Tissue Attenuation Or Impedance Measurement Or Compensation Patents (Class 600/442)
  • Patent number: 6963907
    Abstract: A method of operating an Internet device, includes downloading via the Internet a medical testing program from a server. At least one sensor is coupled to the Internet device. The sensor is attached or otherwise coupled to a patient. The Internet device executes the test program to obtain test measurement data from the at least one sensor. The test measurement data is uploaded to the server via the Internet. The Internet device receives processed test data from the server as a download from the server via the Internet. The Internet device displays the processed data.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: November 8, 2005
    Assignee: Cardiobeat.com
    Inventors: George McBride, Robert Royce
  • Patent number: 6875176
    Abstract: Systems and methods for assessment of tissue properties, noninvasively, by acquiring data relating to at least one aspect of intrinsic and/or induced tissue displacement, or associated biological responses, are provided. Data relating to tissue displacement and associated biological changes may be acquired by detecting acoustic properties of tissue using ultrasound interrogation pulses, preferably in a scatter or Doppler detection mode. Based on this data, tissue properties are assessed, characterized and monitored. Specific applications for systems and methods of the present invention include non-invasive assessment and monitoring of intracranial pressure (ICP), arterial blood pressure (ABP), CNS autoregulation status, vasospasm, stroke, local edema, infection and vasculitus, as well as diagnosis and monitoring of diseases and conditions that are characterized by physical changes in tissue properties.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: April 5, 2005
    Assignees: Aller Physionix Limited, University of Washington
    Inventors: Pierre D. Mourad, Michel Kliot, Ali Mesiwala, Rex Patterson, Jeffrey G. Jarvik
  • Patent number: 6863655
    Abstract: An ultrasound machine that generates a pattern of indicia corresponding to tracked moving structure, such as a cardiac wall tissue that is displayed on a monitor. The pattern of indicia is generated by displaying a set of tagging symbols related to the tracked movement of the structure over a time period by an apparatus comprising a front-end that generates received signals in response to backscattered ultrasound waves. A Doppler processor generates a spatial set of signals values representing movement within the structure. A non-Doppler processor generates a set of parameter signals representing a spatial set of B-mode values within the structure. A host processor embodies a tracking function to generate a set of tracked movement parameter profiles and motion parameter profiles over a time period corresponding to anatomical locations associated with the set of tagging symbols.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: March 8, 2005
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Steinar Bjaerum, Bjorn Olstad, Kjell Kristoffersen
  • Publication number: 20040249283
    Abstract: A method of determining accurate values of acoustic parameters of tissues, comprising: transmitting first acoustic energy through the tissue along a path in a first direction; acquiring a first reflection signal generated by said tissue along said path from the transmitted first acoustic energy; transmitting second acoustic energy through the tissue along the path in a second direction opposite from the first direction; acquiring a second reflection signal generated by said tissue along said path from the transmitted second acoustic energy; and generating one or more of values of attenuation along the path, velocity of acoustic energy along the path, acoustic impedance of materials along the path and reflection along the path, responsive to both the first and second acquired reflection signals.
    Type: Application
    Filed: July 19, 2004
    Publication date: December 9, 2004
    Inventors: Edward Kantorovich, Avishai Shavitt
  • Publication number: 20040242987
    Abstract: This invention is directed to methods of predicting bone or joint disease in a subject. The invention is also directed to methods of determining the effect of a candidate agent on any subject's risk of developing bone or joint disease.
    Type: Application
    Filed: January 7, 2004
    Publication date: December 2, 2004
    Applicant: Imaging Therapeutics, Inc.
    Inventors: Siau-Way Liew, Philipp Lang, Daniel Steines
  • Publication number: 20040230119
    Abstract: An echogenic medical device such as a stent for insertion into a biological tissue or vessel comprising an elongate tube and having at least one lumen extending substantially along a longitudinal axis. The elongate tube comprises a material having an acoustic impedance different from the acoustic impedance of the biological tissue or vessel of a patient body such that ultrasonic imaging of the tube inside the patient's body may be achieved. The elongate tube may comprise a plastic material such as polyethylene or any formable, pliable material which may be molded and/or extruded to a variety of shapes depending upon a specific application. The invention improves ultrasonic imaging by entrapping air in a lumen of the stent, which may have any cross-sectional shape and which may be sealed anywhere along the longitudinal axis.
