Abstract: Embodiments of the present disclosure relate to monitoring one or more physiological parameters of a subject using a multilayer wearable device. In an embodiment, a multilayer wearable device is configured to be attached to a subject. The multilayer wearable device comprises a substrate having multiple layers including a first portion connected to a second portion. The first portion has a first side and a second, opposite side. And the second portion has a first side and a second, opposite side. The first side of the first portion is configured to be attached to the subject and the second portion is arranged on top of the first portion such that the first side of the second portion is disposed adjacent the second side of the first portion. And, the wearable device includes one or more electrical components configured to sense a physiological parameter of the subject.
Type:
Grant
Filed:
October 17, 2019
Date of Patent:
March 7, 2023
Assignee:
BOSTON SCIENTIFIC SCIMED, INC.
Inventors:
Jan Weber, Jeffrey E. Stahmann, James M. Peck, Keith R. Maile
Abstract: Flexible electrical devices comprising electrode layers on softening polymers and methods of manufacturing such devices, including lift-off processes for forming electrodes on softening polymers, processes for forming devices with a patterned double softening polymer layer, and solder reflow processes for forming electrical contacts on softening polymers.
Type:
Grant
Filed:
October 2, 2019
Date of Patent:
February 28, 2023
Assignee:
Board of Regents, The University of Texas System
Inventors:
Romil Modi, Jonathan Reeder, Gregory T. Ellson, Walter E. Voit, Alexandra Joshi Imre
Abstract: A wireless intraluminal device (102) and an associated system for treating and diagnosing patients are provided. In one embodiment, the wireless intraluminal device (102) includes a flexible elongate member (158) including a proximal portion (106) and a distal portion (108); a sensor assembly (116) coupled to the distal portion of the flexible elongate member; a cable (117) coupled to the sensor assembly and extending along the flexible elongate member; and a wireless transceiver (252) positioned within the flexible elongate member, wherein the wireless transceiver is in communication with the sensor assembly via the cable. A wireless communication component (104) wirelessly transmits a sensor measurement collected by the sensor assembly to a sensor measurement processing system (132) via a wireless link (150) for physiological data generation at the sensor measurement processing system.
Abstract: An electromyography (EMG) device according to an aspect of the present disclosure includes a main circuit board having opposing first and second faces. A plurality of first connectors of a first type are provided on the first face, and a plurality of input contacts are provided on the second face. An EMG circuit is provided on the main circuit board. The EMG circuit is configured to utilize the input contacts as inputs to obtain an EMG input signal, and process the EMG input signal to provide an EMG output signal that is based on, but different from, the EMG input signal. For each of the input contacts, there is no conductive path directly between the input contact and any of the first connectors.
Abstract: A system for detecting salt ion concentration, comprising a device further comprising a sensor having a carbon printed electrode on a flexible substrate with adhesive on one side (backside) and the circuit electronics to generate pulse signal stimuli and measure salt concentrations to determine hydration level of a person or a living being, wherein the device is a wearable device. The electrode can be made into different shapes changing the area as necessary, since it is a carbon printed electrode and is flexible.
Abstract: This document describes an electrode assembly for use with a defibrillator, the electrode assembly comprising at least one electrode including a first surface that can be affixed to either of a pediatric patient and an adult patient and a second surface, wherein a majority of the second surface includes pictorial instructions related to use of the electrode assembly; and a chest compression sensor attached to the at least one electrode, wherein the at least one electrode is configured to be used on an adult patient when the electrode assembly is in a first orientation, and wherein the at least one electrode is configured to be used on a pediatric patient when the electrode assembly is in a second orientation.
Type:
Grant
Filed:
February 23, 2017
Date of Patent:
November 1, 2022
Assignee:
ZOLL Medical Corporation
Inventors:
Melissa M. Dascoli, David N. Craige, III, Gary A. Freeman, Ian Durrant, James Wilson, Brian Stonecipher, George Reilly, Deborah T. Jones
Abstract: An electrocardiography patch is provided. The patch includes a backing and at least two electrocardiographic electrodes each positioned on the backing, across from another of the electrocardiographic electrodes, to capture electrocardiographic signals. A flexible circuit includes a pair of circuit traces electrically coupled to the electrocardiographic electrodes. A wireless transceiver communicates at least a portion of the electrocardiographic signals.
