from the second silencing chamber to a third silencing chamber within the inner housing and imparting a spiral flow path to the exhaust gas as the exhaust gas enters the third silencing chamber.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: June 25, 2013
    Assignee: Maxim Silencers, Inc.
    Inventors: Robert E. Cone, Mitzi Jones Gass, Matthew Wayne Wishert
  • Patent number: 8459027
    Abstract: Combustion engine comprising interconnected combustion cylinders (1, 2, 3, 4), comprising at least two sets of each two opposed working combustion cylinders (1, 2, 3, 4), said two cylinders of each set being interconnected by a common piston rod (5, 6), said two piston rods (5, 6) being connected by one balance arm (7), and the exploitable energy is taken from the kinetic energy of said balance arm (7).
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: June 11, 2013
    Inventor: Odd Bernhard Torkildsen
  • Patent number: 8448440
    Abstract: A high order of thermal efficiency is achieved in a steam engine or steam expander having a piston clearance that approximates zero together with a negligible amount of compression, such that pressure in the clearance volume approximates ambient pressure, i.e. atmospheric or condenser pressure as the case may be at the end of the piston return stroke when the clearance is essentially zero and constitutes a new engine apparatus and Rankine operating cycle that can be referred to as “zero clearance with zero compression”. The steam admission valve assembly can be operated either automatically responsive to piston contact or by means of a cam shaft or electrically by means of a solenoid. A normally open exhaust valve permits residual steam to be exhausted through the piston return stroke, closed by the piston or cam then held closed by a fresh charge of steam.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: May 28, 2013
    Assignee: Thermal Power Recovery LLC
    Inventors: Jerry A. Peoples, James V. Harmon, Sr.
  • Publication number: 20130125545
    Abstract: A system for utilizing waste heat of an internal combustion engine via the Clausius-Rankine cycle process is provided that includes a circuit with lines containing a working medium, an evaporator heat exchanger which serves for evaporating the liquid working medium using waste heat of the internal combustion engine and which has an inlet opening for conducting the working medium into a flow duct and an outlet opening for conducting the working medium out of the flow duct, and the flow duct is divided into a plurality of flow duct parts connected hydraulically in parallel, an expansion machine, a condenser for liquefying the vaporous working medium, a collecting and compensating vessel for the liquid working medium, it is sought to be able to change the working medium substantially completely from a liquid state of aggregation to a gaseous state of aggregation at an evaporator heat exchanger.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: Behr GmbH & Co. KG
    Inventor: Behr GmbH & Co. KG
  • Patent number: 8434307
    Abstract: A system and method for recovering energy from gases of an internal combustion engine in conjunction with exhaust gas recirculation is described and illustrated, and in some embodiments includes an exhaust gas recirculation valve and an exhaust gas recirculation heat exchanger, with a working medium which undergoes a cyclic process being evaporated in the exhaust gas recirculation heat exchanger by hot exhaust gases, and with resulting steam being converted into mechanical or electrical energy which is available as additional energy. To improve heat recovery with little technical expenditure, an exhaust gas control valve can interact with the exhaust gas recirculation heat exchanger, and can control the mass flow of exhaust gases flowing through the exhaust gas recirculation heat exchanger constantly in all operating phases of the internal combustion engine, approximately in the vicinity of the performance limit of energy recovery.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: May 7, 2013
    Assignee: Modine Manufacturing Company
    Inventors: Peter Ambros, Stefan Hildinger, Jochen Orso, Klaus TĂĽber
  • Patent number: 8407998
    Abstract: A waste heat recovery system for use with an engine. The waste heat recovery system receives heat input from both an exhaust gas recovery system and exhaust gas streams. The system includes a first loop and a second loop. The first loop is configured to receive heat from both the exhaust gas recovery system and the exhaust system as necessary. The second loop receives heat from the first loop and the exhaust gas recovery system. The second loop converts the heat energy into electrical energy through the use of a turbine.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: April 2, 2013
    Assignee: Cummins Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Patent number: 8407999
    Abstract: A turbocharged engine system is configured to vaporize methanol using heat from exhaust gases and uses the vaporized methanol to drive the engine's turbocharger. The methanol may also be dissociated into hydrogen and carbon monoxide. After passing through the turbocharger, the vapor is injected into the engine by port injection. By selective timing of exhaust valves, the exhaust gases are separated into two streams, a first stream comprising gases ejected during exhaust blowdown, and a second stream of gases ejected during the remainder of the engine's exhaust stroke. The blowdown gases are employed to drive a separate turbine of the turbocharger.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: April 2, 2013
    Assignee: The United States of America, as represented by the Administrator of the U.S. Environmental Protection Agency
    Inventor: Charles L. Gray, Jr.
