Anchored Patents (Class 600/375)
  • Patent number: 10912465
    Abstract: A device adapted for determining cardiac viability, wherein said device includes: a cannula having a hollow body and at least a distal end adapted for insertion into a heart and operator end for adapted for an operator to position the catheter in the ventricular apex and adapted for connection to a plumbing system; an inflatable balloon positioned near to the distal end in fluid communication with the hollow body to allow for selected inflation of the balloon, a controller adapted to calculate the viability of the heart from pressure data detected within cannula or balloon which is inflated to various degrees with an incompressible fluid.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: February 9, 2021
    Assignee: Organ Transport PTY LTD
    Inventors: Ruchong Ou, John Woodard, Jonathan Cavendish Nevile
  • Patent number: 10898361
    Abstract: The invention relates to an orogastric catheter for a longitudinal gastrectomy. The object of the invention is to make available an orogastric catheter that represents an advantageous alternative to the poorly suited catheters used today and that facilitates the work of the surgeon.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: January 26, 2021
    Assignee: Medical Innovation Developpement
    Inventor: David Nocca
  • Patent number: 10857351
    Abstract: A lead anchor includes a lead passageway defined along a central body and configured to receive a lead. The central body includes a twistable region that reversibly twists and stretches. First and second hubs are coupled to opposing ends of the central body. The first hub is rotatable relative to the second hub about the central body. Rotation of the first hub relative to the second hub causes twisting of the twistable region. When a lead is inserted into the lead passageway and the twistable region is twisted into a twisted configuration the central body compresses against the lead to retain the lead within the lead passageway. A locking mechanism transitions the hubs between an unlocked position, where the first hub is rotatable relative to the second hub, and a locked position, where the hubs resist rotation relative to one another.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: December 8, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Kevin Peng Wang, Jacob B. Leven
  • Patent number: 10828097
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascular guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: November 10, 2020
    Assignee: KARDIUM INC.
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Patent number: 10828098
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: November 10, 2020
    Assignee: KARDIUM INC.
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Patent number: 10828095
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: November 10, 2020
    Assignee: KARDIUM INC.
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Patent number: 10828096
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: November 10, 2020
    Assignee: KARDIUM INC.
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Patent number: 10702678
    Abstract: A multiple balloon catheter designed to quickly and easily obtain hemostasis during open and minimal access surgery in the event of venous injury.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: July 7, 2020
    Assignee: Gerstner Medical, LLC
    Inventor: Timothy Rasmusson
  • Patent number: 10702178
    Abstract: High-density mapping catheters with an array of mapping electrodes are disclosed. These catheters can be used for diagnosing and treating cardiac arrhythmias, for example. The catheters are adapted to contact tissue and comprise a flexible framework including the electrode array. The array of electrodes may be formed from a plurality of columns of longitudinally-aligned and rows of laterally-aligned electrodes.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: July 7, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Travis Dahlen, Rishi Manda
  • Patent number: 10660698
    Abstract: Systems for nerve and tissue modulation are disclosed. An illustrative system may include an intravascular nerve modulation system including a catheter shaft, an expandable basket and one or more electrode assemblies affixed to the expandable basket. The one or more electrode assemblies may be affixed to the expandable basket using one or more covers or coatings.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: May 26, 2020
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Martin R. Willard, Patrick A. Haverkost
  • Patent number: 10661087
    Abstract: An electrical implant or implant system includes an energy supply unit or is connected to an energy supply unit and includes at least one fixing device for permanently fixing the electrical implant or implant system to bodily tissue, or is connected to the fixing device. At least two implant components are releasably mechanically connected to one another. A first of the implant components includes at least parts of the fixing device. A second of the implant components includes an electromechanical component which, as a result of current drain or current feed, can swell in such a way that it causes a swelling at an outer contour of the electromechanical component at least at one point. The electromechanical component is disposed in such a way that a swelling of the electromechanical component results in a separation of the mechanical connection between the first and second implant components.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: May 26, 2020
