Motive Fluid Is Vaporized Liquid Patents (Class 60/618)
  • Patent number: 8197227
    Abstract: An improved multi-stage compressor device for compressing gas, which compressor device (1) mainly consists of at least two compressor elements (2-5-28) placed in series one after the other, at least one of which (5-28) is driven by a motor (9), characterized in that at least one other compressor element (2) is driven separately, in other words without any mechanical link with said motor (9), by means of an expander (18) of a closed power cycle (12) with a circulating medium inside which is heated by the compressed gas.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: June 12, 2012
    Assignee: Atlas Copco Airpower, Naamloze Vennootschap
    Inventor: Philippe Alphonse Louis Ernens
  • Publication number: 20120111003
    Abstract: A Rankine cycle (6) of a waste heat utilization device includes a circulation path (7) for circulating a working fluid therethrough, an evaporator (12) for causing heat to transfer from cooling water delivered from an internal combustion engine (2) to the working fluid to evaporate the working fluid, a superheater (10) for causing heat to transfer from the cooling water delivered from an exhaust gas heat exchanger (8) to the working fluid delivered from the evaporator to superheat the working fluid, an expander (22) for expanding the working fluid delivered from the superheater to produce driving force, a condenser (24) for condensing the working fluid delivered from the expander, and a pump (28) for feeding the working fluid delivered from the condenser to the evaporator. The evaporator, the superheater, the expander, the condenser and the pump are successively inserted in the working fluid circulation path.
    Type: Application
    Filed: August 25, 2009
    Publication date: May 10, 2012
    Applicant: Sanden Corporation
    Inventors: Junichiro Kasuya, Tetsuya Nakano, Tomohiko Saito, Masaaki Tokuda, Satoshi Ogiwara
  • Patent number: 8166759
    Abstract: An exhaust heat recovery apparatus includes a reciprocating internal combustion engine in which a piston reciprocates in a cylinder to generate motive power; and a Stirling engine that recovers the thermal energy of the exhaust gas discharged from the internal combustion engine and converts the thermal energy into kinetic energy. The Stirling engine is united with the internal combustion engine. A heater that the Stirling engine includes is disposed in an exhaust manifold of the internal combustion engine. With this configuration, it is possible to restrict reduction in the power output from the exhaust heat recovery means.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: May 1, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Yaguchi, Daisaku Sawada, Shinichi Mitani
  • Publication number: 20120096857
    Abstract: In a method for operating a waste heat utilization device comprising a working fluid which is liquefied after expansion in an expander by a condenser of the heat utilization device, by controlling an inflow cross-section to an expander of the waste heat utilization device a low pressure of the working fluid in the region of the condenser for adjusting the condensation temperature of the working fluid in the condenser, to provide for a heat transfer flow from the working fluid to the condenser environment sufficient to ensure the complete liquefication of the working fluid in the condenser.
    Type: Application
    Filed: October 28, 2011
    Publication date: April 26, 2012
    Inventors: Jan Gärtner, Thomas Koch
  • Patent number: 8161748
    Abstract: This invention presents improved combustion methods, systems, engines and apparatus utilizing H2, O2 and H2O as fuel, thereby providing environmentally friendly combustion products, as well as improved fuel and energy management methods, systems, engines and apparatus. The Water Combustion Technology; WCT, is based upon water (H2O) chemistry, more specifically H2O combustion chemistry and thermodynamics. WCT does not use any hydrocarbon fuel source, rather the WCT uses H2 preferably with O2 and secondarily with air. The WCT significantly improves the thermodynamics of combustion, thereby significantly improving the efficacy of combustion, utilizing the first and second laws of thermodynamics. The WCT preferably controls combustion temperature with H2O and secondarily with air in the combustion chamber. The WCT preferably recycles exhaust gases as fuel converted from water.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: April 24, 2012
    Assignee: ClearValue Technologies, Inc.
