Recurving Or Reshaping Of The Eye Patents (Class 606/5)
-
Patent number: 12201560Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in the subject's eye, or just a bottom lenticular incision.Type: GrantFiled: December 9, 2022Date of Patent: January 21, 2025Assignee: AMO Development, LLCInventor: Dimitri A. Chernyak
-
Patent number: 12178754Abstract: A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. The optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. In some embodiments, the system includes a video camera with a tunable lens before it to image the entire length of the eye. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system is also provided. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.Type: GrantFiled: October 3, 2022Date of Patent: December 31, 2024Assignee: AMO Development, LLCInventors: Jenny Wang, Tianheng Wang, David Dewey, Michael Wiltberger, Alexander Vankov, Phillip Gooding, Georg Schuele
-
Automated calibration of laser system and tomography system with fluorescent imaging of scan pattern
Patent number: 12150899Abstract: A laser system calibration method and system are provided. In some methods, a calibration plate may be used to calibrate a video camera of the laser system. The video camera pixel locations may be mapped to the physical space. A xy-scan device of the laser system may be calibrated by defining control parameters for actuating components of the xy-scan device to scan a beam to a series of locations. Optionally, the beam may be scanned to a series of locations on a fluorescent plate. The video camera may be used to capture reflected light from the fluorescent plate. The xy-scan device may then be calibrated by mapping the xy-scan device control parameters to physical locations. A desired z-depth focus may be determined by defining control parameters for focusing a beam to different depths. The video camera or a confocal detector may be used to detect the scanned depths.Type: GrantFiled: May 26, 2023Date of Patent: November 26, 2024Assignee: AMO Development, LLCInventors: Michael Simoneau, John Scot Hart, Georg Schuele -
Patent number: 12138201Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in a corneal stroma.Type: GrantFiled: February 15, 2022Date of Patent: November 12, 2024Assignee: AMO Development, LLCInventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill, Mohammad Saidur Rahaman, Zenon Witowski
-
Patent number: 12102565Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.Type: GrantFiled: June 13, 2022Date of Patent: October 1, 2024Assignee: AMO Development, LLCInventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
-
Patent number: 12097148Abstract: In an ophthalmic laser procedure, a lenticule is formed in the cornea and extracted from the cornea to accomplish vision correction. The ophthalmic laser system is used to form top and bottom lenticule incisions which intersect each other to form an isolated volume of corneal tissue in between. The volume of tissue includes a lenticular portion having a circular or oval shape and a side tab that protrudes from the peripheral of the lenticular portion. The side tab has a radial dimension between 0.5 and 5 mm and a width between 0.5 and 3 mm in. An entry cut is further formed from the anterior corneal surface to the top or bottom lenticule incisions to provide access to the lenticule. During extraction, the surgeon uses the surgical tool to grab the side tab to extract the lenticule.Type: GrantFiled: August 30, 2021Date of Patent: September 24, 2024Assignee: AMO Development, LLCInventors: Jose L. Garcia, Griffith E. Altmann
-
Patent number: 12096985Abstract: Various systems and methods providing recommendations based on analysis of surgical procedure variables are disclosed. A computer system, such as a surgical hub, can be configured to be communicably coupled to a surgical device. The computer system can be programmed to determine contextual data related to the surgical procedure being performed based at least in part of perioperative data received from the surgical device paired with the computer system. Further, the computer system can determine a procedural variable associated with the determined surgical context and then compare the procedural variable to a baseline. Depending upon the outcome of the comparison, the computer system can provide intraoperative or postoperative recommendations to the surgical staff.Type: GrantFiled: March 24, 2021Date of Patent: September 24, 2024Assignee: Cilag GmbH InternationalInventors: Frederick E. Shelton, IV, Jason L Harris, Taylor W. Aronhalt
-
Patent number: 12083047Abstract: A first image of the eye is generated when the cornea of the eye is exposed to a gas. The cornea is covered with an optic of a patient interface. A second image of the eye with the patient interface over the cornea is generated. In this second image, the patient interface distorts the second image of the eye. One or more of a position or an orientation of the eye is determined in response to the first image and the second image when the patient interface has been placed over the cornea.Type: GrantFiled: May 26, 2022Date of Patent: September 10, 2024Assignee: AMO Development, LLCInventor: David D. Scott
-