    Assignee: Biotronik Se & Co. KG
    Inventor: Thomas Doerr
  • Patent number: 10639485
    Abstract: An operating-room cable-assembly for an electrical-stimulation system includes a lead connector with a lead passageway defined in a housing. Contacts disposed in the housing engage terminals of a lead when the lead is operationally-inserted into the lead passageway. A first biased tab is disposed in a first tab lumen defined in the housing. The first biased tab has a first end exposed to an outer surface of the housing and an opposing second end exposed to the lead passageway. The first biased tab moves to an unlock position and is biased to return to a lock position. When in the lock position, the first biased tab is biased to exert a force against an inserted lead sufficient to resist axial movement of the lead relative to the lead connector.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: May 5, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ranjan Krishna Mukhari Nageri, Daniel J. Romero, Katie Hoose, Alexander Pruitt, Dennis Johnson, Maziyar Keshtgar
  • Patent number: 10471265
    Abstract: A anchor for an implantable medical device includes an anchor body and a locking member. The anchor body includes a first trough extending along a first axis. The locking member is coupled to the anchor body and rotates with respect to a second axis, between an unlocked position and a locked position. The locking member includes protruding members that define a second trough aligned with the first trough when the locking member is rotated to the unlocked position, so as to form an open path for the implantable medical device to move through the first and second troughs. When the locking member is rotated to the locked position, the protruding members block at least a portion of the first trough to define a tortuous path between the first trough and the second trough so as to restrict a movement of the implantable medical device through the first and second troughs.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: November 12, 2019
    Assignee: NUVECTRA CORPORATION
    Inventors: Larry Kane, Elliot Bridgeman
  • Patent number: 10434303
    Abstract: A neural stimulation system delivers neural stimulation to a target nerve with control of direction of propagation of evoked neural signals in one or more fiber types of the target nerve using electrode configuration, thereby providing effective therapy while minimizing unintended effects. In various embodiments, mechanical parameters of a multi-polar electrode are determined to provide directed propagation of the neural stimulation by effecting neural conduction block in or near the stimulation site. In various embodiments, the electrode includes a cathode for evoking action potentials and a plurality of anodes for blocking the propagation of the evoked action potentials in specified direction(s) and fiber type(s) while minimizing the formation of virtual cathodes.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: October 8, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Manfred Franke, David J. Ternes, Juan Gabriel Hincapie Ordonez, Stephen B. Ruble, Jason J. Hamann, Kevin J. Mohsenian, Jack Gordon
  • Patent number: 10413721
    Abstract: An implantable medical device (IMD) can include a cardiac pacemaker or an implantable cardioverter-defibrillator (ICD). Various portions of the IMD, such as a device body, a lead body, or a lead tip, can be provided to reduce or dissipate a current and heat induced by various external environmental factors. According to various embodiments, features can be incorporated into the lead body, the lead tip, or the IMD body to reduce the creation of an induced current, or dissipate the induced current and heat created due to an induced current in the lead. For example, an IMD can include at least one outer conductive member and a first electrode. The first electrode can be in electrical communication with the at least one outer conductive member. The first electrode can dissipate a current induced in the at least one outer conductive member via a first portion of the anatomical structure.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: September 17, 2019
    Assignee: MEDTRONIC, INC.
    Inventor: Mark T. Marshall
  • Patent number: 10201311
    Abstract: Provided is a flex-PCB catheter device that is configured to be inserted into a body lumen. The flex-PCB catheter comprises an elongate shaft, an expandable assembly, a flexible printed circuit board (flex-PCB) substrate, a plurality of electronic components and a plurality of communication paths. The elongate shaft comprises a proximal end and a distal end. The expandable assembly is configured to transition from a radially compact state to a radially expanded state. The plurality of electronic elements are coupled to the flex-PCB substrate and are configured to receive and/or transmit an electric signal. The plurality of communication paths are positioned on and/or within the flex-PCB substrate. The communication paths selectively couple the plurality of electronic elements to a plurality of electrical contacts configured to electrically connect to an electronic module configured to process the electrical signal. The flex-PCB substrate can have multiple layers, including one or more metallic layers.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: February 12, 2019
    Assignee: ACUTUS MEDICAL, INC.