    Type: Application
    Filed: May 11, 2004
    Publication date: November 18, 2004
    Inventors: John R. Brustad, Raffi S. Pinedjian
  • Publication number: 20040215075
    Abstract: Ultrasonic strain measurements, which characterize the structure of tissue, may be obtained by combining multiple echo signals acquired at different compressions and at different angles. Such angular compounding may improve the quality of the elastic signal and provide at one time both an axial and lateral strain measurement.
    Type: Application
    Filed: January 27, 2004
    Publication date: October 28, 2004
    Inventors: James A. Zagzebski, Tomy Varghese
  • Publication number: 20040176687
    Abstract: An ultrasound system and method for calculation and display of tissue deformation parameters are disclosed. The tissue deformation parameter strain is determined by an accumulation of strain rate estimates for consecutive frames over an interval. The interval may be a triggered interval generated by, for example, an R-wave in an ECG trace. Three quantitative tissue deformation parameters, such as tissue velocity, tissue velocity integrals, strain rate and/or strain, may be presented as functions of time and/or spatial position for applications such as stress echo. For example, strain rate or strain values for three different stress levels may be plotted together with respect to time over a cardiac cycle. Parameters which are derived from strain rate or strain velocity, such as peak systolic wall thickening percentage, may be plotted with respect to various stress levels.
    Type: Application
    Filed: November 10, 2003
    Publication date: September 9, 2004
    Inventors: Hans Torp, Bjorn Olstad, Andreas Heimdal, Steinar Bjaerum
  • Patent number: 6776759
    Abstract: A method and apparatus is provided for generating and displaying filtered strain rate signals corresponding to tissue structure within a subject in response to complex Doppler signals generated by an ultrasound system. Various combinations of several processing techniques are employed including filtering out high strain rate signals due to reverberation and other sources of noise, complex autocorrelation, velocity signal estimation, real strain rate signal estimation, complex strain correlation signal estimation, complex signal averaging, and real signal averaging. Color strain rate imaging is provided using the techniques such that the color images have reduced noise and improved image quality.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: August 17, 2004
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Andreas Heimdal, Hans Garmann Torp
  • Patent number: 6758815
    Abstract: Apparatus and method for indicating mechanical stiffness properties of body tissue employing Doppler imaging techniques. Ultrasonic signals that are transmitted to the target not only are reflected for developing images of the target from the reflections, but, by appropriate selection of the intensity of the transmitted signals, the body tissue being investigated is deformed or moved when the transmitted signals impinge on the target. The deformation or movement of the body tissue being investigated is imaged and is representative of the mechanical stiffness of this body tissue.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: July 6, 2004
    Inventor: Richard Bruce Bernardi
  • Publication number: 20040127794
    Abstract: An ellipsoidal axes setting unit sets major and minor axis of an ellipsoid based on cross sectional position information and ellipsoidal parameters input by a user while viewing a display. A major axis end detector unit, a front view minor axis end detector unit, and a side view minor axis end detector unit detect ends of the major and minor axes based on the major and minor axes set at the ellipsoidal axes setting unit and a target tissue surface image for each time phase output from an edge extractor unit. A major/minor axes setting unit selects appropriate lengths of the major and minor axes from the input ends of the major and minor axes and outputs the selected lengths to a region-of-interest generator unit where a three-dimensional region of interest is generated.
    Type: Application
    Filed: November 14, 2003
    Publication date: July 1, 2004
    Applicant: Aloka Co., Ltd.
    Inventor: Masaru Murashita
  • Publication number: 20040127793
    Abstract: The invention provides for ultrasonic methods, compositions and devices, particularly methods, compositions and devices that provide for interrogating with ultrasonic transducer(s) at multiple transmission angles in an anatomic region. The invention provides for improved interrogation devices that reduce tissue artifacts arising from heterogenous structures in tissues.
    Type: Application
    Filed: July 1, 2003
    Publication date: July 1, 2004
    Inventors: John D. Mendlein, Philipp Lang
  • Publication number: 20040106868
    Abstract: This invention is directed to methods for using imaging methods to aid in drug discovery, and drug development. This invention also relates to methods of using imaging methods for diagnosis, prognostication, monitoring and patient management of musculoskeletal disease.
