Anatomic Image Produced By Reflective Scanning Patents (Class 600/443)
  • Patent number: 11350911
    Abstract: A time gain compensation (TGC) circuit for an ultrasound device includes a first amplifier having an integrating capacitor and a control circuit configured to generate a TGC control signal that controls an integration time of the integrating capacitor, thereby controlling a gain of the first amplifier. The integration time is an amount of time an input signal is coupled to the first amplifier before the input signal is isolated from the first amplifier.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: June 7, 2022
    Assignee: BFLY OPERATIONS, INC.
    Inventors: Kailiang Chen, Keith G. Fife
  • Patent number: 11348219
    Abstract: A process for the automatic evaluation of the quality of digital photographs includes software programmed to perform the following steps and to perform them through such software:—converting the photograph into greyscale and calculating the intensity diagram of the converted photograph;—identifying a predetermined initial intensity interval and final intensity interval of the diagram;—if in the initial interval and/or the final interval there is a total percentage of pixels of the photograph greater than or “greater than or equal to” a predetermined threshold, the contrast is evaluated;—if the contrast of the photograph converted to greyscale is < or <= a predetermined threshold, the photograph is rejected.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 31, 2022
    Assignee: PhotoSi S.p.A. Unipersonale
    Inventor: Mainetti Andrea
  • Patent number: 11344283
    Abstract: Synthetic-aperture ultrasound tomography systems and methods using scanning arrays and algorithms configured to simultaneously acquire ultrasound transmission and reflection data, and process the data for improved ultrasound tomography imaging, wherein the tomography imaging comprises total-variation regularization, or a modified total variation regularization, particularly with edge-guided or spatially variant regularization.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: May 31, 2022
    Assignee: TRIAD NATIONAL SECURITY, LLC
    Inventors: Lianjie Huang, Youzuo Lin
  • Patent number: 11341661
    Abstract: Described herein is a method of registering a medical image of a subject with a 3D model of a subject, including calibrating the 3D model globally by aligning markers on the subject with corresponding markers on the 3D model; and calibrating the 3D model locally by aligning a scanning image of an internal structure of the subject with a corresponding internal structure of the 3D model. Also described herein is an apparatus of performing the method.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: May 24, 2022
    Assignee: SONOSCAPE MEDICAL CORP.
    Inventors: Junzheng Man, Xuegong Shi, Guo Tang
  • Patent number: 11341634
    Abstract: A computer implemented method is provided for processing a 3D fetal ultrasound image. A 3D fetal ultrasound image is obtained (either acquired or received from memory), and the spine is detected within the image. This enables a first reference axis to be defined. A second reference axis is defined perpendicular to the first reference axis, and the 3D fetal ultrasound image is updated (e.g. rotated in 3D space) using the first and second reference axes and an up/down (elevation) orientation detection. This provides a normalization of the orientation of the image, so that a machine learning approach is better able to identify landmarks within new images.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: May 24, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Caroline Denise Francoise Raynaud, Laurence Rouet, Cybèle Ciofolo-Veit, Thierry Lefevre, David Nigel Roundhill
  • Patent number: 11331077
    Abstract: A method and apparatus are disclosed herein for controlling an ultrasound machine using one or more touchless inputs. In one embodiment, the method for controlling operation of the ultrasound machine comprises obtaining one or more touchless inputs; determining one or more operations to control the ultrasound machine based on the one or more touchless inputs and machine state of the ultrasound machine; and controlling the ultrasound machine using the one or more operations.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: May 17, 2022
    Assignee: FUJIFILM SONOSITE, INC.