Patent number: 12076278Abstract: A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.Type: GrantFiled: May 17, 2023Date of Patent: September 3, 2024Assignee: University of RochesterInventors: Wayne H. Knox, Krystel R. Huxlin
-
Device and method for producing control data for the surgical correction of the defective eye vision
Patent number: 12076275Abstract: A device for producing control data for a laser device for the surgical correction of defective vision. The device produces the control data such that the laser emits the laser radiation such that a volume in the cornea is isolated. The device calculates a radius of curvature RCV* to determine the control data, the cornea reduced by the volume having the radius of curvature RCV* and the radius of curvature being site-specific and satisfying the following equation: RCV*(r,?)=1/((1/RCV(r,?))+BCOR(r,?)/(nc?1))+F, wherein RCV(r,?) is the local radius of curvature of the cornea before the volume is removed, nc is the refractive index of the material of the cornea, F is a coefficient, and BCOR(r,?) is the local change in refractive force required for the desired correction of defective vision in a plane lying in the vertex of the cornea, and at least two radii r1 and r2 satisfy the equation BCOR(r=r1,?)?BCOR(r=r2,?).Type: GrantFiled: November 6, 2020Date of Patent: September 3, 2024Assignee: Carl Zeiss Meditec AGInventors: Gregor Stobrawa, Mark Bischoff -
Patent number: 12070422Abstract: A system for forming a corneal implant includes a cutting apparatus, which includes a laser source that emits a laser and optical elements that direct the laser. The system includes a controller implemented with at least one processor and at least one data storage device. The controller generates a sculpting plan for modifying a first shape of a lenticule formed from corneal tissue and achieving a second shape for the lenticule to produce a corneal implant with a refractive profile to reshape a recipient eye. The sculpting plan is determined from measurements relating to the lenticule having the first shape and information relating to a refractive profile for a corneal implant. The controller controls the cutting apparatus to direct, via the one or more optical elements, the laser from the laser source to sculpt the lenticule according to the sculpting plan to produce the corneal implant with the refractive profile.Type: GrantFiled: March 23, 2021Date of Patent: August 27, 2024Assignee: Allotex, Inc.Inventor: David Muller
-
Patent number: 12053417Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.Type: GrantFiled: June 11, 2021Date of Patent: August 6, 2024Assignee: AMO Development, LLCInventors: Hong Fu, Patrick De Guzman, Robert Heitel, Alireza Malek Tabrizi
-
Patent number: 12042433Abstract: A corneal cross-linking system includes a light source configured to emit a photoactivating light. The system includes a spatial light modulator configured to receive the photoactivating light from the light source and provide a pixelated illumination. The spatial light modulator defines a maximum area for the pixelated illumination. The system includes a controller configured to cause the spatial light modulator to project a first pixelated illumination onto the cornea to photoactivate a cross-linking agent applied to a treatment area. The first pixelated illumination has an area that is smaller than the maximum area defined by the spatial light modulator. The controller is configured to determine movement of the cornea. In response to the movement, the controller controls the spatial light modulator to project a second pixelated illumination to the treatment area based on a translation and/or transformation of the first pixelated illumination to continue photoactivating the cross-linking agent.Type: GrantFiled: March 5, 2019Date of Patent: July 23, 2024Assignee: Avedro, Inc.Inventors: Desmond Christopher Adler, David Usher, Mikhail Smirnov
-
Patent number: 12023755Abstract: A machining apparatus for laser machining a workpiece in a machining zone is provided, having an interface for a machining laser source for generating a machining laser beam with a direction of propagation; an outlet opening for the machining laser beam; and an optical system between the interface and the outlet opening, wherein the optical system has: at least one optical unit that adjusts the focal length of the optical system, and at least one stationary laser beam guiding device with at least one movable surface, wherein the at least one movable surface can be adjusted such that it modifies the focal length of the optical system and/or the beam parameter product of the machining laser beam integrated over time in at least one operating mode. Further provided is a method for laser machining a workpiece.Type: GrantFiled: June 5, 2020Date of Patent: July 2, 2024Inventors: Simon Scheidiger, Andreas Luedi, Michael Berger, Martin Mumenthaler
-
Patent number: 12016794Abstract: A system for treating an eye includes a light source configured to provide photoactivating light that photoactivates a cross-linking agent applied to a cornea. The system includes one or more optical elements configured to receive the photoactivating light and produce a beam that defines a spot of the photoactivating light. The system includes a scanning system configured to receive the beam of the photoactivating light and to scan the spot of the photoactivating light along a first axis and a second axis to form a scan pattern on the cornea to generate cross-linking activity.Type: GrantFiled: October 9, 2019Date of Patent: June 25, 2024Assignee: AVEDRO, INC.Inventors: Desmond C. Adler, David Usher, Alex Yildizyan