    Inventor: Richard Alan Haase
  • Patent number: 8146360
    Abstract: Some embodiments of a generator system can be used with the working fluid in a Rankine cycle. For example, the generator system can be used in a Rankine cycle to recover heat from one of a number of commercial applications and to convert that heat energy into electrical energy. In particular embodiments, the generator system may include a turbine generator apparatus to generate electrical energy and a liquid separator arranged upstream of the turbine generator apparatus.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: April 3, 2012
    Assignee: General Electric Company
    Inventors: Scott R. Myers, Robert Miller
  • Publication number: 20120073289
    Abstract: A Rankine cycle system includes: an evaporator configured to receive heat from a heat source and circulate a working fluid to remove heat from the heat source; an expander in flow communication with the evaporator and configured to expand the working fluid fed from the evaporator; a condenser in flow communication with the expander and configured to condense the working fluid fed from the expander; a pump in flow communication with the condenser and configured to pump the working fluid fed from the condenser; a first conduit for feeding a first portion of the working fluid from the pump to the evaporator; and a second conduit for feeding a second portion of the working fluid from the pump to the expander.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 29, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gabor Ast, Sebastian Walter Freund, Thomas Johannes Frey, Pierre Sebastien Huck, Herbert Kopecek, Günther Wall
  • Patent number: 8141360
    Abstract: A hybrid engine having a gas turbine engine and an internal combustion engine, both engines driving a common drive shaft. The compressor delivers compressed air to the combustor and to an inlet of the internal combustion engine, the compressed air picks up heat from the internal combustion engine either from the combustion process or through a heat exchanger, and is delivered to the combustor. When the gas turbine engine is not operating by burning fuel, the heated compressed air from the internal combustion engine is used to maintain the shaft speed sufficient for starting the gas turbine engine without the need to bring the turbine engine up to speed prior to ignition. The apparatus and process of the present invention provides a hybrid engine that is light weight, fuel efficient, and with enough available power for high powered situations.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: March 27, 2012
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: David J Huber
  • Publication number: 20120042650
    Abstract: The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.
    Type: Application
    Filed: August 13, 2011
    Publication date: February 23, 2012
    Applicant: CUMMINS INTELLECTUAL PROPERTIES, INC.
    Inventors: Timothy C. Ernst, Christopher R. Nelson, James A. Zigan
  • Publication number: 20120036850
    Abstract: The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: CUMMINS INTELLECTUAL PROPERTIES, INC.
    Inventors: Timothy C. ERNST, Christopher R. NELSON
  • Patent number: 8109097
    Abstract: A high efficiency combined cycle internal combustion and steam engine includes a cylinder with a combustion chamber outward of a piston, a cylinder cap slideably mounted within the piston and a steam expansion chamber inside the piston. The cap can be heated to reduce condensation of steam. Steam remaining when a steam exhaust valve closes can be recompressed prior to admitting the next charge of steam. One valve or a pair of steam inlet valves connected in series act in cooperation to help maximize efficiency. The amount of steam admitted each stroke is regulated by shifting the phase of one steam admission valve of a pair to vary their overlap for determining the steam mass admitted each cycle. Other valves balance steam displacement with the steam generator output to use steam more efficiently.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: February 7, 2012
    Assignee: Thermal Power Recovery, LLC
    Inventors: James V. Harmon, Sr., James V. Harmon, Jr., Stephen C. Harmon
  • Publication number: 20120006021
    Abstract: The invention concerns a heat exchanger for transmitting heat from a heating medium, in particular from the exhaust gas stream of an internal combustion engine, to a working fluid, which evaporates in the heat exchanger, comprising an alternating stacking order made of guiding layers for the heating medium and guiding layers for the working fluid; wherein the heating medium and the working fluid are injected in the cross counterflow; whereas each guiding layer for the working fluid comprises a channel plate, which has at least one meandering passage opening, whereas cover plates are arranged on both sides of the channel plate, which cover plates seal laterally the passage opening by forming a working fluid channel, except for an inlet and an outlet, wherein the channel plate is materially connected to the cover plates; and whereas the working fluid channel includes a first section, outgoing from the inlet, with a first free cross-section and a second section emerging in the outlet, with a second free cross-se
    Type: Application
    Filed: November 16, 2009
    Publication date: January 12, 2012
    Inventors: Christian Bausch, Jurgen Berger, Jens Grieser
  • Patent number: 8091360
    Abstract: The invention relates to a drive system for motor vehicles comprising a waste heat-producing internal combustion engine and a circuit for draining off at least partially said waste heat with a working fluid which is relievable in an expansion machine, wherein said working fluid comprises several components, wherein at least one component is transferable into a gas phase by absorbing heat of the internal combustion engine and/or another source inside the drive system which also comprises means for separating the liquid fraction from the working fluid prior to the expansion machine pressure removal. The internal combustion engine can be cooled by a first cooling circuit. A second cooling circuit can be used in such a way that the first cooling circuit is cooled thereby.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: January 10, 2012
    Assignee: Amovis GmbH
    Inventor: Michael Hoetger
  • Patent number: 8082889
    Abstract: A system is provided that draws heat from an open-loop engine cycle into a closed-loop working fluid circulatory system that utilizes computer-aided feedback mechanisms. The closed-loop working fluid draws engine heat from multiple sources: exhaust stack gases, the engine block, the engine transmission, and the engine headers and exhaust manifold near the valves. Heat exchangers are arranged in an ascending pattern according to the temperature of the heat at each heat generating location of the open-loop engine cycle. A wankel or similar type engine receives the heated working fluid and rotates a shaft connected to a generator to generate electricity. An electrolysis unit is powered by the generated electricity and separates water into hydrogen and oxygen. A reformation unit receives fuel such as diesel and the generated hydrogen to reform the fuel prior to injection into the engine for combustion.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: December 27, 2011
    Assignee: Gemini Energy Technologies, Inc.