    Inventors: Derrick Ren-Yu Chou, Timothy J. Corvi, Marcus Frederick Julian, Darryl Alan Knight, Ricardo David Roman, J. Christopher Flaherty
  • Patent number: 10124148
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a guide extension catheter. The guide extension catheter may include a proximal shaft having a first outer diameter. A distal sheath may be attached to the proximal shaft and may have a second outer diameter greater than the first outer diameter. A trackable tip member may be attached to the distal sheath and extending distally therefrom. The trackable tip member may define a guidewire lumen therein.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 13, 2018
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Wayne Falk, Joel M. Wasdyke, Huisun Wang
  • Patent number: 10111686
    Abstract: It is provided a device for the transcutaneous implantation of an epicardial pacemaker electrode, which is arranged in a tubular, flexible implantation catheter insertable into the pericardial space. The distal end area of the electrode is connected to a shape-variable element for aligning the electrode, in particular for adjusting the implantation angle thereof, and for stabilizing, in particular laterally stabilizing, the electrode.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: October 30, 2018
    Assignee: DEUTSCHES HERZZENTRUM BERLIN
    Inventors: Marco Bartosch, Heiner Peters, Boris Schmitt, Björn Peters
  • Patent number: 10045706
    Abstract: A catheter with a film composite structure. The catheter at least includes a polymer film that is shaped such that a first polymer film layer, which is arranged inwardly relative to the catheter, and a second polymer film layer, which is arranged outwardly relative to the catheter, are produced; one or more electrodes arranged at least partially on an outer surface of the film composite structure; and a conductor structure, which includes conductive tracks for the electrical connection of the electrodes and which is arranged at least in part between the first and second polymer film layers. An associated production method for the catheter is also contemplated herein.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: August 14, 2018
    Assignee: VascoMed GmbH
    Inventors: Wolfgang Geistert, Daniel Schulze
  • Patent number: 9931163
    Abstract: An energy delivery device may include an elongate member having a proximal portion, a distal portion, and a lumen extending therebetween. The device may include a deployment member extending through the lumen toward a distal tip of the energy delivery device, and an expandable basket having a plurality of curved electrode legs. Each of the curved electrode legs may have a first end coupled to the distal portion of the elongate member and a second end coupled to the deployment member, and each of the plurality of curved electrode legs may have at least one energy insulated region and one energy active region. The device also may include at least one temperature sensing element coupled to said expandable basket.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: April 3, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Christopher J. Danek, Michael Biggs, Keith M. Burger, Bryan E. Loomas, Thomas M. Keast, Dave Haugaard
  • Patent number: 9919145
    Abstract: Connector assemblies that are separate from medical lead extensions provide features such as bores for receiving both a medical lead and a medical lead extension and provide electrical connections between connectors of the leads and connectors of the lead extensions. Connector assemblies may include additional features such as contours and wings that reduce subcutaneous erosion. Connector assemblies may also include retention structures such as movable clips that are moved into engagement with leads and lead extensions to retain them within the connector assembly. Integrated lead extension connectors may also include contours and wings as well as retention structures including movable clips.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: March 20, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Spencer M. Bondhus, Patrick D. Wells
  • Patent number: 9877779
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: January 30, 2018
    Assignee: KARDIUM INC.
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Patent number: 9855421
    Abstract: A device for positioning an electrode in tissue includes: a lead body having a distal portion; an electrode array coupled to the lead distal portion; an anchoring element having an anchor tip and being operable in a first configuration in which the anchor tip is retracted within the lead and in a second configuration in which the anchor tip is extended outside the lead and configured to fixate within the tissue; and a displacement mechanism that is actuated to bias the electrode array or the anchoring element toward the tissue. A method for positioning an electrode in tissue includes: navigating, to the tissue, a lead with an electrode array, an anchoring element with a distal anchor tip, and a displacement mechanism; biasing the electrode array and anchoring element towards the tissue with the displacement mechanism; and deploying the anchoring element, and verifying fixation of the anchor tip within the tissue.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: January 2, 2018
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Ellis Garai, Aravind Swaminathan
  • Patent number: 9782099
    Abstract: A catheter with basket-shaped electrode assembly with spines configured for hyper-flexing in a predetermined, predictable manner when a compressive force acts on the assembly from either its distal end or its proximal end. At least one spine has at least one region of greater (or hyper) flexibility that allows the electrode assembly to deform, for example, compress, for absorbing and dampening excessive force that may otherwise cause damage or injury to tissue wall in contact with the assembly, without compromising the structure and stiffness of the remaining regions of the spine, including its distal and proximal regions. The one or more regions of greater flexibility in the spine allow the spine to flex into a generally V-shape configuration or a generally U-shape configuration.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: October 10, 2017
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Stuart Williams, Paul Tran, Mario A. Solis
  • Patent number: 9750569
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: September 5, 2017
    Assignee: KARDIUM INC.