Type:
Grant
Filed:
July 5, 2021
Date of Patent:
September 20, 2022
Assignee:
Bardy Diagnostics, Inc.
Inventors:
Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
Abstract: A self-authenticating electrocardiography and physiological sensor monitor is provided. An electrode patch includes an elongated strip and electrodes exposed on each end. A receptacle is adhered to the elongated strip and includes electrical pads. Circuit traces are electrically coupled to the electrocardiographic electrodes and the electrical pads. A monitor recorder having a sealed housing is adapted to be secured into the receptacle. Circuitry within the housing includes a microcontroller with a private key. A copy of the private key is stored on the patch. Self-authentication is performed each time the monitor recorder is inserted into a new patch by challenging the patch using a code hashed with the private key and by receiving a response from the patch in reply to the challenge. A front end circuit senses electrocardiographic signals via electrodes on the patch when the response received by the microcontroller is positive, until the electrode patch expires.
Type:
Grant
Filed:
September 2, 2019
Date of Patent:
September 20, 2022
Assignee:
Bardy Diagnostics, Inc.
Inventors:
Jason Felix, Gust H. Bardy, Jon Mikalson Bishay
Abstract: An ambulatory electrocardiography monitor is provided. The monitor includes a housing adapted to couple to a monitoring patch that includes electrocardiographic electrodes; and electronic circuitry provided within the housing. The electronic circuitry includes an electrocardiographic front end circuit; the microcontroller configured to: execute a power up sequence upon the housing coupling to the patch; after the execution of the power-up sequence, retrieve from the monitoring patch an identifier associated with the patch and a password for accessing results of a physiological monitoring conducted using the patch; read samples of the electrocardiographic signals, buffer the samples of the electrocardiographic signals, compress the buffered samples of the electrocardiographic signals, buffer the compressed samples of the electrocardiographic signals, and write-the buffered samples into a memory in association with the password and the identifier; and the memory electrically interfaced with the microcontroller.
Type:
Grant
Filed:
May 24, 2021
Date of Patent:
September 20, 2022
Assignee:
Bardy Diagnostics, Inc.
Inventors:
Jason Felix, Ezra M. Dreisbach, Jon Mikalson Bishay, Corey Bailey Williamson, Gust H. Bardy
Abstract: Provided is a body composition analyzing apparatus by using an impedance of a half of an upper body. According to an example embodiment, the body composition analyzing apparatus includes a first electrode part which comes into contact with a half of an upper body of an object, a second electrode part which comes into contact with the half of the upper body, a measurer configured to apply a current to each of the electrode parts, and to measure an impedance of the half of the upper body of the object by measuring a voltage of each of the electrode parts, and an analyzer configured to analyze body composition of the object based on the measured impedance of the half of the upper body.
Type:
Grant
Filed:
August 7, 2018
Date of Patent:
August 16, 2022
Assignee:
SAMSUNG ELECTRONICS CO., LTD.
Inventors:
Won Jong Jung, Kak Namkoong, Yeol Ho Lee, Myoung Hoon Jung
Abstract: An apparatus is disclosed. The apparatus has a lighting component, an energy storage assembly electrically connected to the lighting component, and a housing. The energy storage assembly is a Graphene stack battery that includes a Graphene strip. The energy storage assembly is disposed on or in the housing. The lighting component is disposed on or in the housing. The Graphene strip is a folded Graphene strip with a folded serpentine shape having intervening insulation strips disposed between a plurality of folded Graphene strip portions with leads at the two ends of the Graphene strip.
Abstract: A tag is provided that includes a battery having a printed anode and cathode. A printed circuit connection layer is formed in one of the anode or the cathode. A printed antenna is formed in one of the anode or the cathode. A low-power transmitter coupled to the circuit connection layer.