-
Patent number: 12014827Abstract: Computer-implemented systems and methods link time-stamped OCT scan data of a patient's retina in a database to a biometric identifier for the patient. An appropriately trained artificial intelligence (AI) computer system determines whether the patient has an eye disease based on the differences between time-stamped OCT scan data for the patient from different time scans.Type: GrantFiled: January 16, 2020Date of Patent: June 18, 2024Assignee: Tecumseh Vision, LLCInventor: James Hayashi
-
Patent number: 12011392Abstract: A treatment device for the surgical correction of hyperopia in the eye comprising a laser device controlled by a control device. The laser device separating corneal tissue by applying laser radiation. The control device controls the laser device for emitting the laser radiation into the cornea such that a lenticule-shaped volume is isolated. Removal thereof effects the desired correction. The control device predefines the volume such that a posterior surface and an anterior surface are connected via an edge surface that has a width in projection along the visual axis that is wider than the one which a straight line in the same projection, that is perpendicular at the edge of the posterior or the anterior surface would have relative to the associated surface and connects the anterior surface to the posterior surface or to the perceived extension thereof.Type: GrantFiled: June 8, 2022Date of Patent: June 18, 2024Assignee: Carl Zeiss Meditec AGInventors: Mark Bischoff, Gregor Stobrawa, Wilfried Bissmann
-
Patent number: 12011394Abstract: Devices and methods of laser surgery of an eye, especially for refractive surgery, preferably for keratoplasty. The invention includes a planning and control unit, a system for laser surgery of an eye and a planning and control method wherein a device coordinate system of the first laser device and a device coordinate system of the characterization device are coupled using registration and measurement data or model data of the lamella can be unambiguously registered to the device coordinate systems, further by a defined edge geometry of the lamella, an ametropia correction during the generation of the lamella and by taking into account the hydration condition of the lamella, as well as methods for surgery.Type: GrantFiled: April 7, 2020Date of Patent: June 18, 2024Assignees: Carl Zeiss Meditec AG, Resbiomed Technologies OODInventors: Alexander Angelov Angelov, Yavor Petrov Angelov, Mark Bischoff, Robert Pomraenke
-
Patent number: 12005001Abstract: In laser-assisted corneal lenticule extraction procedures, the lenticule incision profile includes anterior and posterior lenticule incisions, with one or more of the following features: plano transition zone outside the optical zone, to improve mating of anterior and posterior incision surfaces after lenticule extraction; shallow arcuate incisions above the anterior incision and near the lenticule edge, to improve surface mating; separate ring cut intersecting the anterior and posterior incisions in the transition zone, to reduce tissue bridges and minimize tear at the lenticule edges and facilitate easy lenticule extraction; larger posterior incision, which includes a pocket zone outside the lenticule edge, for better surface mating and bubble management during cutting; and a separate ring shaped pocket cut intersecting the pocket zone of the posterior incision, for bubble management.Type: GrantFiled: August 17, 2021Date of Patent: June 11, 2024Assignee: AMO Development, LLCInventors: Andrew Voorhees, Alireza Malek Tabrizi, Hong Fu, Cynthia Villanueva, Nima Khatibzadeh, Deepali Mehta-Hurt, James Hill, Li Chen, Li Bing
-
Patent number: 11992266Abstract: A method of generating three dimensional shapes for a cornea and lens of an eye, the method including illuminating an eye with multiple sections of light and obtaining multiple sectional images of said eye based on said multiple sections of light. For each one of the obtained multiple sectional images, the following processes are performed: a) automatically identifying arcs, in two-dimensional space, corresponding to anterior and posterior corneal and lens surfaces of the eye by image analysis and curve fitting of the one of the obtained multiple sectional images; and b) determining an intersection of lines ray traced back from the identified arcs in two-dimensional space with a known position of a section of space containing the section of light that generated the one of the obtained multiple sectional images, wherein the determined intersection defines a three-dimensional arc curve.Type: GrantFiled: November 29, 2021Date of Patent: May 28, 2024Assignee: Lensar, Inc.Inventors: Gary P. Gray, Rudolph W. Frey, Steven E. Bott
-