    Type: Application
    Filed: September 16, 2003
    Publication date: June 3, 2004
    Inventors: Siau-Way Liew, Konstantinos Tsougarakis, Claude D. Arnaud, Philipp Lang, Daniel Steines, Barry J. Linder
  • Publication number: 20040059220
    Abstract: Systems and methods for noninvasive assessment of cardiac tissue properties and cardiac parameters using ultrasound techniques are disclosed. Determinations of myocardial tissue stiffness, tension, strain, strain rate, and the like, may be used to assess myocardial contractility, myocardial ischemia and infarction, ventricular filling and atrial pressures, and diastolic functions. Non-invasive systems in which acoustic techniques, such as ultrasound, are employed to acquire data relating to intrinsic tissue displacements are disclosed. Non-invasive systems in which ultrasound techniques are used to acoustically stimulate or palpate target cardiac tissue, or induce a response at a cardiac tissue site that relates to cardiac tissue properties and/or cardiac parameters are also disclosed.
    Type: Application
    Filed: July 1, 2003
    Publication date: March 25, 2004
    Applicants: ALLEZ PHYSIONIX LIMITED, UNIVERSITY OF WASHINGTON
    Inventors: Pierre D. Mourad, Michel Kliot, Rex Patterson, George Alec Rooke
  • Publication number: 20040059221
    Abstract: There are provided an ultrasonic imaging system and method which can correct a phase shift effect to image a real change in acoustic impedance in a living body.
    Type: Application
    Filed: July 15, 2003
    Publication date: March 25, 2004
    Inventors: Takashi Azuma, Shin-Ichiro Umemura, Yuichi Miwa
  • Patent number: 6701341
    Abstract: An ultrasound information processing system is disclosed in which ultrasound image data is packetized into ultrasound information packets and routed to one or more of a plurality of processors for performing image processing operations on the ultrasound image data, the ultrasound information packets being routed according to entries in a host-programmable routing table. A common distribution bus is coupled between packetizing circuitry and dedicated input buffers corresponding to each processor for distributing the ultrasound information packets, and a common output bus to is used to transfer processed image data from the processors to an output device. The disclosed ultrasound information processing system architecture allows for a high throughput rate for accommodating real-time image processing operations, while also allowing for ready programmability and upgradability.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: March 2, 2004
    Assignee: U-Systems, Inc.
    Inventors: Anthony Wu, Shengtz Lin, Ali Moayer, Pin Yu
  • Publication number: 20040006270
    Abstract: A method and apparatus for measuring the elastic characteristics of a medium by estimating variations in the speckle patterns in ultrasound images. The method for measuring the elastic characteristics of a medium comprises the steps of applying vibrations to the medium; acquiring a plurality of ultrasound image frames of the medium; estimating a variation in brightness of the speckle pattern over the plurality of ultrasound image frames; and measuring the elastic characteristics of the medium based on the estimated brightness variation. The apparatus for measuring the elastic characteristics of a medium comprises a vibrator for applying vibrations to the medium; transducers for acquiring a plurality of ultrasound image frames of the medium; a device for estimating a variation in brightness of a speckle pattern over the plurality of ultrasound image frames; and a device for measuring the elastic characteristics of the medium based on the estimated brightness vibration.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 8, 2004
    Applicant: Medison Co., Ltd.,
    Inventors: Mok-Kun Jeong, Sung-Jae Kwon
  • Patent number: 6671535
    Abstract: A method and system for using real time closed loop feedback to control the delivery of heat energy is disclosed herein. An energy delivery system may be used to deliver heat energy to a target to effect a change in the target. For example, medical professionals use laser energy to irreversibly damage cells found in cancerous tumors without damaging the surrounding healthy cells. The energy delivery system includes a temperature detection system, a data processor, and a heat generating device. The temperature detection system obtains temperature data from a target and transmits the data to the data processor. The data processor may process the temperature data to provide real time feedback control to the heat generating system, as well as display the data as one or more images on a graphical user interface. The heat generating system receives control commands from the data processor and modulates its heat output accordingly.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: December 30, 2003
    Assignee: Biotex, Inc.