Type:
Grant
Filed:
September 21, 2020
Date of Patent:
May 31, 2022
Assignee:
SEMTECH CORPORATION
Inventors:
Ross Eliot Teggatz, Paul James Garrity, Marc Philippe Daniel Pegulu
Abstract: An ambulatory electrocardiography monitor is provided. The monitor includes a housing adapted to couple to a monitoring patch that includes electrocardiographic electrodes; and electronic circuitry provided within the housing. The electronic circuitry includes an electrocardiographic front end circuit; the microcontroller configured to: execute a power up sequence upon the housing coupling to the patch; after the execution of the power-up sequence, retrieve from the monitoring patch an identifier associated with the patch and a password for accessing results of a physiological monitoring conducted using the patch; read samples of the electrocardiographic signals, buffer the samples of the electrocardiographic signals, compress the buffered samples of the electrocardiographic signals, buffer the compressed samples of the electrocardiographic signals, and write-the buffered samples into a memory in association with the password and the identifier; and the memory electrically interfaced with the microcontroller.
Type:
Grant
Filed:
May 24, 2021
Date of Patent:
May 24, 2022
Assignee:
BARDY DIAGNOSTICS, INC.
Inventors:
Jason Felix, Ezra M. Dreisbach, Jon Mikalson Bishay, Corey Bailey Williamson, Gust H. Bardy
Abstract: On-body analyte sensors may be designed for extended wear to provide ongoing measurement of physiological analyte levels. However, on-body analyte sensors may be susceptible to damage or dislodgment during wear due to routine interactions that occur with one's surroundings. Guard rings may be adapted to protect on-body analyte sensors from such interactions. Guard rings may comprise an annular body comprising an inner perimeter face, an outer perimeter face, a top edge, and a bottom face adapted for contacting a tissue surface. The inner perimeter face is shaped to circumferentially surround a sensor housing of an on-body analyte sensor. At least a portion of the outer perimeter face defines a chamfered surface extending between the top face and the bottom face. Adhesive pads or strips may further be engaged with the guard rings and aid in securing the guard rings to a surface, such as skin.
Type:
Grant
Filed:
November 30, 2018
Date of Patent:
April 26, 2022
Assignee:
Abbott Diabetes Care Inc.
Inventors:
Steven T. Mitchell, Frank David Fujimoto, Hyun Brian Cho
Abstract: Herein described is an osseointegrated interface device for engagement with an amputated limb including the skin comprising: a cap portion engageable with an osseointegrated device; wherein the cap portion comprises a surrounding flange; and wherein in use the surrounding flange receives the skin of the amputated limb at a distance spaced from the osseointegrated device.
Abstract: A system for electrically coupling a garment to a mating object and manufacture method thereof, the system comprising: a fabric interlayer of the garment including a set of ports; an electronics substrate having a first surface adjacent to a second side of the fabric interlayer and including a set of vias through a thickness of the electronics substrate, aligned with the set of ports, and a set of contacts at a second surface opposing the first surface; a mount assembly having a third surface adjacent to the second surface of the electronics substrate and including a set of holes aligned with the set of vias and the set of ports, as well as a set of openings that correspond to and receive portions of the set of contacts, and a fourth surface opposing the third surface and defining a cavity configured to receive and electrically interface the mating object to the electronics substrate; and a set of fasteners that 1) compress the backing plate, the fabric interlayer, the electronics substrate, and the mount ass
Type:
Grant
Filed:
July 15, 2019
Date of Patent:
February 1, 2022
Assignee:
Mad Apparel, Inc.
Inventors:
James Artel Berg, Gaston MacMillan, Chris Glaister, Wesley Groom, Liang Yao
Abstract: Adhesive pad systems that provide longer lasting adherence of the mounting unit to the host's skin are provided. Some systems include a reinforcing overlay that at least partially covers the adhesive pad. The reinforcing overlay may be removable without disturbing the sensor so that the overlay may be replaceable.
Type:
Grant
Filed:
August 25, 2015
Date of Patent:
January 11, 2022
Assignee:
DexCom, Inc.
Inventors:
James Jinwoo Lee, Leif N. Bowman, Tim Ray Gackstetter, Jonathan Hughes, Jeff Jackson, Ted Tang Lee, Phong Lieu, Andrew Attila Pal, James R. Petisce, Jack Pryor, Roger Schneider, Peter C. Simpson, George Vigil, Matthew D. Wightlin
Abstract: An electrode is supported on a prosthetic liner to communicate electrically with a residual limb. A housing is fixed to the liner, and is receivable in a socket in an installed position. A processor is installed in the housing in communication with the electrode. Electrical signal contacts are exposed at a distal end of the housing for contacting electrical signal contacts in the socket. The housing defines a ground current path that communicates with a ground contact in the socket.