    Inventor: Davinder S. Dhatt
  • Patent number: 11336260
    Abstract: A filter module includes a filter provided on a path connecting an input/output terminal and an input/output terminal, a filter provided on a path connecting an input/output terminal and an input/output terminal, a switch that switches between electrical connection and electrical disconnection between a wire connected to the input/output terminal and a ground, and a switch that switches between electrical connection and electrical disconnection between a wire connected to the input/output terminal and the ground. When the wire and the ground are electrically connected by the switch, the wire and the ground are electrically disconnected by the switch, and when the wire and the ground are electrically connected by the switch, the wire and the ground are electrically disconnected by the switch.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: May 17, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Junpei Yasuda
  • Patent number: 11331079
    Abstract: The invention provides an ultrasound data processing method for pre-processing signal data in advance of generating ultrasound images. The method seeks to reduce noise through application of coherent persistence to a series of raw ultrasound signal representations representative of the same path or section through a body but at different successive times. A motion compensation procedure including amplitude peak registration and phase alignment is applied to raw echo signal data in advance of application of persistence in order to cohere the signals and thereby limit the introduction of motion induced artifacts.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 17, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tong Nicolas Yu, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Oudom Somphone, Shiying Wang
  • Patent number: 11324488
    Abstract: The present embodiments relate generally to methods for providing viewing access to an ultrasound image feed generated at an ultrasound imaging machine. A multi-use display device may form a first link-layer connection with the ultrasound image machine for transmitting commands that control imaging parameters of the ultrasound image feed. The multi-use display device may then: determine link-layer connection parameters that allow the ultrasound imaging machine to form a second link-layer connection with a receiving device (the receiving device having no link-layer connection with the ultrasound imaging machine), and provide the connection parameters to the receiving device. The ultrasound imaging machine forms a second link-layer connection with the receiving device, based the connection parameters. The second link-layer connection is then used for receiving, at the receiving device, the ultrasound image feed controlled by the multi-use display device.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: May 10, 2022
    Assignee: Clarius Mobile Health Corp.
    Inventors: Kris Dickie, Laurent Pelissier, Benjamin Eric Kerby, Trevor Stephen Hansen
  • Patent number: 11324487
    Abstract: An ultrasound diagnostic apparatus has: an image acquiring unit that transmits/receives an ultrasound beam from an ultrasound probe to acquire an ultrasound image; a part probability calculating unit that calculates, for the ultrasound image acquired in accordance with a first measurement method, a probability that a part included in the ultrasound image is a specific part from at least one of an orientation angle of the ultrasound probe or an analysis result of the ultrasound image; and a measurement method changing unit that changes, when the probability is greater than or equal to a threshold value, the first measurement method to a second measurement method for identifying the part for which the probability has been calculated, in which an ultrasound image is further acquired by using the second measurement method.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: May 10, 2022
    Assignee: FUJIFILM Corporation
    Inventor: Tsuyoshi Matsumoto
  • Patent number: 11329705
    Abstract: Beamformers and beamforming methods involve diagonal loading (regularization). Significant features include the automatic determination of the regularization parameter using a linearly constrained minimum power (LCMP) bounded perturbation regularization (BPR) approach. More specifically, the method has the advantage of efficient beamforming when the desired signal is from a moving source. After determining an initial regularization parameter, each data window (i.e., snapshot) uses the regularization parameter of the prior window to recursively determine the next regularization parameter.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: May 10, 2022
    Assignee: KING ABDULAZIZ UNIVERSITY
    Inventors: Muhammad Moinuddin, Ubaid M. Al-Saggaf, Maaz Mahadi, Tarig Ballal Ahmed, Tareq Y. Al-Naffouri
  • Patent number: 11324485
    Abstract: An ultrasound system according to some embodiments may include an ultrasound transducer configured to transmit ultrasound pulses toward tissue and generate echo signals responsive to the ultrasound pulses, a channel memory configured to store the echo signals, a beamformer configured to generated beamformed signals responsive to the echo signals, a neural network configured to receive one or more samples of the echo signals or the beamformed signals and produce a first type of ultrasound imaging data, and a processor configured to generate a second type of ultrasound imaging data, wherein the one or more processors may be further configured to generate an ultrasound image based on the first type of ultrasound imaging data and the second type of ultrasound imaging data and to cause a display communicatively coupled therewith to display the ultrasound image.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: May 10, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: David Hope Simpson, Earl M. Canfield, Robert Gustav Trahms, Vijay Thakur Shamdasani
  • Patent number: 11323625