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Patent number: 9694172
    Abstract: Devices or methods such as for stimulating excitable tissue or sensing physiologic response or other signals that can use separate fixation mechanism is described. An implantable apparatus can include a modular electrostimulation electrode assembly that can include a first module and a second module that can be end user-attachable to each other and end user-detached from each other. The first module can include an electrostimulation electrode fixation support member that can be laid flat against or otherwise conform to a surface of a heart, and can define a centrally located open portal such as for permitting electrode access to the surface of the heart. The second module can include an electrostimulation electrode that can be inserted through the portal of the fixation support member such as to contact the surface of the heart such as to deliver chronic electrostimulation to the heart.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: July 4, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Arthur J. Foster, Bruce Alan Tockman, Lili Liu, Howard D. Simms, Jr., Anne-Marie Bustillos
  • Patent number: 9669223
    Abstract: Devices for use in providing stimulation to cardiac tissue are provided. One device is configured for implantation in or near the heart and includes a flexible, elongate body. The body is configured to be positioned across two different sections of the vasculature such that (a) the first end can be positioned in a first section of the vasculature through which the device can stimulate a first chamber of the heart and (b) the second end can be positioned in a second section of the vasculature through which the device can stimulate a second chamber of the heart. The device further includes a receiver circuit configured to receive signals wirelessly from a transmitter device and to convert the signals into electrical power. The device also includes at least a first set of one or more electrodes configured to stimulate the heart using the electrical power.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: June 6, 2017
    Assignee: SORIN CRM SAS
    Inventors: Angelo Auricchio, Luca Vitali
  • Patent number: 9585717
    Abstract: A device positionable in a cavity of a bodily organ (e.g., a heart) may discriminate between fluid (e.g., blood) and non-fluid tissue (e.g., wall of heart) to provide information or a mapping indicative of a position and/or orientation of the device in the cavity. Discrimination may be based on flow, or some other characteristic, for example electrical permittivity or force. The device may selectively ablate portions of the non-fluid tissue based on the information or mapping. The device may detect characteristics (e.g., electrical potentials) indicative of whether ablation was successful. The device may include a plurality of transducers, intravascularly guided in an unexpanded configuration and positioned proximate the non-fluid tissue in an expanded configuration. Expansion mechanism may include helical member(s) or inflatable member(s).
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: March 7, 2017
    Assignee: Kardium Inc.
    Inventors: Daniel Gelbart, Douglas Wayne Goertzen, Fernando Luis de Souza Lopes
  • Patent number: 9545522
    Abstract: A medical implant, such as an implantable component (22) of a tissue-stimulating prosthesis. One example of such a prosthesis being a cochlear implant. The component (22) is adapted to be implanted at or adjacent a tissue surface within the recipient, such as a bone surface. The component (22) has a housing and at least one flange (42) extending outwardly therefrom. The flange (42) can be secured to the tissue surface via a tissue fixation device, such as a bone screw (43).