    Inventors: Roger J. McNichols, Ashok Gowda
  • Patent number: 6641537
    Abstract: An ultrasonic transmission unit for an imaging/quantitative ultrasound device provides for coaxial transducer crystals which may be operated independently with a first crystal operated alone for quantitative measurement and the first and second crystal operated together to provide a broad illumination for imaging of structure.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: November 4, 2003
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Richard Franklin Morris, Steven Taylor Morris, Duane Anthony Kaufman
  • Patent number: 6635236
    Abstract: A method for treating podotrochlosis (navicular disease/navicular syndrome) in the foot of a horse is disclosed. The method comprises identifying the specific area(s) of the horse's foot affected by navicular disease and applying at least one extracorporeal shockwave to the affected area(s). In a preferred embodiment, a sonar-emitting device is used to identify the areas within the foot affected by podotrochlosis.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: October 21, 2003
    Inventor: Knut Bär
  • Patent number: 6626855
    Abstract: An ultrasound system used for both imaging and delivery high intensity ultrasound energy therapy to treatment sites and a method for treating tumors and other undesired tissue within a patient's body with an ultrasound device. The ultrasound device has an ultrasound transducer array disposed on a distal end of an elongate, relatively thin shaft. In one form of the invention, the transducer array is disposed within a liquid-filled elastomeric material that more effectively couples ultrasound energy into the tumor, that is directly contacted with the device. Using the device in a continuous wave mode, a necrotic zone of tissue having a desired size and shape (e.g., a necrotic volume selected to interrupt a blood supply to a tumor) can be created by controlling at least one of the f-number, duration, intensity, and direction of the ultrasound energy administered. This method speeds the therapy and avoids continuously pausing to enable intervening normal tissue to cool.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: September 30, 2003
    Assignee: Therus Corpoation
    Inventors: Lee Weng, David M. Perozek, Jimin Zhang
  • Publication number: 20030144592
    Abstract: A method of quantitatively assessing fat content in a target organ from an ultrasound visual image is provided. This method includes obtaining an ultrasound visual image of the target organ, setting a target region in the obtained image, measuring a quantified representative gray level of the target region from a gray level distribution of pixels of the target region, and assessing fat content corresponding to the quantified representative gray level of the target region.
    Type: Application
    Filed: July 24, 2002
    Publication date: July 31, 2003
    Inventors: Ji-wook Jeong, Soo-yeul Lee, Seung-hwan Kim
  • Patent number: 6589178
    Abstract: A bone mineral density meter comprises first input device which enters a sound of speed in a bone; second input device which enters a weight of the person to be measured; third input device which enters fat free mass of the person to be measured; arithmetic device which computes the bone mineral density based on data from said first input device and data from said second input device and said third input device; and display which displays a bone mineral density value computed by said arithmetic device. The present invention allows a bone mineral density to be safely estimated, at a low cost, and with proper accuracy and without having to worry about exposure to X-rays.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: July 8, 2003
    Assignee: Tanita Corporation
    Inventor: Nobuya Sakai
  • Patent number: 6585649
    Abstract: The invention provides for ultrasonic methods, compositions and devices, particularly methods, compositions and devices that provide for interrogating with ultrasonic transducer(s) at multiple transmission angles in an anatomic region. The invention provides for improved interrogation devices that reduce tissue artifacts arising from heterogenous structures in tissues.
    Type: Grant
    Filed: May 2, 1998
    Date of Patent: July 1, 2003
    Inventors: John D. Mendlein, Philipp Lang
  • Patent number: 6577754
    Abstract: A physics based model of the absorption of light by histological stains used to measure the amount of one or more stains at locations within tissue is disclosed. The subsequent analysis results in several improvements in the detection of tissue on a slide, improvements to autofocus algorithms so focusing during image acquisition is confined to tissue, improvements to image segmentation and identification of tissued and its features, improvements to the identification of stain where multiple stains are used, and improvements to the quantification of the extent of staining. The invention relates to the application of these improvements to stain detection and quantification to provide for objective comparison between tissues and closer correlation between the presentations of such features and concurrent patterns of gene or protein expression.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: June 10, 2003
    Assignee: TissueInformatics, Inc.