    Inventors: Gary G. Otterstrom, Charles P. Lindsey
  • Patent number: 8069666
    Abstract: One or more systems for generating shaft horsepower by using waste heat from combustion exhaust are provided herein. The system can include a heat recovery silencer, a turbine, a compressor, a combustion source, and a control system.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 6, 2011
    Assignee: Maxim Silencers, Inc.
    Inventors: Robert E. Cone, Mitzi Jones Gass, Matthew Wayne Wishert
  • Patent number: 8061139
    Abstract: The present invention provides an integrated engine generator Rankine cycle power system which increases the efficiency of the use of its power output. The system comprises a closed Rankine cycle power generating unit through which working fluid flows and an engine generator, the closed Rankine cycle power generating unit including a waste heat boiler for vaporizing said working fluid by means of exhaust gases discharged from the engine generator, an expander in which the vaporized working fluid expands and performs work to drive a shaft for producing mechanical power, or an electric generator coupled thereto and adapted to produce electrical power, from both the engine generator and the expander, and an external lubrication system in fluid communication with the expander wherein one or more closed Rankine cycle power generating unit components are operationally connected to the electric generator.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: November 22, 2011
    Assignee: Ormat Technologies, Inc.
    Inventor: Lucien Y. Bronicki
  • Patent number: 8061140
    Abstract: A high efficiency combined cycle internal combustion and steam engine includes a cylinder and a piston with an internal combustion chamber outward of the piston, a fixed cylinder cap and a steam expansion chamber inside the piston. The cylinder cap can be heated to reduce condensation of steam entering from a steam generator fired by waste combustion heat. Following exhaust, residual steam can be recompressed prior to admitting the next charge of steam. A wrist pin connected to an inner end of the piston skirt inwardly of the cylinder cap is coupled to a connecting rod secured to a crankshaft. One valve or a pair of steam inlet valves are connected to communicate in series within the cylinder cap inside the piston. The steam mass admitted is regulated to reduce fuel consumption. Coolant can be superheated in the combustion exhaust manifold.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: November 22, 2011
    Assignee: Thermal Power Recovery LLC
    Inventor: James V. Harmon, Sr.
  • Patent number: 8046998
    Abstract: The present invention relates to a waste heat auxiliary power unit. In one embodiment, the present invention is a heat exchange unit for an automobile including a core unit configured to be connected to a catalytic converter of the automobile, the core unit generating vapor, and a first energy generation module connected to the core unit, the first energy generation module receiving the vapor from the core unit and generating energy from the vapor.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: November 1, 2011
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Woodson Wayne Samuel
  • Publication number: 20110209473
    Abstract: A system and method for waste heat recovery in exhaust gas recirculation is disclosed. The system includes an engine having an intake manifold and an exhaust manifold, an exhaust conduit connected to the exhaust manifold, and a turbocharger having a turbine and a compressor, the turbine being connected to the exhaust conduit to receive a portion of the exhaust gas from the exhaust manifold. The system also includes an EGR system connected to the exhaust conduit to receive a portion of the exhaust gas, with the EGR system including an EGR conduit that is connected to the exhaust conduit to receive a portion of the exhaust gas, a heat exchanger connected to the EGR conduit and being configured to extract heat from the exhaust gas, and a waste heat recovery system connected to the heat exchanger and configured to capture the heat extracted by the heat exchanger.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Inventors: Jassin Fritz, Georgios Bikas, Gabor Ast, Alexander Simpson, Thomas Johannes Frey, Rodrigo Rodriguez Erdmenger
  • Patent number: 7997080
    Abstract: A combination internal combustion and steam engine includes a cylinder having a piston mounted for reciprocation therein with an internal combustion chamber and a steam chamber in the cylinder adjacent the piston and at least one steam exhaust port positioned to communicate with the steam chamber through the wall of the cylinder for exhausting steam at a location in the cylinder wall adjacent to an engine cylinder cap surface that is heated externally to assist in reducing chilling or condensation of steam entering the steam chamber from a boiler fired by waste combustion heat. The invention also permits steam admitted from a steam chest jacketing the cylinder cap to be exhausted from the engine when the steam chamber is in an expanded state whereupon residual steam is then recompressed prior to admitting the next charge of steam with the stream in the steam chamber being heated directly by the combustion chamber as well as by heat from the steam chest. An I.C. exhaust powered heater is a part of an I.C.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: August 16, 2011