    Abstract: An apparatus in related art has a problem in a presentation method of data to a user or a usability. A subject information obtaining apparatus includes a plurality of transducer elements that receive acoustic waves generated in a subject irradiated with light from a light source and transduce the acoustic waves into a plurality of reception signals, a processing unit configured to obtain a characteristic distribution indicating a distribution of characteristic information respectively corresponding to a plurality of positions in the subject by using the plurality of reception signals, in which the processing unit outputs image information for displaying a distribution image created by using the characteristic distribution and data indicating a time fluctuation of the characteristic information in a predetermined region of the distribution image within a same screen of a display unit.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: May 3, 2022
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Abe, Ayumi Kabata, Masae Torii
  • Patent number: 11317895
    Abstract: A method of operating an ultrasound diagnosis apparatus includes: obtaining a three-dimensional (3D) ultrasound image including an ovarian region; detecting, based on at least one parameter used for extracting a particular oocyte, a plurality of candidate ovarian follicles from which mature oocytes are more likely to be extracted in the 3D ultrasound image; registering a two-dimensional (2D) ultrasound image corresponding to a first cross-section of the ovarian region to the 3D ultrasound image; and guiding, based on a result of the registering, a position of at least one candidate ovarian follicle from which an oocyte is to be extracted in the 2D ultrasound image.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: May 3, 2022
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Hyunjae Jeon, Dongkuk Shin
  • Patent number: 11311274
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: April 26, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife, David Elgena
  • Patent number: 11308609
    Abstract: Methods and systems are provided for sequentially selecting scan parameter values for ultrasound imaging. In one example, a method includes selecting a first parameter value for the a first scan parameter based on an image quality of each ultrasound image of a first plurality of ultrasound images of an anatomical region, each ultrasound image of the first plurality of ultrasound images having a different parameter value for the first scan parameter, selecting a second parameter value for a second scan parameter based on an image quality of each ultrasound image of a second plurality of ultrasound images of the anatomical region, each ultrasound image of the second plurality of ultrasound images having a different parameter value for the second scan parameter, and applying the first parameter value for the first scan parameter and the second parameter value for the second scan parameter to one or more additional ultrasound images.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: April 19, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Pavan Annangi, Hariharan Ravishankar, Tore Bjaastad, Erik Normann Steen, Svein Arne Aase, Rohan Patil
  • Patent number: 11301961
    Abstract: According to one embodiment, medical signal processing apparatus includes a processing circuit. The processing circuit adjust a level of activation of a unit included in a learned model in accordance with classification of an imaging condition for a process target medical signal. The processing circuit generates an output signal by applying the learned model in which the level of activation has been adjusted, to the medical signal.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: April 12, 2022
    Assignee: Canon Medical Systems Corporation
    Inventor: Hidenori Takeshima
  • Patent number: 11295462
    Abstract: A medical data processing method, performed by a computer (2), for determining error analysis data describing the registration accuracy of a first elastic registration between first and second image data (A, B) describing images of an anatomical structure of a patient, comprising the steps of: —acquiring the first image data (A) describing a first image of the anatomical structure, —acquiring the second image data (B) describing a second image of the anatomical structure, —determining first registration data describing a first elastic registration of the first image data (A) to the second image data (B) by mapping the first image data (A) to the second image data (B) using a registration algorithm, —determining second registration data describing a second elastic registration of the second image data (B) to the first image data (A) by mapping the second image data (B) to the first image data (A) using the registration algorithm, —determining error analysis data describing the registration accuracy of the firs
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: April 5, 2022
    Assignee: BRAINLAB AG
    Inventors: Pascal Bertram, Elisa Garcia Corsico, Ivana Ivanovska, Birte Domnik
  • Patent number: 11284863
    Abstract: A surface property measurement technology by which a surface property of a substance can be evaluated with high accuracy, is provided. A surface property measurement method includes radiating an ultrasonic wave to a measurement target and acquiring a reflected signal from the measurement target; calculating, by a measurement apparatus, a maximum value of a cross-correlation function between the reflected signal from the measurement target and a reference reflected signal from a reference substance acquired in advance; calculating a reflection component at an interface, by using the maximum value of the cross-correlation function; and outputting, as a measurement value, one of an acoustic impedance of the measurement target or an acoustic impedance of the reference substance, according to a result of comparing the reflection component with the reference reflected signal.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: March 29, 2022
    Assignees: SHISEIDO COMPANY, LTD., NATIONAL UNIVERSITY CORPORATION TOYOHASHI UNIVERSITY OF TECHNOLOGY, HONDA ELECTRONICS CO., LTD.