Type:
Grant
Filed:
May 3, 2019
Date of Patent:
January 4, 2022
Assignee:
WILLOWWOOD GLOBAL LLC
Inventors:
Matthew Wernke, Michael L. Haynes, Christopher T. Kelley, Anne Marie Tollett, Joseph M. Bryant
Abstract: The present invention relates to a neural implant comprising a biomaterial having an outer surface with a stochastic nanoroughness (Rq), and the application of said stochastic nanoroughness in the diagnosis and/or treatment of a neurological disorder, such as, for example, Parkinson's disease, Alzheimer's disease, glioblastoma and/or for disrupting and/or preventing glial scars in the context of mammalian mechanosensing ion channels selected from the family of PIEZO-1 and PIEZO-2 ion channels.
Abstract: The present invention relates to a neural implant comprising a biomaterial having an outer surface with a stochastic nanoroughness (Rq), and the application of said stochastic nanoroughness in the diagnosis and/or treatment of a neurological disorder, such as, for example, Parkinson's disease, Alzheimer's disease, glioblastoma and/or for disrupting, and/or preventing glial scars in the context of mammalian mechanosensing ion channels selected from the family of PIEZO-1 and PIEZO-2 ion channels.
Abstract: Devices associated with on-body analyte sensor units are disclosed. These devices include any of packaging and/or loading systems, applicators and elements of the on-body sensor units themselves. Also, various approaches to connecting electrochemical analyte sensors to and/or within associated on-body analyte sensor units are disclosed. The connector approaches variously involve the use of unique sensor and ancillary element arrangements to facilitate assembly of separate electronics assemblies and sensor elements that are kept apart until the end user brings them together.
Type:
Grant
Filed:
February 28, 2018
Date of Patent:
November 23, 2021
Assignee:
ABBOTT DIABETES CARE INC.
Inventors:
Louis Pace, Peter G. Robinson, Udo Hoss, Samuel Mason Curry, Phillip William Carter, Vincent Michael DiPalma, Amit Mhatre, Jennifer Olson, Manuel Luis Miguel Donnay, Marc Barry Taub
Abstract: Disclosed is an electronic device including a plurality of electrodes selectively connectable to a touch sensor or one or more biometric sensors; and a processor configured to receive a user input through the plurality of electrodes in a state in which the touch sensor and the plurality of electrodes are connected; perform an operation relating to the touch sensor when where the user input satisfies a first condition; connect the plurality of electrodes to the one or more biometric sensors when where the user input satisfies a second condition; and obtain a plurality of pieces of biometric information according to a pre-determined sequence through the plurality of electrodes connected with the one or more biometric sensors.
Type:
Grant
Filed:
February 21, 2018
Date of Patent:
November 2, 2021
Inventors:
In Ho Yun, Jong Ho Park, Jee Hoon Lee, Doo Suk Kang, Jeong Min Park
Abstract: The disclosed human computer interface (HCI) system may include (1) at least one processor, (2) a plurality of sensors that detect one or more neuromuscular signals from a forearm or wrist of a user, and (3) memory that stores (A) one or more trained inferential models that determine an amount of force associated with the one or more neuromuscular signals and (B) computer-executable instructions that, when executed by the at least one processor, cause the at least one processor to (I) identify the amount of force determined by the one or more trained inferential models, (II) determine that the amount of force satisfies a threshold force value, and in accordance with the determination that the amount of force satisfies the threshold force value, (III) generate a first input command for the HCI system. Various other devices, systems, and methods are also disclosed.
Type:
Grant
Filed:
April 30, 2020
Date of Patent:
October 19, 2021
Assignee:
Facebook Technologies, LLC
Inventors:
Christopher Anderson, Adam Berenzweig, Scott Draves, Daniel Wetmore
Abstract: A method for creating a mother wavelet function. The method includes preparing a plurality of vectors, extracting a kernel from the plurality of vectors, and extracting the mother wavelet function from the kernel. The kernel includes a mode value of a vector of the plurality of vectors.
