With Nonimplanted Generator Patents (Class 607/10)
  • Patent number: 11951317
    Abstract: An operating room cable assembly for an electrical stimulation system that includes a lead connector having a housing, a lead lumen extending inwardly from a first opening in the housing and configured and arranged to receive a portion of a lead or lead extension, and a contact assembly disposed within the housing and configured and arranged to move relative to the housing. The contact assembly is configured and arranged to move to a load position and is biased to return to a lock position. The contact assembly includes of contacts that are configured and arranged to engage a portion of any lead or lead extension within the lead lumen when the contact assembly is in the lock position and to disengage from the portion of the lead or lead extension within the lead lumen when the contact assembly is in the load position.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: April 9, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Ranjan Krishna Mukhari Nageri, Katie Hoose, Alexander Pruitt, Dennis Johnson, Maziyar Keshtgar, Brian Fang
  • Patent number: 11247041
    Abstract: A wearable cardioverter defibrillator (WCD) comprises a plurality of electrocardiography (ECG) electrodes, a right-leg drive (RLD) electrode, and a plurality of defibrillator electrodes to contact the patient's skin when the WCD is delivering therapy to the patient, a preamplifier coupled to the ECG electrodes and the RLD electrode to obtain ECG data from the patient as one or more ECG vectors, a high voltage subsystem to provide a defibrillation voltage to the patient through the plurality of defibrillator electrodes, and an impedance measurement circuit to measure an impedance across a first pair of ECG electrodes, wherein the impedance measurement circuit is to apply a balancing impedance across a second pair of ECG electrodes when an impedance of the second pair of ECG electrodes is not being measured.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: February 15, 2022
    Assignee: West Affum Holdings Corp.
    Inventors: Zhong Qun Lu, Douglas K. Medema, Kenneth F. Cowan
  • Patent number: 10512772
    Abstract: The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: December 24, 2019
    Assignee: Lungpacer Medical Inc.
    Inventors: Joaquin Andres Hoffer, Marc-Andre Nolette, Viral Thakkar, Bao Dung Tran
  • Patent number: 10456585
    Abstract: Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: October 29, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Thacker, Harold Haut, Robert Nathan, David K. L. Peterson, Kerry Bradley
  • Patent number: 10328266
    Abstract: An external medical device includes at least one therapy electrode configured to be disposed on a patient; and a treatment manager configured to execute a baseline process to determine at least one of a range of values for a discomfort parameter and a patient discomfort threshold value corresponding to the at least one pacing routine, detect a cardiac condition of the patient, execute the at least one pacing routine, the at least one pacing routine being associated with the cardiac condition, monitor the discomfort parameter during execution of the at least one pacing routine, determine whether the discomfort parameter transgresses the at least one of the range of values and the patient discomfort threshold value, and adjust at least one characteristic of the at least one pacing routine upon the discomfort parameter transgressing the at least one of the range of values and the patient discomfort threshold value.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: June 25, 2019
    Assignee: ZOLL MEDICAL CORPORATION
    Inventors: Jason T. Whiting, Thomas E. Kaib, Rachel H. Carlson, Gregory R. Frank, Gary A. Freeman
  • Patent number: 10080892
    Abstract: A method of treating a waste evacuation dysfunction comprising administering transcutaneous electrical stimulation (TES) to at least one lower pelvic and/or sacral region for a specific treatment regimen. Also disclosed is a system for configuring a stimulation device to deliver transcutaneous electrical stimulation (TES) the system comprising: a computing device storing or having access to a plurality of TES settings and comprising a user interface to enable authorized selection of at least one of the TES settings for provision of TES by the stimulation device according to the at least one selected TES setting and the stimulation device communicatively coupled to the computing device to receive and store the selected at least one TES setting the stimulation device being of a size to be readily carried on a body and configured to selectively provide current to external electrode according to the one TES setting.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: September 25, 2018
    Assignee: Murdoch Childrens Research Institute
    Inventors: Bridget Rae Southwell, John Medwyn Hutson, Andre Yi Feng Tan
  • Patent number: 9943694
    Abstract: Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. Stimulation pulses may be defined by several parameters, such as pulse width and amplitude. In methods of stimulating the tissue with the stimulation system, a user may adjust one of the parameters such as pulse width. The programmer may automatically adjust the pulse amplitude in response to the change in pulse width in order to maintain a substantially constant effect of the stimulation pulses.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: April 17, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Thacker, Harold Haut, Robert Nathan, David K. L. Peterson, Kerry Bradley