  • Publication number: 20130074497
    Abstract: A waste heat recovery system is for use with a power unit that includes an internal combustion engine. The waste heat recovery system includes a Rankine cycle device in which working fluid circulates through a pump, a boiler, an expander and then through a condenser, heat exchange occurs in the boiler between the working fluid and intake fluid that is introduced into the internal combustion engine while being cooled, a determination device for determining required cooling load for the intake fluid, a pressure reducing device for reducing evaporation pressure in the Rankine cycle device, and a controller for controlling the pressure reducing device so as to reduce the evaporation pressure below a predetermined evaporation pressure if the required cooling load determined by the determination device exceeds a threshold.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 28, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Hidefumi MORI, Masao IGUCHI, Fuminobu ENOKIJIMA, Fumihiko ISHIGURO
  • Patent number: 8397504
    Abstract: A method and system for waste heat recovery for conversion to mechanical energy. Exhaust is received from an engine into a first heat exchanger where heat from the exhaust is transferred to a refrigerant. The exhaust is then transferred to a regenerator module in order to produce electricity which is provided to a power box. The hot refrigerant from the first heat exchanger is transferred to a kinetic energy recovery system to produce electricity which is also transferred to said power box. The power box provides electricity to a traction motor and the traction motor turns an axle. The refrigerant is then transferred to a refrigerant cooling unit and then to a second heat exchanger wherein ambient air from the regenerator module is cooled. The refrigerant and cooled ambient air can be then transferred to an engine cooling jacket to cool the engine.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: March 19, 2013
    Assignee: Global Alternative Fuels, LLC
    Inventors: Carlos Guzman, Larry Lee Walter
  • Patent number: 8387386
    Abstract: A method for using a combination Rankine cycle system and hydraulic accumulator system is provided for driving at least one vehicle component. The method includes generating fluid power from a Rankine cycle system to drive the at least one vehicle component during a first engine state and generating fluid power from a hydraulic accumulator system to drive the at least one vehicle component during a second engine state.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: March 5, 2013
    Assignee: Ford Global Technologies, LLC
    Inventor: Sterling Schmeltz
  • Patent number: 8381522
    Abstract: A steam powered engine system wherein hot exhaust gas produced by a small secondary engine is used to heat water to a temperature above 212 degrees F., the superheated water being injected into a cylinder containing hot compressed gas. The water then flash expands into steam to drive a piston. The hot exhaust gas from the secondary engine is further utilized to scavenge spent gas and liquid from the cylinder during the return stroke of the piston, as well as to maintain a suitably high temperature within the cylinder.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: February 26, 2013
    Inventor: Christian Hansen, Jr.
