Testing Aqueous Humor Pressure Or Related Condition Patents (Class 600/398)
  • Patent number: 10772498
    Abstract: An ophthalmological imaging device according to embodiments comprises an objective lens, an interference optical system, an optical scanner, a controller, and an image forming part. The interference optical system divides light from a light source into measurement light and reference light, causes the measurement light to become incident on a subject's eye via the objective lens, and detects interference light between the reference light and return light of the measurement light that has exited from the subject's eye and passed through the objective lens. The optical scanner deflects the measurement light. The controller controls the optical scanner such that a position away from an optical axis of the objective lens is set as a center to deflect the measurement light. The image forming part forms an image of the subject's eye based on a detection result of the interference light by the interference optical system.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: September 15, 2020
    Assignee: TOPCON CORPORATION
    Inventor: Yoshikiyo Moriguchi
  • Patent number: 10772502
    Abstract: The invention provides devices and methods for non-invasive monitoring and measuring of intraocular pressure (IOP) of a subject. Embodiments include a lens that is adapted to fit on the subject's eye, a microstructure disposed in or on the lens, the microstructure having at least one feature that exhibits a change in shape and/or geometry and/or position on the lens in response to a change in curvature of the lens. When the curvature of the lens changes in response to a change in IOP, a corresponding change in shape and/or geometry and/or position of the feature may be used to determine the change in IOP. The change in the feature is detectable in digital images of the lens taken with a mobile electronic device such as a smartphone.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: September 15, 2020
    Assignees: Queen's University at Kingston, Kingston Health Sciences Centre
    Inventors: Yong Jun Lai, Kong Ying Xie, Robert James Campbell
  • Patent number: 10631824
    Abstract: A medical body surface ultrasonic probe may comprise a probe body and a sticking plate, where the sticking plate may comprise a sub-plate. The sub-plate may be connected to the probe body, and the bottom of the sub-plate may have a sticking layer for attaching a medical body surface ultrasonic probe to a body surface of a monitored user. The medical body surface ultrasonic probe can be used where prolonged, continuous ultrasonic monitoring is required. In addition, a corresponding ultrasonic diagnostic apparatus is also provided.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: April 28, 2020
    Assignee: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD.
    Inventors: Shuo Liu, Yong Li, Jianhui Liu, Qun Lin
  • Patent number: 10493274
    Abstract: An arrangement for reducing intraocular pressure includes a pulse signal source, a probe coupling, and at least one electrode. The probe coupling is configured to be supported on a portion of a living eye. The electrodes are supported on the probe coupling. The electrodes are operably coupled to receive a pulse signal from the pulse signal source.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: December 3, 2019
    Assignees: Purdue Research Foundation, The Jackson Laboratory
    Inventors: Pedro Irazoqui, Simon John, Alex Kokini, Adam Willats, Alexander Chelminski, Matt Matuscak, Gabriel Simon
  • Patent number: 10478064
    Abstract: A device for determining an intraocular pressure of an eye is disclosed. The device comprises; (a) a housing; (b) a plunger axially movable within the housing, a first end of the plunger having a tip for contacting the eye; (c) an indicator arm operatively connected to a second end of the plunger; (d) a measurement gauge for indicating the intraocular pressure of the eye; and (e) a resilient biasing member for biasing the plunger towards an extended position in which the plunger tip protrudes beyond the housing and the indicator arm is biased towards a first position on the measurement gauge. Applying pressure to the eye via the plunger tip causes the intraocular pressure of the eye to exert an opposing force on the plunger tip causing the plunger to retract into the housing to cause a reciprocal movement of the indicator arm towards a second position thereby indicating the intraocular pressure of the eye on the measurement gauge.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: November 19, 2019
    Assignee: INGENEUS PTY LTD.
    Inventors: Richard Gordon Walmsley, David James Lockwood, Michael Andrew Coote
  • Patent number: 10419860
    Abstract: Embodiments of the present invention are directed to a method of stimulating a cornea. A non-limiting example of the method includes capturing a sound with a microphone. A non-limiting example of the method also includes transducing the sound to an electric signal by a microprocessor. A non-limiting example of the method also includes stimulating a piezo-electric element adjacent to a receptor of the cornea, wherein the piezo-electric element is positioned on an eye lens with an electric signal. A non-limiting example of the method also includes mechanically stimulating a receptor of the cornea with the stimulated piezo-electric element.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: September 17, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Amos Cahan, Katsuyuki Sakuma
  • Patent number: 10386640
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: August 20, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 10263549
    Abstract: A driving device includes a case with a cover mounted thereto. A transmission device is received in the case and has a stepper motor and a gear reduction unit which includes multiple gears engaged with each other. The stepper motor drives the gear reduction unit which is connected to an object. A circuit board is connected with the transmission device and provides power to the stepper motor and controls the stepper motor. A sensing device has a sensor and a detector which is connected to one of the gears of the gear reduction unit. When the gear reduction unit drives the detector to pass the sensor, the sensor sends a signal to the circuit board which keeps on providing the power to the stepper motor. When no signal is sent to the circuit board by the sensor, the circuit board cuts off the power to the stepper motor.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: April 16, 2019
    Assignees: TDCM Corporation Limited, Tong Yang Industry Co., Ltd.