  • Patent number: 9750422
    Abstract: Apparatus, including a flexible insertion tube, having a distal segment that is configured to be inserted into a body organ. A plurality of elastic branches are connected to the distal segment of the insertion tube at different, respective locations and extend transversely away from the insertion tube at the respective locations. There are one or more respective electrodes disposed on each of the elastic branches and there are conductors traversing the elastic branches so as to couple the electrodes to the insertion tube.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: September 5, 2017
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD
    Inventors: Eliahu Zino, Noam Igra, Shmuel Auerbach, Roy Urman, Yaniv Ben Zriham, Assaf Pressman
  • Patent number: 9731120
    Abstract: Some embodiments of the invention provide a system and method for treating insufficient uterine contractions after labor and delivery. The system includes a control module and a current source controlled by the control module to produce stimulating current at a frequency greater than or equal to about 5.0 Hertz. The system also includes one or more stimulation electrodes to provide the stimulating current to the patient in order for the patient to produce tonic uterine contractions.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: August 15, 2017
    Assignee: Dignity Health
    Inventors: Robert E. Garfield, Harvey Carp, William L. Maner
  • Patent number: 9604070
    Abstract: A medical device such as an external defibrillator delivers electrical therapy using a special pulse sequence. The special pulse sequence includes a defibrillation shock that is automatically followed by a quick succession of automatic post-shock anti-tachycardia (APSAT) pacing pulses. Because of the pacing pulses, the defibrillation shock can be of lesser energy than an equivalent defibrillation shock of a larger energy. Accordingly, the external defibrillator can be made physically smaller and weigh less, without sacrificing the therapeutic effect of a larger external defibrillator that would deliver a defibrillation shock of higher energy. As such, the defibrillator is easier to configure for transporting, handling, and even wearing.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 28, 2017
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Thomas Brown, David Peter Finch
  • Patent number: 9474459
    Abstract: A system and method for ECG electrode and leadwire connection integrity detection are provided herein. The system includes a plurality of electrodes wherein a uniform spectral energy signal is to be injected into a subset of electrodes of the plurality of electrodes. The system also includes a computing device. The computing device includes a display, and the computing device is communicably coupled to the plurality of electrodes. The computing device is configured to acquire input signals from an electrode and determine a frequency response from the electrode based on the input signal from the electrode. The computing device is also configured to determine impairments in the electrode and leadwire connection using the frequency response.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: October 25, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: James R. Peterson
  • Patent number: 9468407
    Abstract: The catheter allows mapping and/or ablation of the area around two or more PV ostia at the same time, with a single placement of a distal section of the catheter having a 2D configuration resembling an infinity or lazy 8 symbol. The catheter has an elongated catheter body, a distal section having at least a flexible elongated member with shape memory, the member being configured to assume a 2D configuration resembling an infinity symbol, and at least one electrode mounted on the member. The 2D configuration resembles a first loop and a second loop, wherein the first and second loops are side-by-side, generally extending in a common plane.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: October 18, 2016
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Ryan Hoitink, Shubhayu Basu
  • Patent number: 9146641
    Abstract: A touch display device for a vehicle and a driving method thereof are provided. The touch display device includes a touch panel that displays an image and an image irradiation unit that provides the image to the touch panel. In addition, a lighting unit radiates infrared rays to the touch panel and an image capturing unit captures an image that corresponds to a touch on the touch panel. An emergency button unit that includes at least one emergency button is activated on the touch panel during an emergency mode. A controller is configured to activate the emergency mode by sensing a failure of one of the touch panel, the image irradiation unit, the lighting unit, and the image capturing unit.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: September 29, 2015
    Assignee: Hyundai Motor Company
    Inventor: Jong Bok Lee
  • Patent number: 9144683
    Abstract: A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, comprising a capacitor subsystem for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and a battery subsystem electrically coupled to the capacitor subsystem for providing the anti-bradycardia pacing energy to the capacitor subsystem.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: September 29, 2015
    Assignee: CAMERON HEALTH, INC.