  • Patent number: 8365526
    Abstract: A vehicle or stationary power plant having an internal combustion engine as a drive source and having components adapted to be supplied with heat from a medium accommodated in a closed loop The turbine of the exhaust gas turbocharger provided for turbocharging the internal combustion engine acts as a heat source. A heat exchanger is disposed externally on the turbine housing and can be incorporated or switchable into the medium loop The medium can be conveyed directly or channeled through the interior of the heat exchanger, and the medium is adapted to be heated up in such interior utilizing at least thermal radiation energy from the hot turbine housing.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: February 5, 2013
    Assignee: MAN Truck & Bus AG
    Inventor: Erwin Stiermann
  • Publication number: 20130025277
    Abstract: A waste heat regeneration system includes a pump, a coolant boiler, an exhaust gas boiler, an expander, a condenser, a gas-liquid separator and a supercooler. A flow control valve maintains a temperature difference (T1-T2) at a predetermined value or less by adjusting the amount of an operating fluid which flows in a bypass flow path through the control of an opening degree based on a pressure difference (P1-P2) corresponding to the temperature difference (T1-T2) between the temperature (T1) of the operating fluid on the upstream side of the supercooler and the temperature (T2) of the operating fluid on the downstream side thereof. Accordingly, the degree of supercooling is prevented from becoming excessive and the waste heat regeneration efficiency of a Rankine cycle device can be maintained.
    Type: Application
    Filed: March 10, 2011
    Publication date: January 31, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Fuminobu Enokijima, Masao Iguchi, Hidefumi Mori
  • Patent number: 8359860
    Abstract: A drive train for a motor vehicle includes: a vehicle drive engine for driving the motor vehicle via a vehicle drive shaft driven by a vehicle drive engine; and a compressor which can be driven optionally or permanently for compressing air for a compressed-air system of the motor vehicle. The compressor is associated with at least one drive unit in the form of a steam-driven expansion machine by which the compressor can be driven.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: January 29, 2013
    Assignee: Voith Patent GmbH
    Inventors: Stephan Bartosch, JĂĽrgen Berger, Christian Bausch
  • Publication number: 20130014505
    Abstract: A waste heat regeneration system includes a pump, a coolant boiler, an exhaust gas boiler, an expander, a first condenser, a gas/liquid separator, and a supercooler. A first flow control valve adjusts the amount of an operating fluid circulating in a first bypass flow path by controlling its opening degree based on a pressure difference P1?P2 corresponding to a temperature difference T1?T2 between the temperature T1 of the operating fluid on the upstream side of the supercooler and the temperature T2 of the operating fluid on the downstream side thereof, thereby maintaining the temperature difference T1?T2 so as to be larger than or equal to a predetermined value necessary for preventing the generation of cavitation in the pump, and ensuring the degree of supercooling.
    Type: Application
    Filed: March 10, 2011
    Publication date: January 17, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Fuminobu Enokijima, Hidefumi Mori, Masao Iguchi
  • Patent number: 8353160
    Abstract: A thermo-electric engine with a working fluid operative in a closed Rankine cycle to enable a harvesting energy from an external source of thermodynamic energy comprising an internal combustion engine or solar energy. The thermo-electric engine comprising an evaporator; a turbine fluidically coupled to the evaporator; a heat exchanger comprising a condenser for receiving working fluid from the turbine; a hot liquid input for coupling to a source of heated liquid coolant from an internal combustion engine to the evaporator; a liquid return for returning liquid coolant to the internal combustion engine; a cooling liquid input to the condenser for receiving cooling liquid from a radiator; and a cooling liquid return for returning the cooling liquid to the radiator. Alternatively, a solar energy collector can power a turbine fluidically coupled to the solar energy collector for receiving working fluid.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: January 15, 2013
    Inventors: John Pesce, David Pesce
  • Patent number: 8327654
    Abstract: An apparatus to rotate a cooling fan may employ an engine coolant radiator having a radiator inlet tank attached at an end of the radiator. The radiator inlet tank may be filled with engine coolant and transfer heat into a fan system evaporator contained inside the radiator inlet tank. The tank may contain a liquid working fluid capable of absorbing heat from the engine coolant and becoming a gaseous working fluid. A gas expander with an impeller may be employed to receive the gaseous working fluid from the fan system evaporator and impart rotation in a shaft to which the impeller of the gas expander and cooling fan is attached. A fan system condenser may receive the gaseous working fluid from the gas expander and condense the gaseous working fluid to form a liquid working fluid. A pump pumps the liquid working fluid back to the fan system evaporator.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: December 11, 2012
    Assignee: DENSO International America, Inc.