    Assignee: Thermal Power Recovery LLC
    Inventors: James V. Harmon, Sr., James V. Harmon, Jr., Stephen C. Harmon
  • Patent number: 7997077
    Abstract: Disclosed is an energy retriever system and methods for absorbing energy and using that energy elsewhere or converting it to other useful forms of energy or work. The energy retriever system consists of a series of components interconnected by a plurality of conduits containing a fluid. Working as a self-contained thermodynamic system, the energy retriever system allows the fluid to circulate through all of these elements. Heat added to the energy capture subsystem heats the fluid. The fluid becomes more pressurized and moves into the expansion cycle subsystem. The energy extraction subsystem transforms the thermal energy of the fluid into work, kinetic energy or thermal energy. The reservoir subsystem compresses the fluid and reintroduces it into the energy capture subsystem. One-way valves are used throughout the system to keep the flow of the fluid in one direction and separate sections of the system that contain different pressures.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: August 16, 2011
    Assignee: Harlequin Motor Works, Inc.
    Inventor: Paul Corley
  • Publication number: 20110185726
    Abstract: An energy separation and recovery system wherein exhaust heat from an automotive engine source which might otherwise be wasted is employed in conjunction with a heat exchanger and a super heater to generate steam in a substantially closed-loop system wherein the heat supply is an open system. The superheated steam is transmitted to an engine to generate power which may be used to supply electrical energy. The electrical energy may be employed external to the system or may be used to assist the motive engine in providing motive power to the vehicle. Stepped diameter tubing carries water, or other vaporizable fluids, through the heat exchanger into the super heater while simultaneously exposing the carried water or fluid to incrementally higher temperature heated gas. Variable bellows, attached operatively to end plates accommodate the differential expansion of the tubing.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 4, 2011
    Inventors: Michael Alan Burns, Paul Andrew Burns, Gareth Andew Storoszko, Marco Cucinotta
  • Publication number: 20110167818
    Abstract: In a case of a refrigerant amount being short when a Rankine cycle starts operating, because the pressure difference does not occur across a refrigerant pump, refrigerant cannot be injected from a bypass circuit to the Rankine cycle, and therefore super-cooling degree cannot be controlled. An exhaust heat recovery system is provided that can adjust the super-cooling degree even in the case of the pressure difference not occurring across the refrigerant pump. The system includes a refrigerant tank, for storing refrigerant, which is connected by pipes to the low-pressure circuit side and the high-pressure circuit side of the Rankine cycle through a low-pressure-side valve and a high-pressure-side valve, respectively, and a temperature adjuster for adjusting internal temperature of the refrigerant tank.
    Type: Application
    Filed: September 3, 2009
    Publication date: July 14, 2011
    Inventors: Kazunori Tsuchino, Kazuhiko Kawajiri, Minoru Sato
  • Patent number: 7975485
    Abstract: The present invention is a High Efficient Integrated Heat Engine, or HEIHE for short. HEIHE is a reciprocal combustion engine integrated with both compound cycle and combined cycle. HEIHE comprises twin compound cylinder structure, with the first cylinder being the primary combustion and/or expansion cylinder; the second cylinder being the secondary combustion and/or expansion cylinder. Power strokes driven by expansions of different working fluids such as air-fuel combustion products, steam and compressed air, are integrated into one engine block. Twin cylinder structure provides compound expansions of three (3) different fluids as to recover the energies that would be lost with the exhaust fluids or during braking. All of these make HEIHE work around six (6) periods with twelve (12) operation strokes. Among six (6) working periods involved, four (4) periods contain four (4) different power strokes but only one of the power strokes consumes the fuel.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: July 12, 2011
    Inventors: Yuanping Zhao, Yuanfan Zhao, Yuanjun Zhao, Yiheng Zhao
  • Patent number: 7975481
    Abstract: The invention relates to a steam cycle apparatus, comprising a reservoir for a liquid operating medium; an evaporator in which the operating medium is evaporator by supply of heat, with the vaporous operating medium being supplied to an expander for expansion and for performing mechanical work and subsequently being liquefied in a condenser which is in connection with a reservoir; an operating medium pump for supplying operating medium from the reservoir to a feed line to the evaporator; a feedback control unit (7) for the operating medium flow; characterized in that the operating medium pump comprises a bypass line which produces a connection between the input side of the operating medium pump and the output side of the operating medium pump, with a controlled overflow valve being arranged in the bypass line whose control element is triggered by the feedback control unit for the operating medium flow for regulating the pressure and/or volume flow of the operating medium in the feed line to the evaporator.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: July 12, 2011