    Inventors: Hsiang-Chih Hsieh, Hung-Yi Tseng, Jui-Hsiang Huang
  • Patent number: 10241572
    Abstract: Systems, devices, and methods for proximity-based eye tracking are described. A proximity sensor positioned near the eye monitors the distance to the eye, which varies depending on the position of the corneal bulge. The corneal bulge protrudes outward from the surface of the eye and so, all other things being equal, a static proximity sensor detects a shorter distance to the eye when the cornea is directed towards the proximity sensor and a longer distance to the eye when the cornea is directed away from the proximity sensor. Optical proximity sensors that operate with infrared light are used as a non-limiting example of proximity sensors. Multiple proximity sensors may be used and processed simultaneously in order to provide a more accurate/precise determination of the gaze direction of the user. Implementations in which proximity-based eye trackers are incorporated into wearable heads-up displays are described.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: March 26, 2019
    Assignee: North Inc.
    Inventors: Mélodie Vidal, Jake Chapeskie
  • Patent number: 10137034
    Abstract: A vitrectomy surgical system is disclosed herein. The surgical system includes a vitrectomy probe having a cutting portion comprising an inner cutting tube, an outer cutting tube, and an outer port. The inner cutting tube is movable relative to the outer cutting tube to cut vitreous humor during a vitrectomy procedure. The surgical system further includes a motor configured to move the inner cutting tube relative to the outer cutting tube and one or more pressure sensors coupled to the vitrectomy probe to measure a pressure proximate to a distal portion of the vitrectomy probe and provide pressure feedback. Related systems and methods are also included.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: November 27, 2018
    Assignee: Novartis AG
    Inventor: Tammo Heeren
  • Patent number: 10028819
    Abstract: Systems, devices and methods are presented for embolic protection. In some embodiments, a device for implantation in a patient's vessel containing a fluid flow is provided which comprises proximal and distal ends, an undeployed, substantially linear state, and a deployed, spring-like (helical) state comprising windings. When the device is deployed, the line segment connecting the proximal and distal ends is approximately perpendicular to the majority of the windings and to the fluid flow. In some embodiments, a delivery device for the monofilament device is provided. The delivery device comprises a needle having a lumen, a sharp distal end, and a pusher slidable within the needle. A method for deploying the monofilament device using the delivery device is provided.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: July 24, 2018
    Assignee: Javelin Medical Ltd.
    Inventors: Guy Shinar, Ofer Yodfat
  • Patent number: 10025118
    Abstract: As such, the present invention will provide a piezoelectric energy-harvesting device in a contact lens that utilizes the multiplicity of constant forces generated by the eye for generating usable energy. The present invention will place a plurality of piezoelectric microdevices in direct or indirect contact with the eye, with the preferred embodiment in the form of a contact lens comprising an array of piezoelectric microdevices at the perimeter of a contact lens. These piezoelectric microdevices will harvest electrical energy generated by the mechanical forces applied by the various activities and movements of the eye, including, but not limited to, winking, squinting, blinking, rolling of the eyes, and vibration of the eyes.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: July 17, 2018
    Inventors: David T. Markus, Michael C. Hayes
  • Patent number: 9730788
    Abstract: A device for optically representing intraocular pressure, having an arrangement which is implanted into the eye with a membrane that curves outwards when the intraocular pressure changes, and a contact surface, these altering the polarization for a spectral range of incident and reflected light in the region of their contact with one another, as well as a read-out arrangement that optically reproduces a planar image of the light which is reflected by the photonic crystal and whose polarization has been altered, and that comprises a polarization filter for the irradiated light and the light reflected by the photonic crystal. Also, a method for measuring intraocular pressure.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: August 15, 2017
    Assignee: Christian-Alberts-Universitaet zu Kiel
    Inventors: Yousef Nazirizadeh, Martina Gerken, Torben Karrock, Johann Roider
  • Patent number: 9717411