    Inventors: Yuki Ogura, Naohiro Hozumi, Sachiko Yoshida, Kazuto Kobayashi, Yusuke Hara
  • Patent number: 11288848
    Abstract: Disclosed is a three-dimensional ultrasound image display method comprising the following steps: S1: obtaining a series of original two-dimensional images having spatial position and angle information by means of automatic or manual scanning; S2: performing image reconstruction on the basis of the original two-dimensional images to obtain three-dimensional volumetric images; S3: obtaining, from the three-dimensional volumetric images, one or more section images intersecting the original two-dimensional images, and obtaining one or more reconstructed two-dimensional images by means of image processing; S4: displaying together the one or more original two-dimensional images and the one or more section images in a three-dimensional space; and S5: selecting and displaying feature points, feature lines, and feature surfaces in the three-dimensional space on the basis of the original two-dimensional volumetric images.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: March 29, 2022
    Assignee: Telefield Medical Imaging Limited
    Inventors: Yongping Zheng, Qiang Meng
  • Patent number: 11278262
    Abstract: An ultrasonic diagnostic device includes: a probe including a plurality of elements; a transmission unit that transmits an ultrasonic beam by performing transmission focusing in a first direction from the plurality of elements; a reception unit that generates element data by processing reception signals output from the plurality of elements that has received an ultrasonic echo generated by the transmitted ultrasonic beam; an element data processing unit that generates reflection component removal data by removing a reflection component generated from the first direction from the element data; an image generation unit that generates an ultrasonic image by performing reception focusing for the element data; and a control unit that controls the image generation unit to generate an image signal along a second direction different from the first direction by performing reception focusing in the second direction for the reflection component removal data generated by the element data processing unit.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: March 22, 2022
    Assignee: FUJIFILM Corporation
    Inventors: Hiroaki Yamamoto, Shoji Hara
  • Patent number: 11275150
    Abstract: The present invention relates to an apparatus (10) for tracking a position of an interventional device (11) respective an image plane (12) of an ultrasound field. The position includes an out-of-plane distance (Dop). A geometry-providing unit (GPU) includes a plurality of transducer-to-distal-end lengths (Ltde1 . . . n), each length corresponding to a predetermined distance (Ltde) between a distal end (17, 47) of an interventional device (11, 41) and an ultrasound detector (16, 46) attached to the interventional device, for each of a plurality of interventional device types (T1 . . . N).
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hendrik Roelof Stapert, Carina Snijder, Ameet Kumar Jain, Willem-Jan Arend De Wijs
  • Patent number: 11276187
    Abstract: Method for verifying registration of a model of an internal-body-part with the internal-body-part in a reference coordinate system. The internal-body-part is at least partially unseen directly by a user. The method includes the procedures of continuously determining a position and orientation of a head-mounted-display in the reference coordinate system, determining a display location of at least one virtual marker, and displaying the virtual marker according to the display location. The display location of the virtual marker is determined according to the expected position of a respective at least one reference point relative to the head-mounted-display. The reference point is directly visible to the user. The relative position between the reference point and the internal-body-part is substantially constant. The position of the reference point in the reference coordinate system is predetermined.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: March 15, 2022
    Assignee: Elbit Systems Ltd.