Type:
Grant
Filed:
May 29, 2018
Date of Patent:
September 21, 2021
Assignees:
ISLAMIC AZAD UNIVERSITY, NAJAFABAD BRANCH
Abstract: A swallowing sensor that is attached to a person's pharyngeal portion and that measures the person's swallowing ability includes: a film-shaped detector that detects vibration based on displacement and sound of the pharyngeal portion; an adhesive layer that is provided on one of two main sides of the detector and that attaches the detector to the pharyngeal portion; and a sensing film arranged on the detector to cover entirety of the other main side of the detector, wherein a main side of the sensing film that contacts the detector contains an adhesive component, the sensing film is attachable to the pharyngeal portion around the detector using the adhesive component, and the sensing film conveys vibration to the detector. Accordingly, the swallowing ability can be more accurately measured.
Abstract: An apparatus includes multiple first reservoirs and multiple second reservoirs joined with a substrate. Selected ones of the multiple first reservoirs include a reducing agent, and first reservoir surfaces of selected ones of the multiple first reservoirs are proximate to a first substrate surface. Selected ones of the multiple second reservoirs include an oxidizing agent, and second reservoir surfaces of selected ones of the multiple second reservoirs are proximate to the first substrate surface.
Abstract: A device of and a method for obtaining thermal images of a living mammal body section. The device comprises a thermal energy storage surface structure for contacting the body section. In a calibration mode of operation, the thermal energy storage surface structure is brought at a reference temperature by transferring thermal energy to the thermal energy storage surface structure from a thermal energy transfer module that is controlled by a control circuit for restraining thermal energy transfer by the thermal energy transfer module in the presence of the body section at the thermal energy storage surface structure. In a registration mode of operation, by a thermal sensor, thermal images reflecting thermal energy storage over at least a portion of the thermal energy storage surface structure are obtained, with the body section contacting the thermal energy storage surface structure.
Abstract: A sensor can be manufactured by printing a working electrode onto a substrate using aerosol jet printing. Sensing chemistry (e.g., enzyme-based ink that including detection chemistry) also can be printed onto the working electrode using aerosol jet printing. A reference electrode also can be printed on the substrate at a position spaced along the substrate from the working electrode. In certain examples, the substrate can be positioned within a lumen of a skin piercing member of a sensor module.
Type:
Grant
Filed:
June 4, 2015
Date of Patent:
June 29, 2021
Assignee:
PEPEX BIOMEDICAL, INC.
Inventors:
Vojtech Svoboda, James L. Say, Stephen L. Pohl
Abstract: Aspects of the present disclosure relate to electrophysiology catheters for cardiac medical procedures. More specifically, the instant disclosure relates to an ablation catheter for treating cardiac arrhythmias by ablating tissue, and having one or more subelectrodes internally fixed within the ablation catheter tip to capture electrophysiology characteristics of myocardial tissue in proximity to the one or more subelectrodes.
Type:
Grant
Filed:
October 13, 2017
Date of Patent:
June 22, 2021
Assignee:
St. Jude Medical, Cardiology Division, Inc.
Abstract: An extended wear electrocardiography and physiological sensor monitor is provided. An electrode patch includes an integrated flexible circuit having a single piece of material that includes a longitudinal midsection between upper and lower ends and a mirror image shape of the upper end extending from at least a portion of one side of the upper end that runs substantially parallel to the midsection and folds over the upper end. A receptacle is adhered on an outward surface of the mirror image when the integrated circuit is folded over the upper end. One electrode is positioned on a contact surface of the integrated circuit on the upper end and another electrode is positioned on the contact surface on the lower end. A battery is directly adhered to the outward surface of the mirror image and positioned under the receptacle. A monitor is configured to be removably secured in the receptacle.
Type:
Grant
Filed:
October 7, 2019
Date of Patent:
May 18, 2021
Assignee:
Bardy Diagnostics, Inc.
Inventors:
Jon Mikalson Bishay, Jason Felix, Gust H. Bardy, Joshua Djon Green, Jared Brandon Floyd
Abstract: Systems and methods are provided for operating a physiological monitoring system that comprises a distributed algorithm. The physiological monitoring system ma comprise a sensor and a physiological monitor that may be communicatively coupled with the sensor. The sensor may store a first executable code segment and the physiological monitor may store a second executable code segment. The physiological monitor may be configured to receive the first executable code segment and execute the first and second executable code segments to determine at least one physiological parameter of a subject based on physiological signal provided by the sensor. The physiological monitor may be configured to delete or deactivate the first executable code segment. The physiological monitor may also store a configurable algorithm stage that may be configured based on algorithm configuration data received from the sensor.