    Abstract: Disclosed is a method of manufacturing an intraocular pressure sensor that is put into an eyeball of a patient and measures the intraocular pressure, the method comprising: preparing a first substrate; depositing a base film on the bottom of the first substrate; exposing the top of the base film by etching the first substrate; applying epoxy onto the center of the exposed base film; disposing the first electrode at the epoxy-applied portion on the base film; preparing a second substrate; depositing a support film onto the second substrate; forming a second electrode on the support film; exposing the bottom of the support film by etching the second substrate; and disposing the second substrate onto the first substrate.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: August 1, 2017
    Assignee: SOONGSIL UNIVERSITY RESEARCH CONSORTIUM TECHNO-PARK
    Inventors: Byung Joo Kang, Ji Sung Jo, Chang Kun Park
  • Patent number: 9523865
    Abstract: Apparatus, systems and methods of contact lenses with power sources are provided. In some aspects, a contact lens can include a substrate; and a circuit. The circuit can include: one or more sensors disposed on or within the substrate; circuitry disposed on at least a portion of the substrate; one or more photovoltaic cells disposed on at least a portion of the substrate; and a hybrid power component that supplies at least one of two or more different types of power to the circuitry, wherein at least one of the two or more different types of power is radio frequency/inductive power. In various aspects, other types of power can be solar and/or microelectromechanical system power. Additionally, in various aspects, photovoltaic cells can be arrayed in different configurations and/or over a significant portion of a viewing surface of the contact lens. In some aspects, the photovoltaic cells can be transparent.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 20, 2016
    Assignee: Verily Life Sciences LLC
    Inventors: Nathan Pletcher, Brian Otis
  • Patent number: 9498114
    Abstract: A system for determining biomechanical properties of corneal tissue includes a light source configured to provide an incident light and a confocal microscopy system configured to scan the incident light across a plurality of cross-sections of corneal tissue. The incident light is reflected by the corneal tissue as scattered light. The system also includes a filter or attenuating device configured to block or attenuate the Rayleigh peak frequency of the scattered light, a spectrometer configured to receive the scattered light and process frequency characteristics of the received scattered light to determine a Brillouin frequency shift in response to the Rayleigh peak frequency being blocked or attenuated by the filter or attenuating device, and a processor configured to determine a three-dimensional profile of the corneal tissue according to the determined Brillouin frequency shift. The three-dimensional profile provides an indicator of one or more biomechanical properties of the corneal tissue.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: November 22, 2016
    Assignee: Avedro, Inc.
    Inventors: Marc D. Friedman, David Muller, Amit Paranjape
  • Patent number: 9474487
    Abstract: Methods, apparatus and systems for measuring pressure and/or for quantitative or qualitative measurement of analytes within the eye or elsewhere in the body. Optical pressure sensors and/or optical analyte sensors are implanted in the body and light is cast from an extracorporeal light source, though the cornea, conjunctiva or dermis, and onto a reflective element located within each pressure sensor or analyte sensor. The position or configuration of each sensor's reflective element varies with pressure or analyte concentration. Thus, the reflectance spectra of light reflected by the sensors' reflective elements will vary with changes in pressure or changes in analyte concentration. A spectrometer or other suitable instrument is used to process and analyze the reflectance spectra of the reflected light, thereby obtaining an indication of pressure or analyte concentration adjacent to the sensor(s).
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: October 25, 2016
    Assignee: BCC Enterprise
    Inventors: Roy S. Chuck, George Baerveldt, Jim-Son Chou
  • Patent number: 9415162
    Abstract: Methods, systems, and software for controlling infusion pressure, such as during a medical procedure, using systemic blood pressure are described. Systemic blood pressure, such as brachial arm blood pressure or radial artery blood pressure, may be used to estimate central retinal artery blood pressure to estimate critical closing pressure. Further, the disclosure relates to controlling infusion pressure to prevent an increase in intraocular pressure above the estimated critical closing pressure when such is not desired, and, when such is desired, using systemic blood pressure and infusion pressure to control an intentional increase in intraocular pressure above the estimated critical closing pressure to stop intraocular bleeding.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: August 16, 2016
    Assignee: Alcon Research, Ltd.