    Inventor: Rani Ben-Yishai
  • Patent number: 11272905
    Abstract: A medical image diagnostic apparatus according to the embodiment includes a scanner, image generating circuitry, marker generating circuitry, and control circuitry. The scanner performs scanning to generate an image of the inside of a subject. The image generating circuitry generates an image based on the result of scanning performed by the scanner. The marker generating circuitry generates a marker provided with information at a position serving as a reference for comparison with a certain structure. The control circuitry displays the image and the marker on the same screen of a display.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: March 15, 2022
    Assignee: Canon Medical Systems Corporation
    Inventors: Koichiro Kurita, Masaki Watanabe, Eiji Goto, Shogo Fukuda
  • Patent number: 11272903
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: March 15, 2022
    Assignee: BFLY Operations, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife, David Elgena
  • Patent number: 11266379
    Abstract: An ultrasonic diagnostic device includes: a probe including a plurality of elements; a transmission unit that transmits an ultrasonic beam by performing transmission focusing in a first direction from the plurality of elements; a reception unit that generates element data by processing reception signals output from the plurality of elements that has received an ultrasonic echo generated by the transmitted ultrasonic beam; an element data processing unit that generates reflection component removal data by removing a reflection component generated from the first direction from the element data; an image generation unit that generates an ultrasonic image by performing reception focusing for the element data; and a control unit that controls the image generation unit to generate an image signal along a second direction different from the first direction by performing reception focusing in the second direction for the reflection component removal data generated by the element data processing unit.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: March 8, 2022
    Assignee: FUJIFILM Corporation
    Inventors: Hiroaki Yamamoto, Shoji Hara
  • Patent number: 11259779
    Abstract: A body tissue to be detected is automatically detected certainly with high precision. An ultrasonic body tissue detecting device may include a transmission/reception unit, a two-dimensional data acquisition unit, a spatial frequency distribution calculation unit and a determination unit. The transmission/reception unit may transmit an ultrasonic signal into a body of a sample and receive an echo signal of the ultrasonic signal. The two-dimensional data acquisition unit may form two-dimensional echo image in a transmitting direction of the ultrasonic signal and in a scanning direction. The spatial frequency distribution calculation unit may perform a spatial frequency conversion of the two-dimensional echo image and calculate a spatial frequency distribution for a determining position.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: March 1, 2022
    Assignee: Furuno Electric Co., Ltd.
    Inventor: Tatsuo Arai
  • Patent number: 11260247
    Abstract: A passive compression wave imaging system comprises an array of sensor elements arranged in a sparse array and a processor arranged to: store a plurality of samples of the output from each of the sensor elements over a sample period; derive from the stored samples a value for each of a set of image pixels; wherein for each of the image pixels the processing means is arranged to: define a plurality of different sets of weights for the elements of the sparse array; calculate a component of a pixel value from each of the sets of weights and the stored samples; and sum the components of the pixel value to produce a final pixel value.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: March 1, 2022
    Assignee: OXSONICS LIMITED
    Inventors: Christian Coviello, Richard Kozick, Constantin Coussios
  • Patent number: 11259685
    Abstract: Methods and apparatuses for enlarging the optical scan angle of imaging probes are provided. The optical scan angle of endoscopic probes can be increased by employing the “Snell's Window” effect. An endoscopic probe can include an endoscope shell, a device for capturing electromagnetic radiation, and a liquid or gel provided between the device for capturing electromagnetic radiation and the endoscope shell. The endoscope probe can further include a first mirror placed such that electromagnetic radiation entering through the endoscope shell can bounce off the first mirror and enter the device for capturing electromagnetic radiation. The first mirror can be a microelectromechanical systems (MEMS) mirror.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 1, 2022
    Assignee: THE UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATED
    Inventors: Huikai Xie, Sanjeev Jagannatha Koppal, Xiaoyang Zhang, Liang Zhou, Can Duan
  • Patent number: 11253225
    Abstract: The invention generally relates to intravascular imaging system and particularly to processing in multimodal systems. The invention provides an imaging system that splits incoming image data into two signals and performs the same processing step on each of the split signals. The system can then send the two signals down two processing pathways. Methods include receiving an analog image signal, transmitting the received signal to a processing system, splitting the signal to produce a first image signal and a second image signal, and performing a processing operation on the first image signal and the second image signal. The first and second signal include substantially the same information as one another.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: February 22, 2022
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: Andrew Hancock, Jerome Mai, Joseph Hoffman
  • Patent number: 11253229
    Abstract: Provided is a wireless ultrasound probe configured to detect a state in which the wireless ultrasound probe is detached from a charging terminal of an ultrasound diagnostic apparatus, causing supply of the charging power to the wireless ultrasound probe to be discontinued, and the wireless ultrasound probe is paired with the ultrasound diagnostic apparatus by using a wireless communication scheme when supply of the charging power is discontinued. Also provided are an ultrasound diagnostic apparatus and an operating method of the ultrasound diagnostic apparatus configured to be automatically paired with a wireless ultrasound probe in a state in which the wireless ultrasound probe is detached from a charging terminal of the ultrasound diagnostic apparatus, causing supply of the charging power to the wireless ultrasound probe to be discontinued.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: February 22, 2022