    Inventors: Gust H. Bardy, Riccardo Cappato, William J. Rissmann
  • Patent number: 9037235
    Abstract: Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through one or more pacing electrodes incorporated onto one or more percutaneous transluminal vascular intervention (PTVI) devices during the revascularization procedure. In one embodiment, a PTVI device includes an expandable distal end to provide a stable electrical contact between a pacing electrode and the vascular wall of a blood vessel when the distal end is placed in the blood vessel.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: May 19, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Daniel K. Tomaschko, Matthew C. Heidner, David James Broman, Tracee Eidenschink, Tamara Colette Baynham
  • Patent number: 9008801
    Abstract: A wearable therapeutic device that includes a garment configured to contain an external defibrillator. The garment is configured to house at least one of an alarm module and a monitor and to house a first therapy electrode and a second therapy electrode. The garment is also configured to releasably receive a receptacle that contains a conductive fluid proximate to at least one of the first therapy electrode and the second therapy electrode, and to electrically couple the receptacle with the garment.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: April 14, 2015
    Assignee: Zoll Medical Corporation
    Inventors: Thomas E. Kaib, Shane Volpe, Emil Oskin
  • Publication number: 20150018747
    Abstract: Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle using a combination of therapies. The method may include the introduction of structurally reinforcing agents. In other embodiments, agents may be introduced into a ventricle to increase compliance of the ventricle. The prevention of remodeling may include the prevention of thinning of the ventricular infarct zone. Another embodiment includes the reversing or prevention of ventricular remodeling with electro-stimulatory therapy. The unloading of the stressed myocardium over time effects reversal of undesirable ventricular remodeling. These therapies may be combined with structurally reinforcing therapies. In other embodiments, the structurally reinforcing component may be accompanied by other therapeutic agents. These agents may include but are not limited to pro-fibroblastic and angiogenic agents.
    Type: Application
    Filed: June 20, 2014
    Publication date: January 15, 2015
    Inventors: Eugene T. Michal, Jeffrey Ross
  • Patent number: 8868180
    Abstract: A resuscitation device for automatic compression of victim's chest using a compression belt which exerts force evenly over the entire thoracic cavity. The belt is constricted and relaxed through a motorized spool assembly which repeatedly tightens the belt and relaxes the belt to provide repeated and rapid chest compression. An assembly includes various resuscitation devices including chest compression devices, defibrillation devices, and airway management devices, along with communications devices and senses with initiate communications with emergency medical personnel automatically upon use of the device.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 21, 2014
    Assignee: ZOLL Circulation, Inc.
    Inventors: Steven R. Bystrom, Darren R. Sherman, Kenneth H. Mollenauer
  • Patent number: 8838236
    Abstract: In one embodiment, a wearable defibrillation system may sense whether its wearer meets an unconscious bradyarrhythmia condition that can be associated with becoming unconscious. Even though such a condition might not be helped with a defibrillation pulse, the wearable defibrillation system may still administer pacing pulses to prevent the bradycardia from becoming worse, such as a sudden cardiac arrest. In some embodiments, the pacing pulses are administered at a frequency too slow for the patient to regain consciousness. An advantage is that, because the patient remains unconscious, he does not experience the sometimes severe discomfort due to the pacing pulses.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: September 16, 2014
    Assignee: Physio-Control. Inc.
    Inventors: Gary Debardi, Isabelle Banville, Ronald Eugene Stickney
  • Patent number: 8808342
    Abstract: Nano-constructs comprising nanoshells and methods of using the nano-constructs for treating or ameliorating a vascular condition are provided.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 19, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Florian Niklas Ludwig
  • Patent number: 8744577
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: June 3, 2014
    Assignee: Physio-Control, Inc.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Patent number: 8718763
    Abstract: The disclosure herein relates generally to methods for treating heart conditions using vagal stimulation, and further to systems and devices for performing such treatment. Such methods may include monitoring physiological parameters of a patient, detecting cardiac conditions, and delivering vagal stimulation (e.g., electrical stimulation to the vagus nerve or neurons having parasympathetic function) to the patient to treat the detected cardiac conditions.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: May 6, 2014
    Assignee: Medtronic, Inc.