    Inventor: Steven T. Charles
  • Patent number: 9357912
    Abstract: The present invention relates generally to apparatus and methods for evaluating the condition and properties of eye tissue. More particularly, the present invention is directed to apparatus and methods for non-invasively characterizing the biomechanical properties of eye tissue by utilizing an internal perturbation component.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: June 7, 2016
    Inventor: Yan Zhang
  • Patent number: 9307905
    Abstract: The present technology relates generally to intraocular pressure (“IOP”) monitoring systems and associated devices and methods. In some embodiments, an intraocular pressure monitoring system configured in accordance with the technology comprises an implantable intraocular assembly and an external unit configured to transmit power to and receive data from the intraocular assembly. The intraocular assembly can include an IOP sensing device embedded within a flexible, expandable annular member. The IOP sensing device can include an antenna, a pressure sensor, and a microelectronic device encapsulated by an elastomer.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 12, 2016
    Assignee: University of Washington
    Inventors: Cagdas Varel, Tueng T. Shen, Karl F. Bohringer, Brian Otis, Buddy D. Ratner
  • Patent number: 9271677
    Abstract: Intraocular pressure measuring and/or monitoring device comprising a soft contact lens and a pressure sensor united with the soft contact lens, the pressure sensor being located such that it is applied against an eye of a user for sensing the intraocular pressure (IOP) of the eye when the soft contact lens is worn by the user, wherein the soft contact lens is softer than a surface of the eye and is configured to adapt its shape to the shape of the eye under the effect of capillary force maintaining the contact lens on the eye when the user is wearing the contact lens.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: March 1, 2016
    Assignee: Sensimed SA
    Inventor: Matteo Leonardi
  • Patent number: 9247877
    Abstract: Disclosed is a device adapted to measure intraocular pressure comprising: a corneal contact lens having a pressure sensor mounted in a recess or cavity in the contact lens, and wherein the contact lens has a back surface which is formed so as to protrude in a desired portion beyond the profile of the adjacent part of the lens and thus to press against the cornea, which protruding portion experiences a reactive deformation which is detected directly or indirectly by the pressure sensor.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: February 2, 2016
    Assignees: UNIVERSITY OF DUNDEE, CONTACT LENS PRECISION LABORATORIES LTD
    Inventors: Ahmed Elsheikh, John Clamp
  • Patent number: 9192298
    Abstract: A monitoring apparatus for the eye has a soft contact lens formed of a transparent substrate having an inner surface that faces the eye and an outer surface. A first arcuate pattern of resistive traces is formed onto the outer surface of the lens substrate and centered about the center of the lens. A second arcuate pattern of resistive traces is formed onto the inner surface of the lens substrate and centered about the center of the lens. One or more conductive traces connects the first pattern to the second pattern. A signal monitor is in signal communication with the first and second arcuate patterns of resistive traces and provides a signal indicative of the lens shape according to electrical current through the first and second arcuate patterns of resistive traces.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: November 24, 2015
    Assignee: Syntec Optics
    Inventors: Siebe Bouwstra, Alok Kapoor
  • Patent number: 9185486
    Abstract: The present invention discloses an ophthalmic device with micro-acoustic electromechanical elements and associated methods. In some embodiments, the micro-acoustic electromechanical elements may be useful for the purpose of providing audible warnings and/or messages to a user. The audible warnings and/or messages can include, for example, messages transmitted wirelessly through a communication element of the ophthalmic device and/or generated within the ophthalmic device. In addition, in some embodiments the ophthalmic device can be an energized contact lens that is used both for optical correction and the transmission of sound through bone resonance to the inner ear of a user.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: November 10, 2015
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventor: Randall Braxton Pugh
  • Patent number: 9173564
    Abstract: Systems and methods of sensing intraocular pressure are described. An example miniaturized intraocular pressure (IOP) monitoring system is provided using a nanophotonics-based implantable IOP sensor with remote optical readout that can be adapted for both patient and research use. A handheld detector optically excites the pressure-sensitive nanophotonic structure of the IOP-sensing implant placed in the anterior chamber and detects the reflected light, whose optical signature changes as a function of IOP. Optical detection eliminates the need for large, complex LC structures and simplifies sensor design. The use of nanophotonic components improves the sensor's resolution and sensitivity, increases optical readout distance, and reduces its size by a factor of 10-30 over previous implants. Its small size and convenient optical readout allows frequent and accurate self-tracking of IOP by patients in home settings.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: November 3, 2015
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Hyuck Choo, David Sretavan, Myung-Ki Kim
  • Publication number: 20150148649
    Abstract: Systems and methods are disclosed for obtaining rheological properties of viscoelastic medium, and in particular, in-vivo evaluation of body fluid such as the vitreous. The system includes a needle-like probe having a distal and a proximal end, a rotational actuator, and a sensor coupled to the rotational actuator. The proximal end of the probe is configured for attachment to the rotational actuator. The distal proximal end of the probe has a roughened outer circumferential surface extending axially along at least a portion of the distal end, wherein the roughed distal end of the probe is configured to be disposed within the viscoelastic medium, and wherein the sensor is configured to obtain measurements corresponding rotation of the probe within the viscoelastic medium.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hossein Pirouz Kavehpour, Pooria Sharif-Kashani, Jean-Pierre Hubschman
  • Publication number: 20150148648
    Abstract: The present invention relates to an ophthalmic device with an intraocular pressure monitoring system and associated methods. In some embodiments, the ophthalmic device can be a contact lens with an intraocular pressure monitoring system that is not dependent on eye ball shape or change over time. Further, the intraocular pressure monitoring system may include elements for delivering audible and/or visual messages to the user that can be useful for the monitoring and treatment of glaucoma. The audible and/or visual messages can be signals communicated to the user using one or both of the ophthalmic device and a wireless device in communication with the ophthalmic device.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: Johnson & Johnson Vision Care, Inc.