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: January 17, 2017
    Assignee: Cochlear Limited
    Inventors: Peter Gibson, Lars Johansen
  • Patent number: 9480838
    Abstract: An implantable electrode array for a cochlear implant has an array trunk that extends along a center axis from an insertion opening in an outer surface of a patient cochlea into the scala tympani. An apical section extends along the center axis from a distal end of the array trunk and a basal branch is separate from the array trunk and extends back from the distal end of the array trunk towards the insertion opening. The apical section follows along an outer lateral wall of the scala tympani during surgical insertion to attain a final insertion position towards the outer lateral wall in an apical portion of the scala tympani beyond a first basal turn of the cochlea. The basal branch attains a final insertion position towards an inner modiolar wall by the first basal turn of the cochlea with the basal branch stimulation contacts facing the inner modiolar wall.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: November 1, 2016
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Claude Jolly, Anandhan Dhanasingh
  • Patent number: 9474471
    Abstract: An instrument defining instruments proximal and distal ends and positionable with respect to a body valve in the body of a living subject for implanting anchors into living tissue at a predetermined location relative to the body valve. The instrument includes a body. A movement sensor and an effective portion including an anchor implanting mechanism are mounted to the instrument body in the instrument distal end section in a predetermined positional relationship relative to each other. The effective portion positioner is mounted to the instrument body in the instrument proximal end section.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 25, 2016
    Inventors: Renzo Cecere, Toufic Azar
  • Patent number: 9459089
    Abstract: An electronic sensor patch includes a capacitive sensor configured to detect when the electronic sensor patch is applied to a patient. A processor may be powered down for a predetermined time interval in response to determining that the electronic patch is not in close proximity to a body. The electronic sensor patch may be activated in response to determining that the electronic patch is in close proximity to the body. The capacitance sensor may be used to determine whether the electronic sensor patch is in close proximity to a body by measuring capacitance of the capacitance sensor, comparing the measured capacitance to a threshold, and determining that the electronic sensor patch is in close proximity to a body in response to the measured capacitance of the capacitance sensor being more than the threshold.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: October 4, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Robert Bruce Ganton, Robert Scott Ballam
  • Patent number: 9452016
    Abstract: A manipulable portion of a catheter system advances out of a lumen of a catheter sheath at a distal end of a shaft, which is also within the lumen of the catheter sheath. The catheter system causes different advancement and retraction trajectories of a manipulable portion out of and into the lumen based at least upon different relative movements between the catheter sheath and the shaft. A projection and a corresponding receiver may be used to control relative positioning of the catheter sheath and the shaft, as well as to control positioning of the manipulable portion. The catheter system may control metering rates of a control element coupled to the manipulable portion during advancement and retraction of the manipulable portion. A control element of the catheter system has varying amounts of length outside a distal end of the catheter sheath during advancement and retraction of the manipulable portion.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 27, 2016
    Assignee: KARDIUM INC.
    Inventors: Saar Moisa, Marius J. Postma
  • Patent number: 9370391
    Abstract: A catheter is provided with an anchoring member for anchoring a part of a linear ablating head of the catheter to a structure. The structure can be a cryogenically anchored point catheter. This allows the surgeon to position the linear catheter more exactly in the heart chamber and overcomes the adverse effects of the slippery and irregular heart chamber walls.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: June 21, 2016
    Assignee: PLYMOUTH HOSPITALS NHS TRUST
    Inventor: Guy Haywood
  • Patent number: 9364283
    Abstract: Devices and methods are provided for ablational treatment of regions of the digestive tract in post-bariatric surgery patients who fail to achieve or maintain the desired weight loss. Bariatric procedures include Roux-en-Y gastric bypass, biliopancreatic diversion, and sleeve gastrectomy. These procedures reconstruct gastrointestinal tract features, creating pouches, stoma, and tubes that restrict and/or divert the digestive flow. Post-surgical dilation of altered structures is common and diminishes their bariatric effectiveness. Ablation of compromised structures can reduce their size and compliance, restoring bariatric effectiveness. Ablation, as provided the invention, starts at the mucosa and penetrates deeper into the gastrointestinal wall in a controlled manner. Control may also be provided by a fractional ablation that ablates some tissue within a target region and leaves a portion substantially unaffected.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: June 14, 2016
    Assignee: Covidien LP
    Inventors: David S. Utley, John de Csepel
  • Patent number: 9339232
    Abstract: A lead has a helix at a distal end of a rotatable shaft. Prior to implantation of the lead, the helix has a first configuration comprising an electrically active surface coated with an electrically insulative layer of a biologically dissolvable material to render the helix electrically inactive. Upon fixation of the helix into an organ, the helix has the first configuration and a pin is in electrical contact with the organ to detect proper fixation of the helix into the organ. Subsequent to fixation of the helix into the organ, the helix has a second configuration comprising an electrically active surface exposed upon dissolving of the electrically insulative layer of the biologically dissolvable material to render the helix electrically active.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: May 17, 2016