    Inventor: Dwayne Robert Taylor
  • Publication number: 20120304643
    Abstract: A waste heat recovery mechanism and a waste heat recovery apparatus generate electricity even when an expander, which is coupled to a combustion engine outputting rotational drive force, is locked. The waste heat recovery mechanism includes an alternator having a rotary shaft, which is coupled to and driven to rotate by a combustion engine, and an expander having an output shaft, which is coupled to the rotary shaft of the alternator. The output shaft applies a rotational drive force to the rotary shaft, thereby assisting rotation of the rotary shaft. A torque limiter is located between the rotary shaft of the alternator and the output shaft of the expander.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 6, 2012
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Hidefumi MORI, Masao Iguchi, Fuminobu Enokijima
  • Publication number: 20120291418
    Abstract: The invention provides an exhaust heat utilisation device for a combustion engine with an exhaust heat utilisation circuit, in which a working medium circulates. An evaporator is arranged in the exhaust heat utilisation circuit for evaporating the working medium, which can be supplied with exhaust gas of the combustion engine, with an expansion machine arranged in the exhaust heat utilisation circuit downstream of the evaporator for expanding the working medium. A condenser is arranged in the exhaust heat utilisation circuit downstream of the expansion machine for condensing the working medium. A delivery device is arranged in the exhaust heat utilisation circuit downstream of the condenser for driving the working medium in the exhaust heat utilisation circuit and with a heat storage unit. The device is given an improved functionality when the heat storage unit is incorporated in the exhaust heat utilisation circuit and can be supplied with working medium.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 22, 2012
    Applicant: J. Eberspaecher GmbH & Co. KG
    Inventor: Ulrich Rusche
  • Publication number: 20120285167
    Abstract: The present invention provides an exhaust gas waste heat recovery heat exchanger including a housing having a working fluid inlet, a working fluid outlet, an exhaust inlet, and an exhaust outlet, an exhaust flow path extending through the housing between the exhaust inlet and the exhaust outlet, and a working fluid flow path extending through the housing between the working fluid inlet and the working fluid outlet and having a first portion and a second portion. A flow of working fluid along the first portion of the working fluid flow path can be substantially counter to a flow of exhaust along the exhaust flow path, and the flow of working fluid along the second portion of the working fluid flow path can be substantially parallel to the flow of exhaust along the exhaust flow path.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 15, 2012
    Inventors: Jon Horek, Michael J. Wilson, Mark Voss
  • Patent number: 8307651
    Abstract: The invention relates to an arrangement for exhaust gas heat utilization comprising a steam generator arrangement (20) to which exhaust gas is applied, in which heat contained in the exhaust gas can be transferred to a working medium for further utilization, characterized by a heat accumulator (38) to which the exhaust gas can be applied, and control means for controlling exhaust gas partial flows according to a value representing the available heat energy of the exhaust gas by the heat accumulator and the steam generator arrangement.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: November 13, 2012
    Assignees: AMOVIS GmbH, Voith Turbo GmbH & Co KG
    Inventors: Michael Hoetger, Jorg Collisi, Jurgen Berger, Stephan Bartosch
  • Patent number: 8302399
    Abstract: The present application and the resultant patent provide a waste heat recovery system for recovering heat from a number of turbocharger stages. The waste heat recovery system may include a simple organic rankine cycle system and a number of charge air coolers in communication with the turbocharger stages and the simple organic rankine cycle system. The charge air coolers are positioned in a number of parallel branches of the simple organic rankine cycle system.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: November 6, 2012
    Assignee: General Electric Company
    Inventors: Sebastian W. Freund, Gabor Ast, Pierre Huck, Sara Rocci Denis, Monika Muehlbauer, Albert Scharl, Wolfgang Madl
  • Publication number: 20120272647
    Abstract: An exhaust heat reuse and transferring device includes a first heat-exchange pipe which is connected to an inflation valve and a steam pressure buffering member is connected between the inflation valve and a second heat-exchange pipe. The second heat-exchange pipe is connected to a nozzle. A water tank is connected to the first heat-exchange pipe by a pump and provides the agent for heat exchange with an exhaust pipe. The exhaust air with high temperature exchanges thermo energy with the water to form steam which is ejected from the nozzle. The nozzle is connected with power generation device to generate energy.