Patent number: 11957621Abstract: An iridocorneal angle of the eye can be opened with a plurality of treatment locations at least about 2 mm radially outward from a limbus of the eye. The opening on the angle can be beneficial for treating both narrow angle glaucoma and open angle glaucoma. The plurality of treatment locations located away from the limbus can decrease invasiveness and complexity of the procedure. The plurality of treatment locations at least about 2 mm away from the limbus can provide tensioning to zonules coupled to the lens of the eye to flatten the lens of the eye, which can allow the iris to move posteriorly so as to open the iridocorneal angle. The plurality of treatment locations may comprise scleral locations, in which shrinkage of scleral tissue at the plurality of treatment locations provides tensioning to the zonules.Type: GrantFiled: September 21, 2018Date of Patent: April 16, 2024Assignee: ALeyeGN Technologies LLCInventors: Rajeev Herekar, Satish V. Herekar, John Randall Samples
-
Patent number: 11931295Abstract: A method for altering an eye color of a patient with a color alteration procedure is disclosed that may include imaging the iris with an image sensor prior to the color alteration procedure to generate an image of the iris. A mapping of the iris may be generated from the image. The mapping may include a number of regions corresponding to varying absorption coefficients of a treatment wavelength in the stromal pigment of the iris. A laser system may be set, based on the mapping, to deliver laser light at a laser power sufficient to cause elimination of at least a portion of stromal pigment in the iris. The laser light may then be delivered with the laser system.Type: GrantFiled: January 7, 2022Date of Patent: March 19, 2024Assignee: STROMA MEDICAL CORPORATIONInventor: Gregg Homer
-
Patent number: 11925411Abstract: An ophthalmologic information processing apparatus according to the embodiments includes a search unit, a correction unit, and a display control unit. The search unit is configured to search for filter information for correcting an aberration in complex OCT data of a subject's eye so that a quality of the complex OCT data becomes a predetermined level. The correction unit is configured to correct the aberration in the complex OCT data based on the filter information searched by the search unit. The display control unit is configured to display, on a display means, aberration information on a pupil surface of the subject's eye corresponding to the filter information searched by the search unit.Type: GrantFiled: February 19, 2021Date of Patent: March 12, 2024Assignee: TOPCON CORPORATIONInventors: Toshihiro Mino, Yoshikiyo Moriguchi, Akiko Ishikawa
-
Patent number: 11903878Abstract: A method implemented in an ophthalmic surgical laser system that employs a resonant scanner, scan line rotator, and XY- and Z-scanners, for forming a corneal flap in a patient's eye with improved bubble management during each step of the flap creation process. A pocket cut is formed first below bed level, followed by the bed connected to the pocket cut, then by a side cut extending from the bed to the anterior corneal surface. The pocket cut includes a pocket region located below the bed level and a ramp region connecting the pocket region to the bed. The bed is formed by a hinge cut and a first ring cut at lower laser energies, followed by a bed cut and then a second ring cut, which ensures that any location in the flap bed is cut twice to minimize tissue adhesion. The side cut is formed by multiple side-cut layers at different depths which are joined together. All cuts are formed by scanning a laser scan line generated by the resonant scanner.Type: GrantFiled: December 2, 2021Date of Patent: February 20, 2024Assignee: AMO Development, LLCInventors: Andrew Voorhees, Harvey Liu, Hong Fu, Alireza Malek Tabrizi, Nima Khatibzadeh, Deepali Mehta-Hurt, Cynthia Villanueva, James Hill, Alisyn Facemire
-
Patent number: 11896478Abstract: Methods and systems wherein laser induced refractive index changes by focused femtosecond laser pulses in optical polymeric materials or optical tissues is performed to address various types of vision correction.Type: GrantFiled: March 1, 2021Date of Patent: February 13, 2024Assignee: University of RochesterInventors: Leonard Zheleznyak, Scott Catlin
-
Patent number: 11877798Abstract: An ophthalmologic imaging apparatus having an OCT optical system for acquiring OCT data of a tissue of a subject eye based on a spectral interference signal of measurement light emitted to the tissue and reference light. The apparatus further has a second optical system for acquiring a front image of the tissue; an optical element having asymmetry and arranged on a common optical path of the OCT optical system and the second optical system; and an arithmetic controller that associates an OCT data acquisition position with coordinates of the front image while taking at least a difference in distortion caused by the optical element between the OCT optical system and the second optical system into consideration.Type: GrantFiled: September 29, 2020Date of Patent: January 23, 2024Assignee: NIDEK CO., LTD.Inventor: Koichi Ito
-