    Inventors: Ronald Stone, Othman Abdulkarim, Michael Fuhrman
  • Patent number: 6547738
    Abstract: Methods and apparatus for producing zones with different contrast agent concentrations in a contrast agent infused target. An aspect of the method is subjecting the target to an ultrasound flash capable of producing first and second target zones, the first target zone having a higher concentration of contrast agent than the second target zone. Another aspect of the method is forming an ultrasound image of the target, wherein the first and second target zones in the ultrasound image have different ultrasonic responses. An embodiment of the apparatus of the present invention comprises a front-end controller (FEC) for use in a medical imaging system wherein the FEC controls a transducer to selectively radiate, in a single frame, a first beam position at a first energy and a second beam position at a second energy.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: April 15, 2003
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventor: Peter Lysyansky
  • Publication number: 20030069500
    Abstract: Improved focusing of waves is accomplished by compensation for attenuation effects in a medium. The invention is a combination of a method of attenuation leveling to allow operation over uneven surfaces and a method of signal compensation for attenuation that varies with frequency. This combination allows effective focusing of wide band wave signals that operate through irregular surfaces that cause uneven attenuation effects. Apparatus is provided to implement this method in clinical applications and research applications. Spatial attenuation leveling is accomplished with material that attenuates like the body part to be imaged. Compensation for attenuation that varies with frequency is provided by electronic modification of signal waveforms. Applications in the field of ultrasonic imaging in human tissue are specifically discussed. The apparatus includes conformal surfaces that are in contact with a patient's body that serve to prevent direct contact of the body with the attenuating material.
    Type: Application
    Filed: October 10, 2001
    Publication date: April 10, 2003
    Inventor: James K. Bullis
  • Publication number: 20030065264
    Abstract: A method for measuring bone age including:
    Type: Application
    Filed: October 25, 2001
    Publication date: April 3, 2003
    Applicant: Sunlight Medical Ltd.
    Inventors: Liat Tsoref, Dov Furman
  • Patent number: 6542767
    Abstract: A method and system for using real time closed loop feedback to control the delivery of heat energy is disclosed herein. An energy delivery system may be used to deliver heat energy to a target to effect a change in the target. For example, medical professionals use laser energy to irreversibly damage cells found in cancerous tumors without damaging the surrounding healthy cells. The energy delivery system includes a temperature detection system, a data processor, and a heat generating device. The temperature detection system obtains temperature data from a target and transmits the data to the data processor. The data processor may process the temperature data to provide real time feedback control to the heat generating system, as well as display the data as one or more images on a graphical user interface. The heat generating system receives control commands from the data processor and modulates its heat output accordingly.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: April 1, 2003
    Assignee: Biotex, Inc.
    Inventors: Roger J. McNichols, Ashok Gowda
  • Patent number: 6530886
    Abstract: Disclosed is a method for measuring subcutaneous fat using an ultrasonic wave, comprising a step of measuring a portion of an abdomen on a median line of a person under test. The present invention also provides an apparatus for measuring subcutaneous fat using an ultrasonic wave. The apparatus comprises: a reference position setting device which sets said apparatus at a reference position for measurement on a person under test; an ultrasonic transmitter disposed at the predetermined position relative to said reference position setting device; and an ultrasonic receiver disposed at the predetermined position relative to said reference position setting device. According to the present invention, a navel of the person is defined as the reference position for measurement. The area to be measured on the abdomen of the person is located along the median line between the sternum and the pubis of the person.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: March 11, 2003
    Assignee: Tanita Corporation
    Inventors: Hideaki Ishida, Eiichi Serita
  • Patent number: 6524248
    Abstract: The present invention solves a problem that has been a barrier to development of high resolution ultrasonic imaging. It is based on an analysis that formulates the 5 problem of wave propagation in an inhomogeneous medium as a summation of an ideal wave and distortion waves. This analysis then leads to an apparatus that includes a forward propagation apparatus that enables measurement of the distortion waves and determination of corrections that are applied to originally received signals such that the ideal wave is left as the only basis for the final output signal. After signals are corrected, basic beamforming processes work as if the propagation medium was homogeneous such that ideal high resolution performance is achievable. The method is generally useful for improving any form of wave propagation system that is disturbed by inhomogeneities in the medium.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: February 25, 2003
    Inventor: James K. Bullis
  • Patent number: 6514220
    Abstract: The effect of ultrasound irradiation of a human or other animal body portion is enhanced by operating the body portion as a trapped mode resonator. The intensity and location of resonances within the body portion is controlled by controlling such variables as the amplitude, frequency and/or phase of the ultrasound irradiation. This minimizes the overall energy required to be applied to the body portion in order to achieve a desired localized intensity level.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: February 4, 2003
    Assignee: Walnut Technologies
    Inventors: Hewlett E. Melton, Jr., James T. Fearnside, Claudio I. Zanelli
  • Patent number: 6514204
    Abstract: Improved methods of signal processing for generating estimates of tissue strain are presented. These techniques generally employ the frequency shifting of post-compression spectral data to determine a scaling factor which approximates the applied tissue strain. The scaling factor can be determined by finding the maximum correlation between the frequency shifted post-compression data to the pre-compression data and can also be determined by minimizing the variance of the ratio of such data. Correlation tracking and maximum correlation magnitude techniques for improving the results of elastography are also presented.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: February 4, 2003
    Assignee: Riverside Research Institute
    Inventors: Sheikh Kaisar Alam, Ernest J. Feleppa, Frederic L. Lizzi
  • Publication number: 20030018257
    Abstract: A body fat thickness measurement apparatus. The apparatus comprises a transducer, an output control circuit, and a signal control device. The transducer outputs ultrasound waves with a frequency above 10 MHz and receives the ultrasound reflected back by the subject. The transducer then converts the reflected ultrasound to an analog signal. The output control circuit outputs a high voltage pulse depending on a predetermined time period or a position of the transducer. The signal control device receives the analog signal and converts it to a digital signal. A processor converts the digital signal into a video signal to be displayed on a monitor.