    Assignee: Voith Patent GmbH
    Inventors: Jens Grieser, Christian Bausch
  • Patent number: 7954320
    Abstract: A turbocompound engine has an internal combustion engine with a first recuperation turbine positioned on an exhaust line of the engine. The first turbine provides mechanical power to the engine. Heat from an exhaust line of the first turbine is transferred to a heat recovery system. A second turbine is operated by the heat within the heat recovery system and provides mechanical power to the engine.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 7, 2011
    Assignee: Iveco Motorenforschung AG
    Inventors: Rudolf Ellensohn, Wolfgang Gstrein
  • Patent number: 7950230
    Abstract: A waste heat recovery apparatus including a Rankine cycle which includes a heater for heating an operation fluid by waste heat from a heat-generating device, an expansion unit for converting energy of expansion of the operation fluid flowing out from the heater into mechanical energy, and a condenser for condensing and liquefying the expanded operation fluid, a temperature detector for detecting the temperature of the operation fluid on the inlet side of the expansion unit, a pressure detector for detecting inlet-side pressure of the expansion unit, a pressure detector for detecting outlet-side pressure of the expansion unit, and a control unit. The control unit controls a command rotational speed of the expansion unit based on superheated degree information at the inlet of the expansion unit obtained from the operation fluid temperature and the inlet-side pressure, and pressure information in which the outlet-side pressure is considered.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: May 31, 2011
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Michio Nishikawa, Kouji Yamashita, Hiroshi Kishita, Keiichi Uno
  • Publication number: 20110088959
    Abstract: Disclosed is an energy retriever system and methods for absorbing energy and using that energy elsewhere or converting it to other useful forms of energy or work. The energy retriever system consists of a series of components interconnected by a plurality of conduits containing a fluid. Working as a self-contained thermodynamic system, the energy retriever system allows the fluid to circulate through all of these elements. Heat added to the energy capture subsystem heats the fluid. The fluid becomes more pressurized and moves into the expansion cycle subsystem. The energy extraction subsystem transforms the thermal energy of the fluid into work, kinetic energy or thermal energy. The reservoir subsystem compresses the fluid and reintroduces it into the energy capture subsystem. One-way valves are used throughout the system to keep the flow of the fluid in one direction and separate sections of the system that contain different pressures.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: HARLEQUIN MOTOR WORKS, INC.
    Inventor: Paul W. CORLEY
  • Patent number: 7926273
    Abstract: A waste heat power generation system of a cement calcination plant includes: an AQC boiler having an economizer, an evaporator and a superheater; and a PH boiler having a first evaporator and a superheater. The PH boiler, in addition to the evaporator and the superheater, has a second evaporator on a PH exhaust gas exit side, and a returned hot water from a flasher is introduced into the second evaporator via a steam drum. A hot water heated by the second evaporator is introduced into the steam drum, and a steam from the steam drum is introduced into the low-pressure stage of the steam turbine.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: April 19, 2011
    Assignee: Kawasaki Plant Systems Kabushiki Kaisha
    Inventors: Katsushi Sorita, Tatsuo Ino, Yukihiro Takenaka, Masao Shirai
  • Publication number: 20110083434
    Abstract: A high order of thermal efficiency is achieved in a steam engine or expander having a piston clearance that approximates zero together with a negligible amount of compression, such that pressure in the clearance volume approximates ambient pressure, i.e. atmospheric or condenser pressure as the case may be at the end of the piston return stroke when the clearance is essentially zero. These two provisions working together simultaneously provide a method and apparatus which constitute a new engine apparatus and Rankine operating cycle that can be referred to as “zero clearance with zero compression”. The invention also provides an improved steam admission valve assembly that can be operated either automatically responsive to piston movement or by means of a cam shaft and cam or electrically by means of a solenoid that provides an intermittent magnetic field for operating one or more valves.
    Type: Application
    Filed: December 2, 2010
    Publication date: April 14, 2011
    Applicant: THERMAL POWER RECOVERY LLC
    Inventors: Jerry A. Peoples, James V. Harmon, SR.