Abstract: An Electrocardiography (ECG) system configured to produce an ECG output signal of a patient includes a plurality of electrodes, a monitoring circuit, a drive circuit, a lead circuit, and a control module. The electrodes form a plurality of leads. The monitoring circuit is configured to monitor a voltage differential on the leads and produce the ECG output signal. The drive circuit is configured to deliver a current to the electrodes based on a measured voltage at the electrodes. The lead fault detection system comprises one or more current sources configured to produce a current to deliver to the electrodes. The control module is configured to vary the current produced by the current sources based on a measured parameter at one or more of the electrodes.
Abstract: A training apparatus 1000 using a method of decoding nerve activity includes: a brain activity detecting device 108 for detecting brain activity at a prescribed area within a brain of a subject; and an output device 130 for presenting neurofeedback information (presentation information) to the subject. A processing device 102 decodes a pattern of cranial nerve activity, generates a reward value based on a degree of similarity of the decoded pattern with respect to a target activation pattern obtained in advance for the event as the object of training, and generates presentation information corresponding to the reward value.
Type:
Grant
Filed:
October 31, 2012
Date of Patent:
March 30, 2021
Assignee:
ADVANCED TELECOMMUNICATIONS RESEARCH INSTITUTE INTERNATIONAL
Abstract: Bandage apparatus, methods, and antimicrobial bandages for facilitating wound healing by providing an antimicrobial functionality. A bandage apparatus includes a substrate with a first surface and a second surface opposing the first surface. An attachment mechanism and a nanostructure film are provided on the first surface. The attachment mechanism facilitates removably attaching the substrate to a part of a body comprising a wound. The nanostructure film includes a plurality of nanostructures that contact the wound without puncturing the wound when the substrate is attached to the part of the body comprising the wound.
Type:
Grant
Filed:
November 28, 2017
Date of Patent:
March 23, 2021
Assignee:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Abstract: Methods, apparatus, and systems for delivering electromagnetic energy to a patient's tissue with a reduction in the pain experienced by the patient. Electromagnetic energy is delivered from a treatment electrode through the skin surface to the tissue at a plurality of power levels over a treatment time. During the energy delivery, a portion of the treatment electrode is in a contacting relationship with the skin surface. A tip frame may be disposed between the treatment electrode and the skin surface when the electromagnetic energy is delivered.
Abstract: A catheter for use in a patient's heart, especially for mapping a tubular region of the heart, has a catheter body, a deflectable intermediate section and a distal a mapping assembly that has a generally circular portion adapted to sit on or in a tubular region of the heart. A control handle of the catheter allows for single-handed manipulation of various control mechanisms that can deflect the intermediate section and contract the mapping assembly by means of a deflection control assembly and a linear control assembly. The deflection control assembly has a deflection arm and a rocker member. The linear control assembly has a linear control member, an inner rotational member and a cam. A pair of puller members are responsive to the deflection control assembly to bi-directionally deflect the intermediate section. A third puller member is responsive to the linear control assembly to contract the generally circular portion of the mapping assembly.
Abstract: Implementations are disclosed for monitoring a state or change in state of a physiological parameter based on measured impedance data. In certain implementations, no images are reconstructed from the impedance data. In certain implementations, a metric (e.g., distinguishability, likelihood ratios, and so forth) may be computed and compared to reference metrics or thresholds, such as for changes over time or in comparison to a standard to determine the presence or absence of a physiological state of interest or of a change in such state.
Type:
Grant
Filed:
October 20, 2015
Date of Patent:
December 29, 2020
Assignee:
GENERAL ELECTRIC COMPANY
Inventors:
Gregory Boverman, Tzu-Jen Kao, Bruce Courtney Campbell Amm, Jeffrey Michael Ashe, David Michael Davenport
Abstract: The present disclosure relates to a method for installing a cuff around a target biological structure. The method may include inserting a guidewire through an incision in a patient underneath an exterior surface of a target biological structure, guiding a ramp device over the guidewire to a position underneath the target biological structure such that the target biological structure is partly supported by the ramp device, guiding a cuff deployment tool over the guidewire to the ramp device, the cuff deployment tool comprising an interior volume and a cuff positioned within the interior volume, and causing the cuff from the cuff deployment tool to deploy such that the cuff moves from within the interior volume to an extended position. At least part of the cuff is positioned between the ramp device and the target biological structure in the extended position.