    Type: Application
    Filed: May 13, 2002
    Publication date: January 23, 2003
    Inventors: E-Chang Hsu, Chia-Wei Tu, You-Ren Fang, Jr-Shoung Sheu, Li-Yi Kao
  • Patent number: 6494838
    Abstract: An ultrasonic imaging method and apparatus are described for imaging the coronary arteries of the heart. The vascular system is infused with an ultrasonic contrast agent. A volumetric region of the heart wall including a coronary artery is three dimensionally scanned. A projection image of the volumetric region is produced from the scanning, providing a two dimensional contrast image of the coronary artery with the appearance of an angiogram. Preferably the coronary artery signals are segmented from contrast signals emanating from the myocardium and the heart blood pool so that the coronary arteries are clearly highlighted and distinct in the ultrasonic angiogram.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: December 17, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Clifford R. Cooley, Brent Stephen Robinson
  • Patent number: 6463167
    Abstract: A method of enhancing a medical image including identifying at least one physical characteristic of a tissue portion based on a characteristic of a portion of the image and applying an image processing technique to the image portion chosen based on the at least one tissue characteristic.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: October 8, 2002
    Assignee: Philips Medical Systems Technologies Ltd.
    Inventors: Andre Feldman, Yoav Bar, Opher Zahavi
  • Publication number: 20020095087
    Abstract: Systems and methods for assessment of tissue properties, noninvasively, by acquiring data relating to at least one aspect of intrinsic and/or induced tissue displacement, or associated biological responses, are provided. Data relating to tissue displacement and associated biological changes may be acquired by detecting acoustic properties of tissue using ultrasound interrogation pulses, preferably in a scatter or Doppler detection mode. Based on this data, tissue properties are assessed, characterized and monitored. Specific applications for systems and methods of the present invention include non-invasive assessment and monitoring of intracranial pressure (ICP), arterial blood pressure (ABP), CNS autoregulation status, vasospasm, stroke, local edema, infection and vasculitus, as well as diagnosis and monitoring of diseases and conditions that are characterized by physical changes in tissue properties.
    Type: Application
    Filed: November 28, 2001
    Publication date: July 18, 2002
    Inventors: Pierre D. Mourad, Michel Kliot, Ali Mesiwala, Rex Patterson, Jeffrey G. Jarvik
  • Patent number: 6387051
    Abstract: An ultrasonic method for indicating a characteristic of intraparenchymal brain tissue includes the transmission of broadband ultrasound from a transmitting transducer positioned on one side of a patient's cranium to a receiving transducer located on another side of the cranium with decomposition of the received signal into narrowband components and determination therefrom of group delay, phase angle and attenuation as a basis for derivation of the characteristic of the intraparenchymal tissue within the cranium.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: May 14, 2002
    Assignee: UAB Vittamed
    Inventors: Arminas Ragauskas, Gediminas Daubaris
  • Patent number: 6385474
    Abstract: The present invention relates to a method and apparatus for the construction and/or use of multidimensional fields that can be used for high-resolution detection and characterization of features within objects. The multidimensional field is constructed from data that is collected by an array of radiation detectors that substantially surround the object under study. The detected radiation is produced by an array of radiation sources and is subsequently scattered, reflected, transmitted, or diffracted by the object under study and any features within the object under study. In particular embodiments of the invention, the radiation that is used is ultrasonic radiation and the object under study is human or animal tissue or an organ. In this case, the invention permits the detection and identification of cancer by an intelligently trained evaluation system.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: May 7, 2002
    Assignee: Barbara Ann Karmanos Cancer Institute
    Inventors: John D. G. Rather, H. John Caulfield, Richard D. Doolittle, Peter J. Littrup, Glenn W. Zeiders
  • Publication number: 20020040187
    Abstract: Abstract of the Disclosure Improved methods of signal processing for generating estimates of tissue strain are presented. These techniques generally employ the frequency shifting of post-compression spectral data to determine a scaling factor which approximates the applied tissue strain. The scaling factor can be determined by finding the maximum correlation between the frequency shifted post-compression data to the pre-compression data and can also be determined by minimizing the variance of the ratio of such data. Correlation tracking and maximum correlation magnitude techniques for improving the results of elastography are also presented.