    Inventor: Randall Braxton Pugh
  • Publication number: 20150094806
    Abstract: The invention relates to an implant device comprising a sensor module which comprises one or more first fastening means, an implant module which comprises one or more second fastening means, and a connecting module, by means of which the sensor module is connected to the implant module via the one or the first fastening means and via the one or the second fastening means, and comprising a fold axis, along which the implant device can be folded up.
    Type: Application
    Filed: January 10, 2013
    Publication date: April 2, 2015
    Applicant: IMPLANDATA OPHTHALMIC PRODUCTS GMBH
    Inventor: Dick Scholten
  • Publication number: 20150094560
    Abstract: A mechanical IOP (intra ocular pressure) monitor includes a cylinder fitted with an ocular plate attached to the cylinder interior. The cylinder interior comprises a mechanism for transducing pressure, detecting intraocular pressure and a signaling component for indicating when a set intraocular pressure is exceeded.
    Type: Application
    Filed: June 30, 2014
    Publication date: April 2, 2015
    Inventor: Michael L. COHEN
  • Publication number: 20150087953
    Abstract: A non-invasive intraocular pressure sensor adapted to be configured on an eyeball is provided. The non-invasive intraocular pressure sensor includes a sensing unit and a readout circuit. The sensing unit includes a plurality of electrode layers and a dielectric layer. The dielectric layer encloses the electrode layers and fills therebetween, and the electrode layers and the dielectric layer form a capacitor. A variation of capacitance of the capacitor varies with a variation of an intraocular pressure of the eyeball. The readout circuit is electrically connected to the sensing unit.
    Type: Application
    Filed: February 12, 2014
    Publication date: March 26, 2015
    Applicant: National Chiao Tung University
    Inventors: Jin-Chern Chiou, Tzu-Sen Yang, Yu-Chieh Huang, Kuan-Ting Yeh
  • Publication number: 20150073253
    Abstract: A monitoring apparatus for the eye has a soft contact lens formed of a transparent substrate having an inner surface that faces the eye and an outer surface. A first arcuate pattern of resistive traces is formed onto the outer surface of the lens substrate and centered about the center of the lens. A second arcuate pattern of resistive traces is formed onto the inner surface of the lens substrate and centered about the center of the lens. One or more conductive traces connects the first pattern to the second pattern. A signal monitor is in signal communication with the first and second arcuate patterns of resistive traces and provides a signal indicative of the lens shape according to electrical current through the first and second arcuate patterns of resistive traces.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: SYNTEC TECHNOLOGIES, INC.
    Inventors: Siebe Bouwstra, Alok Kapoor
  • Publication number: 20150057524
    Abstract: Systems and methods for capturing intraoperative biometry and/or refractive measurements include a sensor or valve associated with the eye and configured to detect a pressure of the eye. The system also includes an intra-op diagnostics device including a control unit arranged to actuate the intra-op diagnostics device to capture the intraoperative biometry and/or refractive measurements when the sensor or valve detects pressure within a predetermined pressure range.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 26, 2015
    Applicant: Alcon Research, Ltd
    Inventors: Alexander N. Artsyukhovich, Lingfeng Yu, Z. Aras Aslan
  • Publication number: 20150057523
    Abstract: An intraocular pressure monitoring and sensing device for implantation in an eye of a patient may include a substrate having a pressure sensor disposed on a top surface thereof and a pressure sensor cap disposed on the substrate over the pressure sensor. The pressure sensor cap may include a wall structure extending from the top surface of the substrate, the wall structure laterally surrounding the pressure sensor. The pressure sensor cap may further include a cap top situated above the pressure sensor, the cap top and wall structure together forming an interior chamber, and a chamber inlet providing fluid access to the interior chamber. At least one of the cap top and the wall structure includes a semi-permeable surface to aid in priming.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicant: ALCON RESEARCH, LTD.