    Inventors: Xiaohong Zhou, Robert Stadler, Richard N. M. Cornelussen, Lilian Kornet, Paul D. Ziegler, Karen J. Kleckner, Alberto Della Scala
  • Publication number: 20140121717
    Abstract: Systems and methods of providing life support are provided. A life support system includes a first life support device that has a control unit and is configured to apply a life support protocol to a subject. The first life support device also includes a memory unit that can store life support protocol information, and the control unit can provide the life support protocol information to a second life support device. The control unit can also receive operating instructions from the second life support device based on the life support protocol information, and can implement the operating instructions.
    Type: Application
    Filed: January 8, 2014
    Publication date: May 1, 2014
    Applicant: ZOLL MEDICAL CORPORATION
    Inventor: Frederick J. Geheb
  • Publication number: 20130325078
    Abstract: A non-invasive bodily-attached ambulatory medical monitoring and treatment device with pacing is provided. The noninvasive ambulatory pacing device includes a battery, at least one therapy electrode coupled to the battery, a memory storing information indicative of a patient's cardiac activity, and at least one processor coupled to the memory and the at least one therapy electrode. The at least one processor is configured to identify a cardiac arrhythmia within the information and execute at least one pacing routine to treat the identified cardiac arrhythmia.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Applicant: ZOLL MEDICAL CORPORATION
    Inventors: Jason T. Whiting, Thomas E. Kaib, Rachel H. Carlson, Gregory R. Frank
  • Patent number: 8600499
    Abstract: A method and device for treating myocardial ischemia in which an implantable pulse generator delivers electrical stimulation to electrodes disposed near a coronary artery. The stimulation parameters may be adjusted to produce vasodilation and/or vasoconstriction of the artery. The device may be configured to operate in a vasodilation and/or vasoconstriction mode in accordance with specified entry and exit conditions.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: December 3, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Shantha Arcot-Krishnamurthy, Joseph Walker
  • Patent number: 8594812
    Abstract: An electrode pad packaging system including an electrode pouch, an electrode pad (e.g., a defibrillation electrode pad), a wire and a shell is disclosed. The electrode pad is disposed at least partially within the electrode pouch. The wire extends from the electrode pad and, in a disclosed embodiment, at least a portion of the wire is attached to the shell. The shell is disposed in mechanical cooperation with the electrode pouch (e.g., the shell is secured to a portion of the electrode pouch). The shell includes a valve thereon that is configured to allow air to exit the electrode pouch. The valve may be configured to prevent air from entering the electrode pouch. A method of packaging an electrode pad is also disclosed. The method includes providing an electrode pouch, an electrode pad, a wire and a shell. A valve on the shell allows air to exit the electrode pouch.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 26, 2013
    Assignee: Covidien LP
    Inventors: Peter F Meyer, Lee C Burns, Scott R Coggins, David M Selvitelli
  • Patent number: 8548584
    Abstract: In general, the invention is directed to techniques for using an external defibrillator to detect a presence of an implantable medical device (IMD) implanted within a patient, and providing therapy to the patient through communication between the external defibrillator and the IMD. An external defibrillator provides prompts to a user of the external defibrillator to determine the presence of an IMD implanted within the patient. For example, the external defibrillator may prompt the user to visually inspect the patient's chest for signs that an IMD was implanted, such as a scar or raised portion of skin near the patient's clavicles. As another example, the external defibrillator may prompt the user to place a detection device on the patient's chest. The detection device may be coupled to the external defibrillator, and may employ a magnet to initiate telemetry by the IMD to detect the presence of the IMD.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: October 1, 2013
    Assignee: Physio-Control, Inc.