  • Patent number: 7891186
    Abstract: A waste heat recovery system is provided for an internal combustion engine having a piston, a cylinder and an intake manifold, significantly improving gas mileage efficiency without reliance on alternative fuels. The system includes a heat loop having a heat transfer fluid, a compressor in fluid communication with the intake manifold to supply compressed air thereto, a Stirling engine operated and optimized via thermal communication with the heat loop, and operatively coupled to the compressor. The system includes a chiller in thermal communication with the heat loop, and with the intake manifold to cool the compressed air communicate to the cylinder. The system may include additional Stirling engines operating other devices, or being operated by a device, such as a propeller. A vehicle can incorporate the system and route fluid to and from a radiator. The system can be used in both portable and stationary applications.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: February 22, 2011
    Inventor: Indru J. Primlani
  • Publication number: 20110023483
    Abstract: The invention relates to a drive unit, in particular for a vehicle drive, comprising a drive machine generating driving power, a cooling system for the fluid cooling of the drive machine and/or a component of the drive unit which is supplied at least indirectly with driving power by the drive machine, wherein in the cooling system a coolant circulates; a lubricating circuit for the lubrication of at least one movable component of the drive unit with a lubricant. The invention is characterized in that the drive unit further comprises an accumulation reservoir, in which a comprehensive operating fluid, which comprises a mixture of an ionic fluid and a vaporizable fluid, is stockpiled, wherein the cooling system and the lubricating circuit are at least indirectly fluidically connected to the accumulation reservoir in order to extract lubricant and coolant from the comprehensive operating fluid.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 3, 2011
    Applicant: VOITH PATENT GMBH
    Inventors: Jürgen Berger, Stephan Bartosch
  • Patent number: 7866157
    Abstract: A waste heat recovery system for use with an engine. The waste heat recovery system receives heat input from both an exhaust gas recovery system and exhaust gas streams. The system includes a first loop and a second loop. The first loop is configured to receive heat from both the exhaust gas recovery system and the exhaust system as necessary. The second loop receives heat from the first loop and the exhaust gas recovery system. The second loop converts the heat energy into electrical energy through the use of a turbine.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: January 11, 2011
    Assignee: Cummins Inc.
    Inventors: Timothy C. Ernst, Christopher R. Nelson
  • Patent number: 7845167
    Abstract: In an exhaust heat recovery system for an internal combustion engine, a heat pipe includes an evaporation portion in which a working fluid is heated and evaporated by heat exchange with exhaust heat from the internal combustion engine, a plurality of condensing portions in which the working fluid from the evaporation portion is cooled and condensed by heat exchange with respective subjects to be heated, and connection piping through which the condensing portions are connected to the evaporation portion in parallel with respect to the evaporation portion so as to form a closed circuit. Furthermore, a switching portion is located to switch a flow of the working fluid from the evaporation portion to any one between the condensing portions.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: December 7, 2010
    Assignee: Denso Corporation
    Inventors: Masashi Miyagawa, Yasutoshi Yamanaka, Takahisa Suzuki, Koichi Ban
  • Patent number: 7797938
    Abstract: An energy recovery system is provided having a fluid configured to absorb and convey thermal energy. The system also has an exhaust treatment device cooling system configured to transmit thermal energy from an exhaust treatment device to the fluid. In addition, the system has a turbine that is driven by the fluid configured to convert at least a portion of the thermal energy to mechanical energy. The system further has a generator that is powered by the turbine configured to convert at least a portion of the mechanical energy to electrical energy.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: September 21, 2010
    Assignee: Caterpillar Inc
    Inventor: Victoriano Ruiz
  • Patent number: 7784274
    Abstract: A compact system for introducing hydrocarbons in the form of engine fuel into the bearing housing for a turbocharger adjacent the turbine wheel shaft. The hydrocarbons are directed outward by centrifugal force and are vaporized by the heat of the impeller. As a result the hydrocarbons are available substantially immediately after the turbine to interact with a catalyst to increase the temperature of the exhaust stream for regeneration of a diesel particulate filter.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: August 31, 2010