    Inventor: Nicholas Max Gunn
  • Publication number: 20150045643
    Abstract: The present technology relates generally to intraocular pressure (“IOP”) monitoring systems and associated devices and methods. In some embodiments, an intraocular pressure monitoring system configured in accordance with the technology comprises an implantable intraocular assembly and an external unit configured to transmit power to and receive data from the intraocular assembly. The intraocular assembly can include an IOP sensing device embedded within a flexible, expandable annular member. The IOP sensing device can include an antenna, a pressure sensor, and a microelectronic device encapsulated by an elastomer.
    Type: Application
    Filed: September 16, 2013
    Publication date: February 12, 2015
    Inventors: Cagdas Varel, Tueng T. Shen, Karl F. Bohringer, Brian Otis, Buddy D. Ratner
  • Patent number: 8951221
    Abstract: The invention relates to a method and device for the treatment of glaucoma, though insertion of an implant into the lumen of the Schlemm's canal to realize proper drainage of the aqueous humor, which implant is brought into its position in the Schlemm's canal by means of a catheter having a distal and a proximate portion and provided with a number of pores through which a gaseous or fluid medium which comes from a pressure source can emerge during insertion of the catheter carrying the implant into the Schlemm's canal, and while the catheter is being inserted into the Schlemm's canal the gaseous or fluid medium is released under pressure thereby expanding the Schlemm's canal and the implant and upon releasing the implant at its determined location, the catheter can be withdrawn from the Schlemm's canal.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 10, 2015
    Assignee: Grieshaber Ophthalmic Research Foundation
    Inventors: Robert Christopher Stegmann, Matthias Christian Grieshaber, Hans Rudolf Grieshaber
  • Patent number: 8939906
    Abstract: A wireless intraocular pressure monitoring device includes reflecting and detecting modules. The reflecting module includes a soft contact lens having a curvature corresponding to that of a cornea while worn. A metal layer is embedded in and deformable with the soft contact lens. The detecting module includes two waveguides, an oscillator, and a converting unit. The oscillator is operable to generate oscillation signals having a frequency dependent on an equivalent impedance of the waveguides such that the equivalent impedance corresponds to intraocular pressure. The converting unit is operable for receiving and converting the oscillation signals into an output signal corresponding to the intraocular pressure.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: January 27, 2015
    Assignee: National Chiao Tung University
    Inventors: Tzuen-Hsi Huang, Ying-Chun Lin, Wei-Shang Su, Huey-Wen Cheng, Hong-Yi Huang, Ching-Hsing Luo, Jin-Chern Chiou
  • Patent number: 8926510
    Abstract: Described herein is a device for glaucoma treatment and monitoring that comprises a combination of an intraocular pressure (IOP) sensor and a glaucoma drainage device. The device comprises an IOP sensor and an inductive antenna mounted within a porous biocompatible material that forms the drainage path. The IOP sensor is mounted in a footplate portion of the device and is mountable in the anterior chamber of an eye. The footplate portion is connected to a body portion that houses the spiral antenna by a neck portion which retains the footplate portion in a suitable position within the anterior chamber. Due to its size, the footplate portion housing the IOP sensor can readily be inserted into the anterior chamber with the body portion housing the spiral antenna located outside of the anterior chamber in a sub-scleral space to disperse the aqueous humour.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 6, 2015
    Assignee: Istar Medical SA
    Inventors: Andrew J. Marshall, Max G. Maginness, Michel Alvarez
  • Patent number: 8926524
    Abstract: An implantable polymer-based pressure sensor featuring an electrical LC-tank resonant circuit for passive wireless sensing without power consumption on the implanted site. The sensor is microfabricated with parylene to create a flexible coil substrate that can be folded for smaller physical form factor during implantation, and can be stretched back without damage for enhanced inductive sensor-reader coil coupling. Data received from the sensor can be enhanced to provide improved pressure measurements at increased distances.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: January 6, 2015
    Assignee: California Institute of Technology
    Inventors: Po-jui Chen, Yu-Chong Tai
  • Patent number: 8920335
    Abstract: Systems and methods for determining a volume of the posterior segment of an eye during a fluid-to-gas exchange are described. The determined volume of the posterior segment may be used to determine the volume of pure tamponade gas to be introduced into the posterior segment resulting in a desired tamponade gas to other gas (e.g., air) ratio, such as during an ophthalmic surgical procedure. Particularly, the systems and methods may provide for improved gas utilization, less waste, and reduced surgery time, for example, by accurately measuring the volume of the posterior segment of the eye and only using the amount of pure gas required to produce the desired ratio. Further, in some implementations, mixing of a tamponade gas is accomplished intrinsically within the posterior segment of the eye, thereby avoiding manual mixing and reducing surgery time.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: December 30, 2014
    Assignee: Alcon Research, Ltd.