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Sara Hallander, Marcus Helgesson
  • Patent number: 9265459
    Abstract: The invention relates generally to systems and methods for detecting and/or treating lower urinary tract conditions. One embodiment of the invention is directed to a medical device. The medical device includes an elongate member having a proximal end and a distal end and an end effector assembly that extends distally from the distal end of the elongate member. The end effector assembly includes a plurality of end effector units. Each end effector unit has a sensing element for detecting a location of abnormal organ function and a treatment element for treating the location of abnormal organ function.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: February 23, 2016
    Inventors: Sandra Nagale, Ruth Cheng, John Sherry, David Borzelleca
  • Patent number: 9211402
    Abstract: A device for brain stimulation includes a lead having a longitudinal surface, a proximal end, a distal end and a lead body. The device also includes a plurality of electrodes disposed along the longitudinal surface of the lead near the distal end of the lead. The plurality of electrodes includes a first set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a first longitudinal position along the lead; and a second set of segmented electrodes comprising at least two segmented electrodes disposed around a circumference of the lead at a second longitudinal position along the lead. The device further includes one or more conductors that electrically couple together all of the segmented electrodes of the first set of segmented electrodes.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: December 15, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael Adam Moffitt, Thomas A. Oleksyn, Kerry Bradley, David Karl Lee Peterson, Courtney Lane, Anne Margaret Pianca
  • Patent number: 9192435
    Abstract: A catheter has a flexible shaft with a proximal end, a distal end, a lumen arrangement, and a length sufficient to access a patient's renal artery. A conductor arrangement extends between the proximal and distal ends of the shaft. An actuatable helical tip region is provided at the distal end of the shaft, and a bend region is located proximal of the actuatable helical tip region. An electrode arrangement is provided at the actuatable helical tip region and dimensioned for deployment within the target vessel, such as the renal artery. The electrode arrangement is coupled to the conductor arrangement and includes a multiplicity of electrodes positioned on the distal end of the shaft in a spaced relationship. The electrodes have a protruding portion that extends out a distance beyond an outer surface of the distal end of the shaft.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 24, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Mark L. Jenson
  • Patent number: 9186210
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example medical device may be a renal nerve modulation catheter. The catheter may include an elongate catheter shaft. The catheter shaft may have a plurality of cuts formed therein define a plurality of electrode assemblies. The electrode assemblies may each include a main strut, one or more branched spacer struts extending from the main strut, and an electrode extending from the main strut and positioned radially inward from the spacer struts.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: November 17, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Mark L. Jenson
  • Patent number: 9138250
    Abstract: A medical instrument handle includes a stem, a joystick assembly, and a medical-instrument-member first articulation cable. The stem has a proximal stem portion and a distal stem portion. The joystick assembly includes a platform, a proximal joystick portion and a distal joystick portion, wherein the distal joystick portion is articulatably connected to the proximal stem portion. The first articulation cable includes a proximal cable portion which is connected to the platform and which is substantially transversely constrained by the stem. Articulation of the joystick assembly with respect to the stem changes a distance between the platform and the stem as measured along the first articulation cable. A medical instrument includes a medical instrument handle and a medical end effector. Examples of medical end effectors include, without limitation, a medical grasper and a medical snare.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: September 22, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Ifung Lu, Rudolph H. Nobis
  • Patent number: 9125565
    Abstract: A system and method are provided for assessing the compliance of internal patient tissue for purposes of catheter guidance and/or ablation procedures. Specifically, the system/method provides for probing internal patient tissue in order to obtain force and/or tissue displacement measurements. These measurements are utilized to generate an indication of tissue elasticity. In one exemplary embodiment, the indication of elasticity is correlated with an image of the internal tissue area and an output of this image including elasticity indications is displayed for a user.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: September 8, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventor: John A. Hauck
  • Patent number: 9113802
    Abstract: A device to stimulate and measure a response from the ulnar dorsal cutaneous nerve of a patient may include a first surface electrode to apply a stimulating signal to the ulnar dorsal cutaneous nerve, a second surface electrode to record the response from the stimulating signal after applying the stimulating signal to the ulnar dorsal cutaneous nerve, and a third surface electrode to reference the stimulating signal. The second surface electrode may be placed over the fifth metacarpal joint, and the device may include a ground electrode positioned over the dorsal surface of the hand. The device may include a inactive stimulating electrode positioned near to the first surface electrode. The inactive stimulating electrode may be positioned within 3 cm of the first surface electrode, and the first electrode may be placed substantially above the tendon the flexor carpi ulnaris muscle.