    Assignee: Deere & Company
    Inventor: Richard Edward Winsor
  • Publication number: 20100205959
    Abstract: A waste heat utilization device (2) for an internal combustion engine has a Rankine cycle (8) that recovers waste heat from an internal combustion engine (4), a generator (30) that is rotationally driven by an expander (14) and converts a rotational drive force into electric power, a converter (32) that controls the rotational speed of the expander (14) through the generator (30), refrigerant-condition detecting means (22, 24, 26, 28) that detects the pressure and temperature of a refrigerant passing through the expander (14), and a controller (34) that calculates pressure ratio Rp of the refrigerant in the immediate upstream and downstream of the expander (14) and specific heat ratio K of the refrigerant passing through the expander (14) on the basis of the pressure and temperature of the refrigerant, which have been detected by the refrigerant-condition detecting means (22, 24, 26, 28), calculates a preset pressure ratio Rps of the pressure ratio Rp by multiplying predetermined volume ratio Rv of the expand
    Type: Application
    Filed: October 15, 2008
    Publication date: August 19, 2010
    Inventors: Junichiro Kasuya, Yasuaki Kanou
  • Patent number: 7735324
    Abstract: A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: June 15, 2010
    Assignee: Carrier Corporation
    Inventors: Joost J. Brasz, Bruce P. Biederman
  • Patent number: 7721543
    Abstract: The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 25, 2010
    Assignee: Southwest Research Institute
    Inventors: Mary Cecelia Massey, Thomas Earl Boberg
  • Patent number: 7637108
    Abstract: A power compounder is disclosed. The power compounder comprises a working fluid configured to receive thermal energy from waste heat of a prime mover, a working fluid collector, an evaporator configured to transfer waste heat to a working fluid producing a phase change to vapor (or gas) in the working fluid, a double screw expander configured to receive the working fluid for creating rotational mechanical energy, and a condenser configured to produce another phase change in the working fluid to liquid. The double screw expander transfers the rotational mechanical energy via a shaft to the prime mover.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: December 29, 2009
    Assignee: Electratherm, Inc.
    Inventor: Richard K. Langson
  • Publication number: 20090293461
    Abstract: An exhaust heat recovery device includes an accommodating portion extending continuously without shrinking a section therein and adapted to allow exhaust gas of an internal combustion engine to pass therethrough, a catalyst disposed in the accommodating portion for cleaning the exhaust gas, an evaporator disposed adjacent to the catalyst on a downstream side of an exhaust gas flow in the accommodating portion, and a condenser for condensing the working medium by radiating heat of the working medium flowing thereinto from the evaporator so as to recover exhaust heat on the coolant side. The condenser is located to return the condensed working medium to the evaporator.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 3, 2009
    Applicant: Denso Corporation
    Inventors: Masashi Miyagawa, Yasutoshi Yamanaka, Koichi Ban, Kimio Kohara
  • Patent number: 7615884
    Abstract: A hybrid wind turbine assembly and method capable of providing a total firm power output. There is a wind power section which delivers non-firm power from the wind turbine to a generator section. Then there is also an auxiliary power section which is capable of providing firm power to the same generator section. This can operate in three operating modes, namely an only wind power mode, an only auxiliary power mode, and a combined wind power and auxiliary power mode.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: November 10, 2009
    Assignee: McMasterCorp, Inc.
    Inventor: Thomas McMaster
  • Publication number: 20090145127
    Abstract: A combined cycle power plant (10) has a gas turbine (11), a heat recovery steam generator (16) which is connected downstream to the gas turbine (11) and delivers steam to a steam turbine (19), an exhaust gas recycling line (28) which returns some of the exhaust gases, which flow from the exhaust of the gas turbine (11) through the heat recovery steam generator (16), to the inlet of the gas turbine (11), and also a CO2 separating plant (25) which separates from the non-returned part of the exhaust gases the CO2 which is contained therein and delivers it to a CO2 outlet. A reduction of the equipment cost or a flexible adaptation of the operation can be achieved by a supplementary firing (17) being associated with the heat recovery steam generator (16), which by combusting a carbonaceous fuel produces additional exhaust gases with CO2 content and transmits them through the heat recovery steam generator (16).