    Inventor: John Christopher Huculak
  • Publication number: 20140364717
    Abstract: A method to obtain and view lop time developments of a patient and to generate database relating to a patient's individual IOP development, includes the steps of continuous measurement and storage of IOP data of a patient over a period of time of at least 24 hours, during a normal day and without medication, and then continuous measurement and storage of IOP data of a patient over a period of time of at least 24 hours, the patient taking their medication, wherein medication times, medication durations, doses, active substances, events throughout the patient's day are recorded, wherein the IOP data are measured using at least double the frequency of an assumed time-based pattern in the IOP development and wherein the stored data are relayed to an analysis unit and the data is analysed.
    Type: Application
    Filed: January 17, 2013
    Publication date: December 11, 2014
    Applicant: IMPLANDATA OPHTHALMIC PRODUCTS GMBH
    Inventors: Max Ostermeier, Stefan Meyer
  • Patent number: 8900143
    Abstract: An intraocular pressure detecting device includes an image capturing unit, a processor, and a pressure detection unit. The image capturing unit, coupled to the image capturing unit, is capable of acquiring an eye image. According to the eye image, the processor can determine an intraocular pressure detection area. After the pressure detection unit detects the intraocular pressure detection area, the intraocular pressure is calculated by the processor of the intraocular pressure detecting device.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: December 2, 2014
    Assignee: Crystalvue Medical Corporation
    Inventors: Meng-Shin Yen, William Wang, Chung-Cheng Chou
  • Patent number: 8894578
    Abstract: An implantable device for measuring IOP comprises a distal portion, a proximal portion and a conformable elongate support extending between the distal and proximal portions. The distal portion comprises a pressure sensor, for example a capacitor, and the proximal portion comprises a coil. The conformable elongate support extends between the distal portion and the coil so as to couple the distal portion to the coil, and the conformable elongate support is sized to position the sensor in the anterior chamber when the proximal portion is positioned under a conjunctiva of the eye. Positioning of the pressure sensor in the anterior chamber has the benefit of readily accessible surgical access and a direct measurement of the IOP of the eye. The proximal portion comprising the coil can be configured to place the coil between the sclera and the conjunctiva, such that the invasiveness of the surgery can be decreased substantially.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: November 25, 2014
    Assignee: Orthomems, Inc.
    Inventors: Vernon G. Wong, Douglas A. Lee
  • Publication number: 20140296687
    Abstract: Certain pressure sensor devices are much smaller than prior art devices, yet are at least as sensitive as the prior art devices. A capacitive pressure sensor can include a flexible substrate that permits bending of a pressure sensing region without significantly affecting operation thereof. The pressure sensor can include a flexible membrane in which an electrode is sandwiched between two layers of polymeric material. The sandwiched electrode can be extremely close to a reference electrode so as to provide for highly sensitive capacitance readings, yet the membrane can be restricted from contacting the reference electrode under high pressure conditions.
    Type: Application
    Filed: October 12, 2012
    Publication date: October 2, 2014
    Inventors: Pedro P. Irazoqui, Dohyuk Ha, William J. Chappell, Simon W.M. John
  • Publication number: 20140275936
    Abstract: A wireless intraocular pressure monitoring device includes reflecting and detecting modules. The reflecting module includes a soft contact lens having a curvature corresponding to that of a cornea while worn. A metal layer is embedded in and deformable with the soft contact lens. The detecting module includes two waveguides, an oscillator, and a converting unit. The oscillator is operable to generate oscillation signals having a frequency dependent on an equivalent impedance of the waveguides such that the equivalent impedance corresponds to intraocular pressure. The converting unit is operable for receiving and converting the oscillation signals into an output signal corresponding to the intraocular pressure.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 18, 2014
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Tzuen-Hsi Huang, Ying-Chun Lin, Wei-Shang Su, Huey-Wen Cheng, Hong-Yi Huang, Ching-Hsing Luo, Jin-Chern Chiou
  • Publication number: 20140275935
    Abstract: An inflatable mask with two ocular cavities can seal against a user's face by forming an air-tight seal around the periphery of the user's eye socket. The sealed air-tight ocular cavity can be pressurized to take ocular measurements. The mask can conform to the contours of a user's face by inflating or deflating the mask. In addition, the distance between the user and a medical device (e.g. an optical coherence tomography instrument) can be adjusted by inflating or deflating the mask. Also disclosed herein is an electronic encounter portal and an automated eye examination. Other embodiments are also described.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Envision Diagnostics, Inc.