Type:
Grant
Filed:
December 21, 2018
Date of Patent:
December 15, 2020
Assignee:
Verily Life Sciences LLC
Inventors:
Benjamin K. Yaffe, Cindy Au, Eric Irwin
Abstract: Present embodiments include a lithium ion battery module having a lineup of prismatic lithium ion battery cells positioned within a cell receptacle area of a housing of the lithium ion battery module. The prismatic battery cells of the lineup are spaced apart from one another in a spaced arrangement by fixed protrusions extending from internal surfaces of the housing forming the cell receptacle area, and the fixed protrusions extend inwardly to form a plurality of discontinuous slots across a width of the cell receptacle area.
Type:
Grant
Filed:
July 10, 2018
Date of Patent:
December 8, 2020
Assignee:
CPS Technology Holdings LLC
Inventors:
Richard M. DeKeuster, Robert J. Mack, Jennifer L. Czarnecki
Abstract: Disclosed herein are systems, devices, and methods for peripheral nerve stimulation, particularly for treating tremor. The nerve stimulation may be accomplished by a wearable nerve stimulation device, such as a band configured to be worn on the wrist or other body part. The device can accomplish targeted nerve stimulation using circumferentially spaced electrodes. In some embodiments, the device may use only the same number of electrodes as the number of nerves that are to be stimulated. A biphasic charge-balanced waveform may be used to selectively stimulate a nerve near one of the activated electrodes but not to stimulate the nerve near the other activated electrode. The device may use dry electrodes for long-term, repeated use. The dry electrodes may include a conductive base layer and a polymeric, plastic or rubber skin contact layer comprising a conductive filler. The filler may be a powder, fiber, conductive coating, etc.
Type:
Grant
Filed:
January 7, 2019
Date of Patent:
October 27, 2020
Assignee:
Cala Health, Inc.
Inventors:
Serena HanYing Wong, Gregory T. Schulte, Samuel Richard Hamner, Kathryn H. Rosenbluth, John Vincent Colombo
Abstract: An extended wear electrocardiography patch is provided. A flexible backing includes an elongated strip of stretchable material. An electrocardiographic electrode is respectively affixed to and conductively exposed on each end of the elongated strip. A flexible circuit is affixed on each end to the elongated strip and includes a pair of circuit traces each originating within one of the ends of the elongated strip and coupled to one of the electrocardiographic electrodes. A non-conductive receptacle securely adhered on the one end of the elongated strip and includes electrode terminals aligned to interface the pair of circuit traces to an electrocardiography monitor to obtain electrocardiographic signals through the electrocardiographic electrodes.
Type:
Grant
Filed:
December 3, 2018
Date of Patent:
October 20, 2020
Assignee:
Bardy Diagnostics, Inc.
Inventors:
Jason Felix, Gust H. Bardy, Jon Mikalson Bishay, Joshua Djon Green
Abstract: A brain computer interface system interprets an individual's neural signals to predict specific phonemes, words, or sentences, thereby enabling the individual to communicate with others through unspoken methods. Specifically, a brain computer interface system captures neural signals from an individual at mesoscopic resolutions using optical neuroimaging techniques. The system applies the captured neural signals to multiple predictive models that have been trained on neural signals captured from previous individuals. The predictive models output predictions as to a phoneme or word that corresponds to the captured neural signals. Therefore, the individual can communicate through the brain computer interface system by only providing neural signals without using verbal, expressive, or physical means.
Type:
Grant
Filed:
April 17, 2018
Date of Patent:
October 6, 2020
Assignee:
Facebook, Inc.
Inventors:
Mark Allan Chevillet, Regina E. Dugan, Soo Yeon Kim Jennings, Michael Andrew Choma, Tobias Gerard Tiecke, Patrick Mineault, Emily Mittag Mugler, Henry Wettersten
Abstract: Disclosed is a sensor for measuring skin conductivity and a method of manufacturing the same, wherein the sensor includes: a base board made of a flexible material; an electrode provided on a surface of the base board, and transmitting an electrical signal; and an uneven structure provided on the electrode, and configured to increase an electrical contact area with skin via sweat secreted onto a surface of skin.