Patent number: 11877957Abstract: A method is disclosed for controlling an eye surgical laser for the separation of a volume body with predefined interfaces from a human or animal cornea. The method includes controlling the laser by means of a control device such that it emits pulsed laser pulses in a predefined pattern into the cornea, wherein the interfaces of the volume body to be separated are defined by the predefined pattern and a surface of the cornea and the interfaces located in the cornea are generated by photodisruption. A treatment device is also disclosed that includes at least one eye surgical laser for the separation of a predefined corneal volume with predefined interfaces of a human or animal eye by photodisruption, and at least one control device for the laser or lasers, which is formed to execute the steps of the method.Type: GrantFiled: February 14, 2020Date of Patent: January 23, 2024Assignee: SCHWIND EYE-TECH-SOLUTIONS GMBHInventors: Samuel Arba-Mosquera, Nico Triefenbach, Mario Shraiki
-
Patent number: 11864979Abstract: A planning device for generating control data, a treatment apparatus for refraction correction eye surgery and a method for generating control data for such a treatment apparatus which allows an improved subsequent refraction correction. The planning device includes a calculation processor for defining a cut surface of the cornea for post-treatment, wherein the calculation device is designed such that a change of thickness of the epithelium is taken into account in the calculation, which was caused essentially by a pretreatment.Type: GrantFiled: May 3, 2018Date of Patent: January 9, 2024Assignee: Carl Zeiss Meditec AGInventors: Ahmed Sedky, Mark Bischoff, Matthias Wottke
-
Patent number: 11850187Abstract: A method is disclosed for determining a current position of an eye of a patient relative to an optical axis of a laser beam of a treatment apparatus. The method includes presetting a criterion characterizing the eye, determining a first target position of the eye relative to the optical axis, positioning a patient interface in a preset area in front of the optical axis, illuminating the eye during an approaching procedure of the patient interface to the eye, capturing a Purkinje image, which is associated with a cornea of the eye, by means of an optical capturing device during the approaching procedure, comparing the captured Purkinje image to the optical axis and determining the current position of the eye depending thereon, comparing the current position to the target position and with a deviation, outputting a control signal to a control device of the treatment apparatus.Type: GrantFiled: December 4, 2020Date of Patent: December 26, 2023Assignee: SCHWIND EYE-TECH-SOLUTIONS GMBHInventors: Samuel Arba Mosquera, Thomas Klinner, Mario Shraiki, Nico Triefenbach
-
Patent number: 11806283Abstract: Systems and methods for increasing the amplitude of accommodation of an eye, changing the refractive power of lens material of a natural crystalline lens of the eye, and addressing presbyopia are is provided. Generally, there are provided methods and systems for delivering a laser beam to a lens of an eye in a plurality of laser shots, which are in precise and predetermined patterns results in the weakening of the lens material.Type: GrantFiled: February 25, 2019Date of Patent: November 7, 2023Assignee: Lensar, Inc.Inventors: Gary P. Gray, Rudolph W. Frey
-
Patent number: 11793676Abstract: For the purposes of working on eye tissue, an ophthalmological apparatus comprises a laser source that is configured to produce a pulsed laser beam, a focusing optical unit that is configured to focus the pulsed laser beam into the eye tissue, and a scanner system for deflecting the pulsed laser beam onto work target points in the eye tissue. A circuit controls the scanner system in such a way that the scanner system guides the pulsed laser beam into work trajectories that extend next to one another, in order, initially, to produce cut trajectories, separated by remaining tissue bridges, of a tissue cut to be undertaken in an area and in order, thereafter, to guide the pulsed laser beam in the remaining tissue bridges between the cut trajectories in order to complete the tissue cut.Type: GrantFiled: October 30, 2020Date of Patent: October 24, 2023Assignee: Ziemer Ophthalmic Systems AGInventor: Christian Rathjen
-
Patent number: 11789256Abstract: An ophthalmic laser system uses a non-confocal configuration to determine a laser beam focus position relative to the patient interface (PI) surface. The system includes a light intensity detector with no confocal lens or pinhole between the detector and the objective lens. When the objective focuses the light to a target focus point inside the PI lens at a particular offset from its distal surface, the light signal at the detector peaks. The offset value is determined by fixed system parameters, and can also be empirically determined by directly measuring the PI lens surface by observing the effect of plasma formation at the glass surface. During ophthalmic procedures, the laser focus is first scanned insider the PI lens, and the target focus point location is determined from the peak of the detector signal. The known offset value is then added to obtain the location of the PI lens surface.Type: GrantFiled: December 9, 2021Date of Patent: October 17, 2023Assignee: AMO Development, LLCInventors: Mohammad Saidur Rahaman, Hong Fu, Roger W. Accurso, Zenon Witowski
-