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Youngseuk Song, Gilju Jin
  • Patent number: 11246560
    Abstract: Provided are an ultrasound probe, an ultrasound imaging apparatus, an ultrasound imaging system including the ultrasound imaging apparatus, and a method of controlling the ultrasound imaging apparatus. In accordance with one aspect, the ultrasound probe includes a transducer configured to receive an echo ultrasound signal by emitting a plane wave at least three times at different emission angles or at emission angles which are dependent on each other; and a probe controller configured to obtain an ultrasound image by determining a Doppler shift frequency from the received echo ultrasound signal and calculating at least one of a speed of an object and a speed of the object in each of directions on the basis of the determined Doppler shift frequency and either the different emission angles or the dependent emission angles.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: February 15, 2022
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Kang Sik Kim, Tae-kyong Song, Ji Won Park
  • Patent number: 11246564
    Abstract: The present invention relates to an ultrasound diagnosis apparatus (10), in particular for analyzing a fetus (62). An ultrasound data interface (66) is configured to receive 3D (three dimensional) ultrasound data from an object (12). The ultrasound diagnosis apparatus further comprises a measurement unit (70) for measuring anatomical structures of the object based on the segmentation data and a calculation unit (72) configured to calculate at least one biometric parameter based on the 3D ultrasound data.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: February 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cristian Lorenz, Tobias Klinder, Irina Waechter-Stehle
  • Patent number: 11234679
    Abstract: In an ultrasound diagnostic apparatus of the present invention, the controller writes and reads element data of one frame into and out from two or more buffer memories 21a, 21b, . . . 21i sequentially frame by frame and assigns the element data of one frame sequentially read out from the buffer memories to a plurality of arithmetic blocks of a signal processor, wherein the element data assigned is subjected to processing by each of a plurality of arithmetic cores in the plurality of arithmetic blocks to produce an image signal.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: February 1, 2022
    Assignee: FUJIFILM Corporation
    Inventor: Yoshiaki Satoh
  • Patent number: 11229419
    Abstract: A method for display processing of 3D image data includes obtaining 3D volume data of the head of a target body; detecting a transverse section at an anatomical position from the 3D volume data according to image characteristic of the head of the target body in a transverse section related to the anatomical position; and displaying the transverse section.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: January 25, 2022
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Yaoxian Zou, Kyle Brennan, Muqing Lin, Zhijie Chen
  • Patent number: 11227399
    Abstract: An analysis apparatus according to an embodiment includes processing circuitry. The processing circuitry performs registration between first ultrasound image data obtained at a first phase by an ultrasound diagnostic apparatus and first medical image data obtained by a medical image diagnostic apparatus other than the ultrasound diagnostic apparatus and performs registration between the first ultrasound image data and second ultrasound image data obtained at a second phase different from the first phase by the ultrasound diagnostic apparatus, to generate second medical image data registered with the second ultrasound image data; and combines the second ultrasound image data and the second medical image data to generate a single image, thereby performing registration between ultrasound image data by the ultrasound diagnostic apparatus and medical image data by the medical image diagnostic apparatus.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: January 18, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Zhe Tang, Qi Chen, Weijian Jian, Yu Chen
  • Patent number: 11219429
    Abstract: Disclosed herein is an ultrasound imaging apparatus capable of setting a region of interest having a shape corresponding to a shape of the cervix canal in an elasticity image of the cervix and displaying the region of interest, and a control method thereof. The ultrasound imaging apparatus includes a display unit configured to display an ultrasound elasticity image and a controller configured to select a point included in a path corresponding to the cervix canal in the elasticity image of the cervix displayed on the display unit, configured to set a region of interest having a shape corresponding to a shape of at least one portion of the cervix canal based on the selected point, and configured to display the region of interest on the display unit.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: January 11, 2022
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Dong Kuk Shin, Dal Kwon Ko, Jong-Sik Kim, Soo-young Oh, Dong-Wook Kwak, Kunwoo Kim, Moon Young Kim, Hyun Soo Park, Hyun-Joo Seol, Sae Kyung Choi, Joon Seok Hong, Han Sung Hwang
  • Patent number: 11210765
    Abstract: An image processing method and device, storage medium and computer device are provided. The method includes: generating an original gray scale image of an original image; performing a histogram equalization process on the original gray scale image to obtain an equalized gray scale image; generating decision factor distribution image, wherein the decision factor distribution image includes a first marked region including a region where pixels that are adjacent in position and have standard deviations smaller than set value in the original image are located, and second marked region; obtaining final gray scale image according to original gray scale image, equalized gray scale image and decision factor distribution image. Gray scale values of pixel corresponding to second marked region and first marked region in final gray scale image are respectively gray scale values of corresponding pixel in equalized gray scale image and original gray scale image; and restoring a processed image.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: December 28, 2021