Type:
Grant
Filed:
January 18, 2017
Date of Patent:
September 29, 2020
Assignee:
Korea Electronics Technology Institute
Inventors:
Suk Won Jung, Young Chang Jo, Woo Kyeong Seong, Yun Jae Won, Hyuck Ki Hong
Abstract: Various systems and methods for implementing frequency domain adaptive motion cancellation filters. An example method includes receiving an optical signal representative of a physiological function. The example method further includes receiving a motion signal from an accelerometer. From the motion signal, a known motion spectrum is expressed as a sum of a product of coefficients for each component of the motion spectrum, wherein the coefficients are representative of the strength of the coupling between the motion signal and the optical signal. The example method may further include determining the coefficients of the motion spectrum using gradient descent and generating a decontaminated optical signal based on the optical signal and the motion model spectrum. Other systems, apparatuses, and methods are described.
Abstract: To provide a biomedical electrode which is capable of restraining displacement or release of the electrode even if a living body takes a hard action, and which is mountable without an occurrence of discomfort. This biomedical electrode has conductive gels 11, 11, retaining members 12, 12 to retain the conductive gels 11, 11, and an adhesive surface 31a, and comprises a sheet-shaped adhesive member 30 to adhere the conductive gels 11, 11 to a living body surface S via the retaining members 12, 12, and further, the adhesive member 30 is formed in an enough size to cover substantially all regions of the retaining members 12, 12, and is configured to have liquid through holes 30b to 30b, 30c, 30c to discharge sweat which is accumulated in internal spaces R, R formed between the living body surface S and the retaining members 12, 12.
Abstract: An electrode cap contains at least one electrode array and is to be applied to a subject's head. The electrode array contains an insulating layer, two electrodes disposed opposite one another on the insulating layer, namely a first measurement electrode facing toward the subject's head and a reference electrode facing away from the subject's head. A conductive body abuts the reference electrode and is in electrical contact therewith, and is arranged on the side of the reference electrode that faces away from the subject's head. The individual conductive bodies of all the electrode arrays are electrically connected to each other.
Abstract: A data collection device can determine that a connection is unavailable between the data collection device and a data processing platform. The data collection device can obtain, after the connection is unavailable, a plurality of readings. The data collection device can determine, based on determining that the connection is unavailable, to discard one or more readings from the plurality of readings to form a set of readings. The data collection device can store, based on determining that the connection is unavailable, the set of readings without storing the one or more readings. The data collection device can determine, after storing the set of readings, that the connection is available. The data collection device can transmit, based on determining that the connection is available, the set of readings to the data processing platform.
Abstract: Certain medical devices, such as auditory prostheses, have an implantable portion and an external portion. The implantable portion and external portion each include a transmission/receiver coil that communicates signals between the two portions. The implanted coil is implanted about the ear canal while the external coil is disposed about the pinna or in the ear canal itself. The proximity of the two coils allows for signal transmission between the implantable and external portions.
Type:
Grant
Filed:
August 22, 2016
Date of Patent:
August 18, 2020
Assignee:
COCHLEAR LIMITED
Inventors:
Martin Evert Gustaf Hillbratt, Werner Meskens, Koen Erik Van den Heuvel
Abstract: A method is described for determining biological tissue type based on a complex impedance spectra obtained from a probe with a conducting part adjacent a tissue region of interest, wherein the impedance spectra includes data from a number of frequencies. The method may include: obtaining, from the complex impedance spectra, a first data set representative of impedance modulus values, or equivalent admittance values, at one or more frequencies, obtaining, from the complex impedance spectra, a second data set representative of impedance phase angle values, or equivalent admittance values, at one or more different frequencies, applying a first discrimination criterion to the first data set, applying a second discrimination criterion to the second data set, and thereby determining if the tissue region of interest is a tissue type characterised by the discrimination criteria.
Type:
Grant
Filed:
October 12, 2015
Date of Patent:
July 21, 2020
Assignee:
Oslo Universitetssykehus HF
Inventors:
Håvard Kalvøy, Axel Sauter, Audun Stubhaug, Sverre Grimnes, Ørjan G. Martinsen