    Type: Application
    Filed: March 14, 2012
    Publication date: November 1, 2012
    Inventor: RUI-QI TONG
  • Patent number: 8281589
    Abstract: For operating an internal combustion engine having a throttle situated in an exhaust line or exhaust return line, in which a heat engine is driven by a quantity of heat produced by the internal combustion engine, in a first non-heating operating mode of the internal combustion engine, a first setpoint value is preset, a first operating parameter that characterizes a temperature of the internal combustion engine is detected, a first triggering value is determined for the triggering of the at least one throttle as a function of the first setpoint value and the first operating parameter, the at least one throttle is triggered in accordance with the first triggering value, and the at least one heat engine is driven by the resulting quantity of heat.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 9, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Guillaume Huard, Juergen Stegmaier, Henrick Brandes, Martin Cichon, Manfred Schmitt, Lutz Rauchfuss, Oliver Tschismar
  • Publication number: 20120227404
    Abstract: The invention relates to a thermodynamic machine having a circulation system in which a working fluid, in particular a low-boiling working fluid, circulates alternately in a gaseous and a liquid phase, a heat exchanger, an expansion machine, a condenser, and a fluid pump. The invention also relates to a method for operating the thermodynamic machine. According to certain embodiments of the invention, in the flow line of the fluid pump, a partial pressure increasing the system pressure is applied to the liquid working fluid by adding a non-condensing auxiliary gas. Compact ORC machines can be implemented, preventing cavitation in the liquid working fluid.
    Type: Application
    Filed: October 30, 2010
    Publication date: September 13, 2012
    Applicant: Orcan Energy GmbH
    Inventors: Andreas Schuster, Andreas Sichert, Richard Aumann
  • Patent number: 8261553
    Abstract: The invention is characterized in that the expander is integrated into the secondary side of the transmission by means of one or more of the following features: the expander has a housing which substantially completely surrounds the expander; the expander is equipped with a drive shaft which projects out of the housing and has a coupling element that is fixed to the drive shaft and that produces a drive connection.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: September 11, 2012
    Assignee: Voith Patent GmbH
    Inventors: Stephan Bartosch, Jurgen Berger
  • Publication number: 20120222420
    Abstract: In an internal combustion engine having a system for utilizing the waste heat from the internal combustion engine via the Clausius-Rankine cycle, a system includes a circuit having lines with a working medium, a working medium pump, a vaporizer-exhaust gas heat exchanger, and a vaporizer-EGR heat exchanger, an expander, and a condenser for liquefying the vaporous working medium. The line for the working medium is run from the condenser to the vaporizer-EGR heat exchanger so that the working medium, after flowing through the condenser, first flows through the vaporizer-EGR heat exchanger, and the line for the working medium is run from the vaporizer-EGR heat exchanger to the vaporizer-exhaust gas heat exchanger so that the working medium, after flowing through the vaporizer-EGR heat exchanger, first flows through the vaporizer-exhaust gas heat exchanger.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Inventors: Peter GESKES, Eberhard Pantow
  • Patent number: 8240149
    Abstract: An ORC system configured to limit temperature of a working fluid below a threshold temperature is provided. The ORC system includes a heat source configured to convey a waste heat fluid. The ORC system also includes a heat exchanger coupled to the heat source. The heat exchanger includes an evaporator configured to receive the waste heat fluid from the heat source and vaporize the working fluid, wherein the evaporator is further configured to allow heat exchange between the waste heat fluid and the vaporized working fluid at an elevated temperature and further produce an evaporator outlet flow including a lower temperature waste heat fluid.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: August 14, 2012
    Assignee: General Electric Company
    Inventors: Matthew Alexander Lehar, Sebastian W. Freund, Giacomo Seghi