    Assignees: BEIJING BOE DISPLAY TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Jun Guo, Xibin Shao, Chengqi Zhou, Ming Chen, Shou Li, Jieqiong Wang
  • Patent number: 11207013
    Abstract: The present disclosure relates generally to estimating an interior diameter of a hollow organ. As such, one aspect of the present disclosure relates to a system that can include a light-based distance sensor and a device housing the light-based distance sensor located within the hollow organ. The light-based distance sensor can include an emitter and a detector. The emitter can transmit a conical beam of light to an inner surface of a hollow organ. The detector can receive a portion of the light back-reflected from the inner surface of the hollow organ. The device can determine a volume of the hollow organ based on a signal related to the back-reflected portion of the light, which can be based on a distance between the light-based distance sensor and the inner surface of the hollow organ.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: December 28, 2021
    Assignees: THE CLEVELAND CLINIC FOUNDATION, THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Margot S. Damaser, Steve Majerus
  • Patent number: 11204291
    Abstract: The present invention discloses an interface ultrasonic reflectivity-pressure relation curve establishment method and a loading testbed. The loading testbed comprises a force displayer, a control terminal, an oscilloscope, an immersion ultrasonic transducer, a large cylinder, a small cylinder, an upper panel, a movable plate, a force sensor, a lower panel, an ultrasonic transceiver and a small cylinder connecting plate. Compared with the existing schemes, the interface ultrasonic reflectivity-pressure relation curve establishment method and the loading testbed provided by the present invention can construct a more accurate ultrasonic reflectivity-pressure relation curve, and are high in detection precision.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: December 21, 2021
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Qingchao Sun, Bo Yuan, Wei Sun, Weiqiang Huang
  • Patent number: 11190331
    Abstract: A physical layer (PHY) device comprises a phase interpolator to generate a set of sampler clocks. A sampler of the PHY device samples a calibration data pattern based on the set of sampler clocks. A data alignment system of the PHY device performs a coarse calibration and a fine calibration on the sampler clock signals. During the coarse calibration, the data alignment system moves the sampler clock signals earlier or later in time relative to the sampled data based on a first bit of the sampled data. During the fine calibration, the data alignment system moves the sampler clock signals earlier or later in time relative to the sampled data based on the first bit, a second bit, and a third bit in the sampled data.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: November 30, 2021
    Assignee: Cadence Design Systems, Inc.
    Inventors: Loren B. Reiss, Scott David Huss, Fred Staples Stivers, James Dennis Vandersand, Jr.
  • Patent number: 11176681
    Abstract: An image processing apparatus includes an external scenery sensor that images at least one target, and an image generation unit that generates a virtual image corresponding to at least one of the targets which are moving among the imaged targets.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: November 16, 2021
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Masashi Aonuma, Kaoru Yamaguchi
  • Patent number: 11166700
    Abstract: A segmentation selection system includes a transducer (14) configured to transmit and receive imaging energy for imaging a subject. A signal processor (26) is configured to process imaging data received to generate processed image data. A segmentation module (50) is configured to generate a plurality of segmentations of the subject based on features or combinations of features of the imaging data and/or the processed image data. A selection mechanism (52) is configured to select one of the plurality of segmentations that best meets a criterion for performing a task.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: November 9, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Amir Mohammad Tahmasebi Maraghoosh, Jean-Luc Robert, Dirk Binnekamp
  • Patent number: 11170519
    Abstract: An ultrasound diagnostic apparatus includes an image memory, an operation unit, a measurement item designation receiving unit for receiving a designation of a measurement item, a detection measurement algorithm setting unit that sets a detection measurement algorithm, a frame designation receiving unit that receives a designation of a frame to be used for the measurement among a plurality of frames in the image memory, a measurement position designation receiving unit that receives a designation of a position of a measurement target on a first measurement frame received by the frame designation receiving unit, a measurement position setting unit that sets the position of the measurement target on a frame other than the first measurement frame, a measurement unit that detects the measurement target on the plurality of frames to calculate the measurement value, and a final measurement value calculation unit that calculates a final measurement value.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: November 9, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Tetsurou Ebata
  • Patent number: 11170679
    Abstract: Embodiments of the present application disclose time division display control methods and apparatus and display devices, wherein a time division display control method disclosed comprises: displaying a first image by a display device; and changing display pixel distribution of the display device at least once within a preset permitted staying duration of vision of human eyes and displaying the first image by the display device changed each time, to cause the displayed first images to be displayed in human eyes as a second image in an overlapped manner. According to the present application, utilization of display pixels of a display device and a display quality of at least a local part of an image can be improved, thereby better meeting diversified actual application demands of users.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: November 9, 2021
    Assignee: BEIJING ZHIGU RUI TUO TECH CO., LTD.