    Type: Grant
    Filed: July 12, 2009
    Date of Patent: August 25, 2015
    Inventor: Tomasz Andrzej Kosierkiewicz
  • Patent number: 9095703
    Abstract: The present disclosure relates to permanently implantable electrode structures or probes of the type used, in particular, in cardiac pacemakers, ICDs, CRT-Ds and/or neurostimulators. Such electrode structures or probes include at least one control element, the physical-chemical state of which can be specifically manipulated using external excitation, such that local degradation or dissolution of a part of the implant or the entire implant takes place in this region. As a result of this partial dissolution, for example, the electrode structure or at least a portion thereof is modified such that the conditions for explantation are improved and/or parts of an implanted electrode structure that remain in the body are functionally deactivated.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: August 4, 2015
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Marc Hauer, Thomas Doerr
  • Patent number: 8903514
    Abstract: A medical implantable lead comprises a conduction controlling means, which at least during an initial stage after implantation is capable of rendering a first contact surface electrically inactive and which is capable of rendering the first contact surface electrically active after the initial stage. By means of the inventive lead it is possible to detect whether the helix is sufficiently screwed into the tissue or not.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: December 2, 2014
    Assignee: St. Jude Medical AB
    Inventors: Sara Hallander, Marcus Helgesson
  • Publication number: 20140303469
    Abstract: A method for sensing multiple local electric voltages from endocardial surface of a heart, includes: providing a system for sensing multiple local electric voltages from endocardial surface of a heart, including: a first elongate tubular member having a lumen, a proximal end and a distal end; a basket assembly including: a plurality of flexible splines for guiding a plurality of exposed electrodes, the splines having proximal portions, distal portions and medial portions therein between, wherein the electrodes are substantially flat electrodes and are substantially unidirectionally oriented towards a direction outside of the basket.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 9, 2014
    Inventors: Thomas F. Kordis, Ruchir Sehra
  • Patent number: 8801693
    Abstract: A system and method for guiding a catheter or other medical device to a desired target destination within the vasculature of a patient via bioimpedance measurements is disclosed. The target destination in one embodiment includes placement of the catheter such that a distal tip thereof is disposed proximate the heart, e.g., the junction of the right atrium and superior vena cava. In one embodiment the method for guiding the catheter comprises introducing the catheter into a vessel of the patient, the catheter defining a lumen through which fluids can be infused into the vasculature of the patient. The catheter is advanced toward a target destination within the vasculature. A first impedance value based on intravascular detection of at least one electrical property related to a first tissue surface of the vessel is calculated to enable determination of the proximity of a distal end of the catheter to the target destination.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: August 12, 2014
    Assignee: C. R. Bard, Inc.
    Inventors: Ding Sheng He, David J. Ciavarella, Eddie K. Burnside
  • Patent number: 8801728
    Abstract: Leads having distal electrodes may be used in application of test stimulation for purposes of implanting a lead having a fixation element distal to an electrode array. The fixation element is proximal the distal electrode. Accordingly, the distal electrode may be advanced beyond a distal end of an introducer while the fixation element may be retained in a retracted configuration by the introducer. If the test signals applied by the distal electrode indicate that the distal electrode is in the desired location of the patient, a series of markings on the lead may be used to facilitate placement of the electrode array at the location previously occupied by the distal electrode; i.e. the desired location of the patient. The electrodes of the electrode array may then be used to provide therapy to the patient.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 12, 2014
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, Michael D. Baudino
  • Patent number: 8798770
    Abstract: A transvenously implantable medical device (TIMD) includes an electrical lead and a control module. The electrical lead includes one or more electrodes and is adapted for transvenous implantation. The electrical lead is also pre-biased to expand from a collapsed state to an expanded state to mechanically engage an internal wall of a blood vessel. The control module is secured to and in electrical communication with the electrical lead. The control module includes a signal management component and a power component disposed in a housing adapted for implantation into the blood vessel. The control module is adapted for at least one of stimulating and sensing a physiologic response using the one or more electrodes of the electrical lead.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: G. Shantanu Reddy
  • Publication number: 20140206973
    Abstract: Devices, systems, and methods for remotely monitoring physiologic cardiovascular data are disclosed. At least some of the embodiments disclosed herein provide access to the external surface of the heart through the pericardial space for the delivery of the sensor to the epicardial surface of the heart. In addition, various disclosed embodiments provide for a memory device capable of receiving the physiologic cardiovascular data collected by the sensors and transmitting such data wirelessly to a remote location.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: CVDevices, LLC
    Inventors: Ghassan S. Kassab, Jose A. Navia, SR.