    Type: Application
    Filed: November 14, 2008
    Publication date: June 11, 2009
    Inventors: Michael Vollmer, Camille Pedretti, Tobias Kjellberg
  • Patent number: 7523613
    Abstract: A process, device and system are provided for utilizing waste heat from a waste heat source, especially from an internal combustion engine, by a coolant being heated and by this heat being used to drive a turbine. The device utilizes waste heat with a waste heat source (10, 20) cooled by a coolant, with a turbine (11) and with an evaporating device (16) for the coolant. To increase the efficiency of such a process and such a device and system, and to reduce the design effort and the maintenance effort, the coolant is evaporated after it leaves the waste heat source (10, 20) and the evaporating means is provided after the waste heat source (10, 20) when viewed in the direction of flow of the coolant.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: April 28, 2009
    Inventor: Ralf Richard Hildebrandt
  • Patent number: 7520133
    Abstract: A thermodynamic engine converts the superheated steam of at least one working medium into kinetic energy using a decompression device. Said engine includes a low-temperature circuit, in which a first working medium is transported through a first heat exchanger and subsequently through the decompression device and a high-temperature circuit, in which a second working medium is transported through a second heat exchanger and subsequently through the decompression device. The first heat exchanger and the second heat exchanger are located in the exhaust system of an internal combustion engine, and the internal combustion engine a coolant circuit can be used to heat the working mediums in separate collection containers.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: April 21, 2009
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Michael Hoetger, Herbert Clemens, Tobias Haas, Gunnar Freitag, Michael Preis, Raymond Freymann, Andreas Obieglo
  • Publication number: 20090094980
    Abstract: An exhaust heat recovery apparatus includes a Stirling engine and a clutch. The Stirling engine produces motive power by recovering thermal energy from exhaust gas discharged from an internal combustion engine from which exhaust heat is recovered. The motive power produced by the Stirling engine is transmitted to an internal combustion engine transmission through the clutch and an exhaust heat recovery device transmission, and combined with the motive power produced by the internal combustion engine through the internal combustion engine transmission, and is output from an output shaft. If rapid acceleration is required, and the increase in the rotation speed of the Stirling engine therefore lags behind the increase in the rotation speed of the internal combustion engine, the clutch is released. With this configuration, reduction in the power output from the heat engine, from which exhaust heat is recovered, is restricted, and the degradation of the acceleration performance is minimized.
    Type: Application
    Filed: February 28, 2007
    Publication date: April 16, 2009
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daisaku Sawada, Shinichi Mitani, Hiroshi Yaguchi
  • Publication number: 20090031724
    Abstract: An energy recovery system is provided having a fluid configured to absorb and convey thermal energy. The system also has an exhaust treatment device cooling system configured to transmit thermal energy from an exhaust treatment device to the fluid. In addition, the system has a turbine that is driven by the fluid configured to convert at least a portion of the thermal energy to mechanical energy. The system further has a generator that is powered by the turbine configured to convert at least a portion of the mechanical energy to electrical energy.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Inventor: Victoriano Ruiz
  • Patent number: 7475541
    Abstract: A hybrid vehicle is equipped with an internal combustion engine, a motor/generator, and a Rankine cycle system for recovering thermal energy of exhaust gas. The output of the Rankine cycle system is input into a transmission or, alternatively, converted into electric power and used for charging a battery. The Rankine cycle system has temperature setter that sets the temperature of steam at the outlet of an evaporator. A pressure setter is provided for setting steam pressure at the inlet of an expander. A pressure controller is provided for controlling the steam pressure at the inlet of the expander. The evaporator generates steam to be supplied at a pressure that is optimum for the expansion ratio of the expander. The Rankine cycle system is operated when the vehicle is accelerating or cruising and efficiently recovers thermal energy of the exhaust gas and reduces the fuel consumption of the internal combustion engine.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: January 13, 2009
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Shigeru Ibaraki, Takeo Kiuchi, Tsuneo Endoh, Akihisa Sato
  • Publication number: 20090000299
    Abstract: A waste heat recovery system includes at least two integrated rankine cycle systems coupled to at least two separate heat sources having different temperatures. The first rankine cycle system is coupled to a first heat source and configured to circulate a first working fluid. The second rankine cycle system is coupled to at least one second heat source and configured to circulate a second working fluid. The at least one second heat source includes a lower temperature heat source than the first heat source. The first and second working fluid are circulatable in heat exchange relationship through a cascading heat exchange unit for condensation of the first working fluid in the first rankine cycle system and evaporation of the second working fluid in the second rankine cycle system.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gabor Ast, Michael Adam Bartlett, Thomas Johannes Frey, Matthew Alexander Lehar
  • Patent number: 7469540
    Abstract: In some embodiments, three integrated phases may be used to reduce emissions, convert thermal energy into electricity, and cool inlet combustion air. An ammonia injection system may be designed to eliminate extraneous equipment and hazardous re-circulation lines by directly vaporizing, injecting, and mixing ammonia using a specially designed nozzle. The second phase may include using a preheat/vaporizer/superheater exchanger to convert ammonia liquid into a superheated vapor that is then passed through a turbo-expander/generator to produce power. In some embodiments, the third phase may include inlet combustion air chilling.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: December 30, 2008
    Inventors: Brent William Knapton, Craig A. Beam