    Inventors: Alexander C. Walsh, Paul G. Updike, Richard Castro
  • Publication number: 20140257074
    Abstract: A contact lens shaped measuring device (1) comprises sensor (3) having a protrusion (14) towards the cornea (22). The measuring device (1) is flexible to a degree that it is flattened by a closing eye lid and the protrusion creates an indentation of the cornea. The occurring force on the protrusion is measured by the sensor. Applying a constant lid acceleration/deceleration model to the movement of the lid and a mechanical model to the cornea, the tension of the cornea is determined and deduced from the force measured with the lid closed, yielding the true intraocular pressure. In an alternative, the protrusion is characterized by a discontinuity in its shape, or the sensor is subdivided, each subsensor being characterized by a protrusion of different shape. With the values obtained as extrema and at the discontinuity or with different protrusions, the cornea tension can be obtained by a (linear) extrapolation.
    Type: Application
    Filed: October 19, 2012
    Publication date: September 11, 2014
    Inventors: Alain Saurer, Jean-Noël Fehr
  • Publication number: 20140243645
    Abstract: Intraocular pressure measuring and/or monitoring device comprising a soft contact lens and a pressure sensor united with the soft contact lens, the pressure sensor being located such that it is applied against an eye of a user for sensing the intraocular pressure (IOP) of the eye when the soft contact lens is worn by the user, wherein the soft contact lens is softer than a surface of the eye and is configured to adapt its shape to the shape of the eye under the effect of capillary force maintaining the contact lens on the eye when the user is wearing the contact lens.
    Type: Application
    Filed: October 5, 2011
    Publication date: August 28, 2014
    Applicant: SENSIMED SA
    Inventor: Matteo Leonardi
  • Publication number: 20140243646
    Abstract: Disclosed is a method of manufacturing an intraocular pressure sensor that is put into an eyeball of a patient and measures the intraocular pressure, the method comprising: preparing a first substrate; depositing a base film on the bottom of the first substrate; exposing the top of the base film by etching the first substrate; applying epoxy onto the center of the exposed base film; disposing the first electrode at the epoxy-applied portion on the base film; preparing a second substrate; depositing a support film onto the second substrate; forming a second electrode on the support film; exposing the bottom of the support film by etching the second substrate; and disposing the second substrate onto the first substrate.
    Type: Application
    Filed: November 24, 2011
    Publication date: August 28, 2014
    Applicant: SOONGSIL UNIVERSITY RESEARCH CONSORTIUM TECHNO-PARK
    Inventors: Byung Joo Kang, Ji Sung Jo, Chang Kun Park
  • Publication number: 20140211161
    Abstract: Systems for performing sequential multiple function ophthalmic measurements using separate measurement instruments, by mechanical switching between the instruments. In prior art systems, the separate measurement instruments are stacked, and transfer between them is performed by means of a linear mechanical motion stage. The separate measurement instruments of the present application are mounted on a base which is rotatably pivoted around a joint at a location remote from the optical entry apertures of the instruments. The entrance apertures of the measurement instruments then traverse the eye being measured sequentially. A rotational motion around the pivoted joint is thus transformed into a linear motion at the eye of the subject, without the need for a linear motion stage. A Scheimpflug camera corneal thickness measurement is also described, in which the measurement head is tilted during the corneal scan such that the illuminating slit beam always impinges on the cornea normally.
    Type: Application
    Filed: September 6, 2012
    Publication date: July 31, 2014
    Inventors: Ran Yam, Aderet Sompolinsky, Ian Melnick
  • Publication number: 20140171777
    Abstract: An IOP monitoring device for implantation in an eye of a patient may include a first tube having a first opening, the first tube being configured to extend into the anterior chamber. An intraocular pressure sensing (IOP) device for implantation in an eye of a patient may include a pressure sensor, a pressure sensor cap, and a tube coupled to a chamber inlet. The pressure sensor cap may include a recess having an inner surface, the recess configured to receive the pressure sensor such that a chamber is formed by the pressure sensor and the inner surface and a chamber inlet permitting a fluid to communicate with the chamber and be primed in a bubble-free manner. The tube may be coupled to the chamber inlet to allow fluid communication between an anterior chamber of the eye and the chamber.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 19, 2014
    Applicant: Alcon Research, Ltd.
    Inventors: Robert Sanchez, Michael Morelli, Alex G. Fermin, Michael LeRoy Gelvin