Patent number: 11786403Abstract: In a laser delivery system for an ophthalmic laser surgery system, a laser beam scanner employs a single or two MEMS micromirror arrays. Each micromirror in the array is capable of being independently actuated to rotate to desired angles. In one embodiment, one or two micromirror arrays are controlled to scan a laser beam in two directions. In another embodiment, a micromirror array is controlled to both correct optical aberrations in the laser beam and scan the laser beam in two directions. In yet another embodiment, a micromirror array is controlled to cause the laser beam to be focused to multiple focal spots simultaneously and to scan the multiple focal spot simultaneously. The ophthalmic laser surgery system also includes an ultrashort pulse laser, a laser energy control module, focusing optics and other optics, and a controller for controlling the laser beam scanner and other components of the system.Type: GrantFiled: September 24, 2020Date of Patent: October 17, 2023Assignee: AMO Development, LLCInventor: Javier G. Gonzalez
-
Patent number: 11759360Abstract: A method for forming an incision in an eye, the method including performing a first pass of a first laser beam along a path within an eye, wherein after completion of the first pass there exists a residual uncut layer at an anterior surface of a cornea of the eye. The method further including performing a second pass of a second laser beam only along a portion of the path that contains the residual uncut layer, wherein after completion of the second pass, the residual uncut layer is transformed into a full complete through surface incision.Type: GrantFiled: December 2, 2019Date of Patent: September 19, 2023Assignee: Lensar, Inc.Inventors: E. Valaski Teuma, Gary Gray
-
Patent number: 11737825Abstract: One described aspect is an optical fiber comprising: a fiber core that extends along a fiber axis, is configured to transmit a laser energy along the fiber axis, and terminates at a distal end; a first cladding that extends along the fiber axis, is adjacent to the fiber core, and terminates at a distal end; a coating that extends along the fiber axis and terminates at a distal end, wherein the coating is a gold coating; a second cladding that surrounds a portion of the gold coating along the fiber axis, and terminates at a distal end; an outer jacket that extends along the fiber axis and terminates at a distal end; and a fiber tip. Associated laser systems are also disclosed.Type: GrantFiled: April 29, 2021Date of Patent: August 29, 2023Assignee: Boston Scientific Scimed, Inc.Inventors: Wen-Jui Ray Chia, Steven Yihlih Peng
-
Patent number: 11701258Abstract: Generation of treatment recommendations for topographic-based excimer laser surgical procedures is described that includes generating accurate cylinder compensation and spherical compensation values that are adjusted to compensate for unique characteristics of topographic-based excimer laser surgical systems. Generating treatment recommendations generally includes determining a topographic vector, a posterior astigmatism vector and an anterior astigmatism vector, and generating an internal astigmatism vector using the topographic vector, the posterior astigmatism vector, the anterior astigmatism vector, and a manifest astigmatism vector. In embodiments, the cylinder compensation is generated using multiple vectors while subtracting the internal astigmatism vector and the posterior astigmatism vector which remain in the eye after treatment, and the spherical compensation is generated using an initial spherical compensation modified by addback modifiers and a regression analysis nomogram.Type: GrantFiled: February 25, 2020Date of Patent: July 18, 2023Inventor: Mark Lobanoff
-
Patent number: 11690759Abstract: A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.Type: GrantFiled: October 16, 2020Date of Patent: July 4, 2023Assignee: University of RochesterInventors: Wayne H. Knox, Krystel R. Huxlin
-
Patent number: 11666481Abstract: In various embodiments, a laser is scanned across biological tissue to alter the characteristics of the tissue. To alter the optical characteristics of a cornea, the laser is scanned in an annular pattern over a region having a ratio of the outer diameter of the region to the inner diameter of the region. The laser may also be used to irradiate cartilage in joints to treat osteoarthritis.Type: GrantFiled: November 15, 2018Date of Patent: June 6, 2023Assignee: The Trustees of Columbia University in the City of New YorkInventor: Sinisa Vukelic
-
Patent number: 11666213Abstract: An apparatus and method for aiding in the detection of dementia, concussion, other neurologic conditions, retinal, and optic nerve conditions. The apparatus enables the diffusion coefficient of the tissue to be ascertained and studied by directing the light from a laser or other coherent light source at the patient's retina, optic nerve or choroid and measuring the fluctuations in the intensity of the back-scattered light caused by the movement of light scatterers in the tissue. By comparing the measurements to a normal database, or to the subject's previous measurement, in combination with an eye examination and OCT image/measurement the changes caused by the disease and the effectiveness of therapy can be ascertained. The disclosed apparatus allows the incident and detection optics to be attached to ophthalmic devices typically used in ophthalmologic care.Type: GrantFiled: April 19, 2022Date of Patent: June 6, 2023Inventor: Jeffrey N Weiss