    Type: Application
    Filed: July 20, 2001
    Publication date: April 4, 2002
    Inventors: Sheikh Kaisar Alam, Ernest J. Feleppa, Frederic L. Lizzi
  • Publication number: 20020010398
    Abstract: The invention relates to an ultrasonic diagnostic imaging method for determining propagation parameters of transient shear wave front, comprising steps of forming transient shear waves in a tissue (5), acquiring ultrasonic image data (S,S*) of the tissue, along image lines (i), during a time delay (TSW) a transient shear wave front to propagate over a depth (z) in said tissue, estimating the tissue velocity (V) for each line, constructing a tissue velocity image sequence [I(V)] from the ultrasonic data (S,S*) and the tissue velocities (V) on the lines, and deriving the velocities (CSW) of the shear wave front at instants of the sequence. Tissue parameters such as elasticity are then calculated from said front velocity. The invention also relates to an ultrasonic diagnostic imaging system having processing means (100, PROCESSING1, PROCESSING2) for carrying out this method. The processing means may be a computer program product having instruction to this end.
    Type: Application
    Filed: April 23, 2001
    Publication date: January 24, 2002
    Inventor: Odile Bonnefous
  • Patent number: 6328695
    Abstract: A method for investigating the mechanical properties of bone inside a live animal or human being, said method comprises launching an ultrasound pulse wave into the body of the being and establishing a trace related to the magnitude of a reflected ultrasound wave versus the time lapsed since the launching of the pulse wave. On the trace an interval in which the magnitude of the reflected ultrasound wave exhibits a steady decline versus time, is identified, and the attenuation of the ultrasound wave based on the readings of the trace within this interval is computed. The invention also provides an apparatus for adapted for providing diagnostic information concerning the mechanical properties of bone.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: December 11, 2001
    Inventors: Klaus Vammen, Kåre Christiansen, John Finnich Petersen
  • Publication number: 20010029336
    Abstract: Methods and apparatus for blood speckle detection for enhanced intravascular ultrasound imaging. The present invention utilizes the fact that the energy scattering strength from blood exhibits a high frequency dependency, while the scattering strength from tissue lacks a strong frequency dependency. In specific embodiments, the present invention may provide a particularly simple and useful solution for addressing the problem of blood speckle in intravascular ultrasound imaging, especially in situations where the blood may have a scattering strength similar to that of tissue and/or where the blood is moving slowly or not at all.
    Type: Application
    Filed: April 20, 2001
    Publication date: October 11, 2001
    Inventor: Tat-Jin Teo
  • Publication number: 20010016685
    Abstract: In an ultrasonic diagnosis apparatus, a first transmission signal including both of two fundamentals of frequencies f0 and 2f0 is transmitted, and then a second transmission signal having a polarity reverse that of the first transmission signal is transmitted. A receiving beam processor 22 generates a signal in which the echoes of the two transmission signals are added, and a signal in which the echoes are subtracted. The fundamental components are canceled out by addition and a secondary harmonic component A2 generated by the non-linear interaction remains in the sum signal. In the subtraction signal, the fundamental component remains while the secondary harmonic component is canceled out by subtraction. The fundamental component AII of the frequency 2f0 is extracted from the subtraction signal, and a ratio (A2/AII) is calculated by a divider 44. A differentiating process is then executed by an HPF 46 to obtain the evaluation value reflecting the non-linear parameter at each depth of the body.