    Inventors: Liang Zhou, Lin Du
  • Patent number: 11160536
    Abstract: To lessen the examination time in an Ultrasound system in a vascular Exam routine, it is desirable to: automatically position in the best way Color Doppler ROI and/or Sample Gate; select the best Color Doppler/Beamline Steering angle; and set the Doppler Correction angle. An algorithm is provided that is able to process in real time the Doppler Signal to identify the Doppler Area where the most significant flow is present, and then it analyzes the ‘Shape’ of such Color Doppler Area identifying the Position and direction of the “main” Flow. The vascular Examination routine can therefore be made easier and faster.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: November 2, 2021
    Assignee: Esaote S.p.A.
    Inventor: Massimo Faraggi
  • Patent number: 11159972
    Abstract: Disclosed are techniques for handling of radio frequency (RF) front-end group delays for round trip time (RTT) estimation. In an aspect, a network entity determines a network total group delay (GD) and a user equipment (UE) determines a UE total GD. The network entity transmits one or more RTT measurement (RTTM) signals to the UE. Each RTTM signal includes a RTTM waveform. The UE determines one or more one or more RTT response (RTTR) payloads for one or more RTTR signals. Each RTTR signal also includes a RTTR waveform. The UE transmits the RTTR signal(s) to the network entity. For each RTTR signal, a transmission time of the RTTR waveform and/or the RTTR payload is/are determined based on the UE total GD. The network entity determines a RTT between the UE and the network entity based on the RTTM signal(s), the RTTR signal(s), and the network total GD.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: October 26, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Sony Akkarakaran, Tao Luo, Joseph Binamira Soriaga, Alexandras Manolakos, Naga Bhushan, Guttorm Ringstad Opshaug, Sven Fischer
  • Patent number: 11151719
    Abstract: This invention relates to estimating the window width and window level (center) which are typically used to view and then transform diagnostic imaging data to grayscale images. These grayscale images are then used to check the presence of diseases or abnormalities. For each individual diagnostic image, this invention automatically estimates the most appropriate values. This automatic estimation is done by a specialized module added on to a convolutional neural network-based disease detection system.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: October 19, 2021
    Assignee: Caide Systems, Inc.
    Inventors: Manohar Karki, Kye Wook Lee, Jung Hwan Cho
  • Patent number: 11151697
    Abstract: A basic image generation unit generates a base frame by synthesizing a reception frame sequence obtained by transmission/reception of ultrasonic waves, and an edge-enhanced image generation unit generates a compensation frame where an edge component of an object is emphasized based on the reception frame sequence. A synthesis unit generates an output frame by synthesizing the base frame and the compensation frame.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: October 19, 2021
    Assignee: Hitachi, Ltd.
    Inventor: Nobuhiko Fujii
  • Patent number: 11141138
    Abstract: Kalman filtering, including a model of system dynamics, is used to identify flash artifact. The Kalman filtering predicts the velocity or powers based on a past sequence of velocity or power. The prediction defines a confidence interval. Any current measures surpassing the confidence interval are identified as flash artifact and suppressed.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: October 12, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Lei Sui, Kathryn Ozgun