-
Patent number: 11654054Abstract: An ophthalmic laser surgical system includes a pulsed laser source configured to generate a pulsed laser beam, optics configured to direct the laser beam towards a target region in a lens of an eye, and a processor configured to control the optics to form a regular array of cells in the target region by creating layers of photodisrupted bubbles to generate cell boundaries. The layers are created by causing the optics to scan the pulsed laser according to a curvature of a focal plane of the optics to track a natural curvature of the lens.Type: GrantFiled: May 5, 2021Date of Patent: May 23, 2023Assignee: Alcon Inc.Inventor: Ferenc Raksi
-
Patent number: 11615526Abstract: The disclosure provides a system that may acquire, via an image sensor, an image of an eye of a person; may determine a location of an iris of the eye from the image; may determine a position of a suction ring from the image; may display, via a display, the image; may display, via the display, a first graphic overlay on the image that indicates the location of the iris of the eye; may display, via the display, a second graphic overlay on the image that indicates the position of the suction ring; may determine multiple iris structures from the image; may determine an orientation of the eye based at least on the multiple iris structures from the image; and may display, via the display, information that indicates the orientation of the eye.Type: GrantFiled: March 10, 2020Date of Patent: March 28, 2023Assignee: Alcon Inc.Inventor: Johannes Loerner
-
Patent number: 11612315Abstract: A device for visualizing an irido-corneal angle of an eye through a window of a patient interface configured to be placed on the eye includes and optics structure and at least one imaging apparatus. The optics structure is configured to engage with the patient interface to provide a line of sight through the window in the direction of the irido-corneal angle, and to subsequently disengage from the patient interface. The imaging apparatus is associated with the optics structure and aligned with the line of sight to enable capturing an image of the eye including the irido-corneal angle.Type: GrantFiled: April 9, 2020Date of Patent: March 28, 2023Assignee: ViaLase, Inc.Inventors: Scott A. Delong, Guy Holland, Tibor Juhasz, Wesley W. Lummis, Eric R. Mikula, Attila Raksi, Ferenc Raksi, Manu Sharma, Hadi Srass, Carlos G. Suarez, Joselito T. Tambo
-
Patent number: 11612424Abstract: Methods and systems for monitoring and modifying pulsed field ablation (PFA) energy delivery to prevent patient safety risks and/or delivery device failure. In particular, some embodiments provide methods and systems for detecting and preventing arcs and arc-induced plasma, and their causal events, during delivery of pulsed field ablation energy, as well as methods and systems for identifying conditions leading to potential delivery device failure and correcting charge imbalance or asymmetry.Type: GrantFiled: November 7, 2019Date of Patent: March 28, 2023Assignee: Medtronic, Inc.Inventors: Steven J. Fraasch, Trenton J. Rehberger, Qin Zhang, Lynn A. Davenport, Steven V. Ramberg, Brian T. Howard, Mark T. Stewart, Alexander J. Hill, John Vandanacker
-
Patent number: 11602457Abstract: A treatment apparatus for operatively correcting myopia or hyperopia in an eye includes a laser device controlled by a control device and that separates the corneal tissue by applying a laser beam. The control device controls the laser device to emit the laser beam into the cornea such that a lenticule-shaped volume is isolated in the cornea. The control device, when controlling the laser device, predefines the lenticule-shaped volume such that the volume has a minimum thickness of between 5 and 50 ?m. For myopia correction, the minimum thickness occurs on the edge of the volume, and for hyperopia correction the minimum thickness occurs in the region of the visual axis.Type: GrantFiled: June 8, 2020Date of Patent: March 14, 2023Assignee: Carl Zeiss Meditec AGInventors: Mark Bischoff, Gregor Stobrawa, Wilfried Bissmann
-
Patent number: 11594076Abstract: A biometric capture device is operative to adjust one or more environmental parameters to enhance a range (e.g., distance) at which a biometric may be captured from a subject. For example, a sample biometric capture device may be, include, or otherwise incorporate a retinal or iris scanner configured to capture an image of the retina or iris (e.g., a biometric) when the retina or iris is illuminated by infrared light. Generally, the amount of infrared light required to accurately image the retina or iris increases with the distance of the subject's retina or iris from the image capture device. The biometric capture device may capture a facial image using a first image sensor, identify a face in the facial image, capture an iris image using a second image sensor guided by the facial image, and identify a person using the iris image.Type: GrantFiled: September 7, 2021Date of Patent: February 28, 2023Assignee: ALCLEAR, LLCInventor: William Willis
-