    Type: Application
    Filed: February 16, 2001
    Publication date: August 23, 2001
    Inventors: Jing-Wen Tsao, Kenji Kumasaki, Takashi Itoh, Tatsuya Wakamatsu
  • Patent number: 6213958
    Abstract: A non-invasive bone condition data acquisition system performs sensitive and reliable clinical data acquisition, localization and classification of bone disease, particularly osteoporosis. The bone condition data acquisition system measures a correlation between a wideband AE signature and a spatially localized bone microarchitecture, which is used to determine fracture risk. The bone condition data acquisition system includes processors and memory for analyzing AE signals from bone tissue to generate information-bearing attributes, for extracting a set of times-of-arrival and a feature vector from the attributes, for utilizing the set of times-of-arrival to derive the locations of the AE events, and for responding to the feature vector to classify the bone using a neural network and a nearest neighbor rule processor.
    Type: Grant
    Filed: October 7, 1998
    Date of Patent: April 10, 2001
    Inventor: Alan A. Winder
  • Patent number: 6190915
    Abstract: An improved ultrasound phantom includes a container having a window covered by an ultrasound transmitting window cover that seals and protects a water based tissue mimicking material within the container. The window cover includes a multi-layer film formed of at least a layer of metal adhered to a layer of plastic. The metal layer is essentially impervious to moisture and air molecules, preventing both desiccation of the water based material within the phantom and oxidation or contamination of the tissue mimicking material. Multiple windows may be formed in the container which are closed with the multi-layer film cover, and the container may be formed entirely or partially as a flexible sack of multi-layer film.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: February 20, 2001
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ernest L. Madsen, Gary R. Frank
  • Patent number: 6086536
    Abstract: An apparatus and methods for determining a measure equivalent to broadband sound attenuation from transient or other measures derived from acoustic signals propagated through bone and, additionally, for using this measure for the calibration of an ultrasound bone analysis instrument. A synthetic mathematical filter corresponding to a given value of broadband ultrasound attenuation is applied to the signal propagated through a calibration of known or neutral acoustic properties. The value of the acoustic measure corresponding to the resultant waveform is determined and associated with the broadband ultrasound attenuation value corresponding to the synthetic mathematical filter. A model relating the acoustic measure to BUA values may thereby be established for subsequent clinical application.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: July 11, 2000
    Assignee: Metra Biosystems, Inc.
    Inventors: Jeffrey H. Goll, Joe P. Buhler
  • Patent number: 6015383
    Abstract: An improved apparatus and method for providing a measurement of the characteristic behavior of an acoustic wave in a bone of a subject. A preferred embodiment has a first assembly containing mounting means for mounting two transducers in spaced relationship with respect to the bone, and a second, hand-holdable assembly containing a display for displaying an output characterizing the behavior of the acoustic wave in the bone. In other embodiments of the invention, an acoustic signal propagated along a path through the bone is processed to determine the proximity of the path to an edge of the bone.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: January 18, 2000
    Assignee: Metra Biosystems, Inc.
    Inventors: Joe P. Buhler, David Butt, Jeffrey H. Goll, Neldon C. Wagner, Hartwell H. Whitney
  • Patent number: 6012332
    Abstract: An ultrasonic measuring apparatus (FIG. 2) and method (FIG. 5) to accurately determine the depth of an overlaying backfat (14-20) on an animal (8) without incurring any damage to the animal. The apparatus employs a reverse time analysis approach in which a pulse generator (28) sends a preselected ultrasonic input signal by way of a piezoelectric transducer (16) through the outer skin (12) and successively through each one of the animal's fat layer interfaces (15, 17, 20) to a preselected distance within the loin portion (22) of the animal. This reverse time approach then analyzes the resulting echo signal produced by the input signal sequentially in a direction from this loin portion toward the outer fat layers (14, 16, 18). The first strong signal within a specified range, which depends on the species, breed, age or weight of the animal to be measured, is taken as the bottom-most fat/loin transition.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: January 11, 2000
    Assignee: Perceptron, Inc.
    Inventor: Mark E. Schafer
  • Patent number: 6013031
    Abstract: The invention provides for ultrasonic methods, compositions and devices. particularly methods, compositions and devices that provide for reproducible positioning of the ultrasonic transducer(s) over an anatomic region using anatomic landmarks. The invention provides for improved interrogation devices that reproducibly position transducer(s) over an interrogation site.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: January 11, 2000
    Inventors: John D. Mendlein, Philipp Lang