Patent number: 11576573Abstract: A mobile communication device-based corneal topography system includes an illumination system, an imaging system, a topography processor, an image sensor, and a mobile communication device. The illumination system is configured to generate an illumination pattern reflected off a cornea of a subject. The imaging system is coupled to an image sensor to capture an image of the reflected illumination pattern. A topography processor is coupled to the image sensor to process the image of the reflected illumination pattern. The mobile communications device includes a display, the mobile communications device is operatively coupled to the image sensor. The mobile communications device includes a mobile communications device (MCD) processor. A housing at least partially encloses one or more of the illumination system, the imaging system, or the topography processor.Type: GrantFiled: January 10, 2022Date of Patent: February 14, 2023Assignee: Intelligent Dignostics LLCInventors: David A. Wallace, Philip Buscemi, Stephen D Klyce, Mark A Kahan, Paul E Glenn, John Rogers, Cesare Tanassi, David Kramer, Vrunjal Mehta
-
Patent number: 11571336Abstract: Refractive index writing system and methods employing a pulsed laser source for providing a pulsed laser output at a first wavelength; an objective lens for focusing the pulsed laser output to a focal spot in an optical material; a scanner for relatively moving the focal spot with respect to the optical material at a relative speed and direction along a scan region for writing one or more traces in the optical material defined by a change in refractive index; and a controller for controlling laser exposures along the one or more traces in accordance with a calibration function for the optical material to achieve a desired refractive index profile in the optical material. The refractive index writing system may be for writing traces in in vivo optical tissue, and the controller may be configured with a calibration function obtained by calibrating refractive index change induced in enucleated ocular globes.Type: GrantFiled: January 25, 2019Date of Patent: February 7, 2023Assignee: University of RochesterInventors: Wayne Knox, Jonathan D. Ellis, Krystel R. Huxlin, Daniel R. Brooks, Kaitlin T. Wozniak
-
Patent number: 11564567Abstract: A target surface in an eye is located using a dual aiming beam apparatus that transmits a first aiming beam of light and a second aiming beam of light. An optics subsystem receives a laser beam from a laser source, the first aiming beam of light, and the second aiming beam of light, and directs the beams of light to be incident with the target surface and aligns the beams of light such that they intersect at a point corresponding to a focus of the laser beam. An imaging apparatus captures an image of the target surface including a first spot corresponding to the first aiming beam of light and a second spot corresponding to a second aiming beam of light. A separation between the spots indicates that the focus is away from the target surface, while overlapping spots indicate the focus is at or on the target surface.Type: GrantFiled: February 4, 2020Date of Patent: January 31, 2023Assignee: ViaLase, Inc.Inventors: Tibor Juhasz, Ferenc Raksi, Manu Sharma, Hadi Srass, Carlos G. Suarez, Guy Holland, Wesley W. Lummis, Eric R. Mikula, Virginia Lin
-
Patent number: 11559390Abstract: An example method for cutting a plurality of lenticules from a donor cornea includes receiving a donor cornea, cutting a first layer of a first set of lenticules from the donor cornea, and cutting a second layer of a second set of lenticules from the donor cornea. The lenticules are cut according to a pattern that to maximizes the number of lenticules, thereby maximizing the number of implants from the single donor cornea. An example implant handling device includes a body. The body includes a flattened end configured to receive a corneal implant and keep the corneal implant from rolling or folding. The flattened end has a width and a height, the width being greater than the height. The body includes a slit opening to the flattened end, the slit opening configured to allow the corneal implant to pass into the flattened end.Type: GrantFiled: October 29, 2018Date of Patent: January 24, 2023Assignee: Allotex, Inc.Inventors: David Muller, Michael Mrochen, Siran Wang, Zhiyi Yuan, Sara Correia, Daniel Boss
-
Patent number: 11554047Abstract: In some examples, a laser-based ophthalmological surgical system (hereinafter “system”) includes a therapeutic radiation source configured to emit therapeutic radiation with a first wavelength. The system may also include a probe radiation source configured to emit probe radiation with a second wavelength different than the first wavelength. The system may also include one or more optical elements configured to direct the therapeutic radiation and the probe radiation into an eye of a patient and to collect reflected probe radiation from the eye of the patient. The reflected probe radiation may be indicative of an amount of therapeutic radiation exposure of the eye of the patient. The system may also include a photodetector configured to receive the reflected probe radiation from the one or more optical elements and to generate a photocurrent indicative of the amount of therapeutic radiation exposure of the eye of the patient.Type: GrantFiled: July 21, 2017Date of Patent: January 17, 2023Assignee: LUTRONIC VISION INC.Inventors: Dayan Ban, Mordehai Margalit, Heechul Lee