    Inventor: David J. Jorgenson
  • Patent number: 8543202
    Abstract: This disclosure describes delivery of omnipolar electrical stimulation with an external electrical stimulator. Omnipolar electrical stimulation may involve stimulation with an electrode carried on the housing of an implantable medical device (IMD) while substantially simultaneously delivering stimulation via one or more implanted electrodes having the same polarity as the electrode on the housing. An external medical device (EMD) may simulate the IMD housing electrode with an electrode separate from the electrodes carried on leads implanted near target tissue. This electrode may be an external electrode carried on the external housing of the EMD or an external patch electrode. Alternatively, the electrode may be an implantable electrode coupled to the EMD. The conductivity of the external or implantable electrode may also be optimized to approximate the conductivity of the IMD housing electrode. This electrode coupled to the EMD may be utilized during trial stimulation or chronic, external, stimulation.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 24, 2013
    Inventors: Steven M. Goetz, Nathan A. Torgerson
  • Patent number: 8489207
    Abstract: A medical device having a unit in communication with ancillary components wherein the unit and the ancillary components each have a sensory output through which communication with a user of the medical device may be accomplished and to which the user's attention directed. In one aspect, the medical device is an AED unit with associated pads, which are an ancillary component electrically connected to the AED unit. In this illustrative example, the unit has a unit sensory output (e.g., a speaker or a display), and the pads, and/or their associated packaging, have an ancillary sensory output (e.g. a speaker or display). Programming in the AED unit controls output to the sensory outputs such that the user's attention is directed between the unit and the ancillary components.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 16, 2013
    Inventors: Gintaras A Vaisnys, Glenn W. Laub, Giovanni C Meier
  • Patent number: 8457738
    Abstract: Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through a plurality of pacing leads introduced into a patient's body through a percutaneous transluminal vascular intervention (PTVI) catheter have a plurality of exit ports. In one embodiment, the exit ports are arranged for the pacing leads to enter multiple specified blood vessels.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: June 4, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Daniel K. Tomaschko, Richard J. Olson, Tracee Eidenschink, Matthew C. Heidner
  • Patent number: 8433405
    Abstract: A resuscitation device for automatic compression of victim's chest using a compression belt which exerts force evenly over the entire thoracic cavity. The belt is constricted and relaxed through a motorized spool assembly which repeatedly tightens the belt and relaxes the belt to provide repeated and rapid chest compression. An assembly includes various resuscitation devices including chest compression devices, defibrillation devices, and airway management devices, along with communications devices and senses with initiate communications with emergency medical personnel automatically upon use of the device.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: April 30, 2013
    Assignee: ZOLL Circulation, Inc.
    Inventors: Steven R. Bystrom, Darren R. Sherman, Kenneth H. Mollenauer
  • Patent number: 8406875
    Abstract: An apparatus includes a sensing unit and control circuitry. The sensing unit is connected to a channel that delivers Electro-Physiological (EP) signals from a cardiac catheter to an EP recording system and pacing signals from the EP recording system to the catheter. The sensing unit is configured to automatically identify time intervals during which the pacing signals are delivered. The control circuitry is configured to route the EP signals on the channel from the catheter to the EP recording system via an intervening system that is detrimental to the pacing signals, to switch the channel to an alternate path that bypasses the intervening system during the identified time intervals, and to route the pacing signals from the EP recording system to the cardiac catheter over the alternate path.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 26, 2013
    Assignee: Biosense Webster (Israel), Ltd.
    Inventors: Michael Levin, Avi Reuveni, Yoav Lichtenstein
  • Patent number: 8364260
    Abstract: An external defibrillator having a battery; a capacitor electrically communicable with the battery; at least two electrodes electrically communicable with the capacitor and with the skin of a patient; a controller configured to charge the capacitor from the battery and to discharge the capacitor through the electrodes; and a support supporting the battery, capacitor, electrodes and controller in a deployment configuration, the defibrillator having a maximum weight per unit area in the deployment configuration of 0.1 lb/in2 and/or a maximum thickness of 1 inch. The support may be a waterproof housing.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: January 29, 2013
    Assignee: Kuman and Rao Family Trust
    Inventor: Uday N. Kumar
  • Patent number: 8335563
    Abstract: An implantable medical device with an inductive switching regulator having an inductor with a ferromagnetic core is described. The device incorporates a core saturation detector for detecting saturation in the inductor core indicating the presence of a magnetic field such as produced by an MRI scan. The device is configured to alter its behavior when core saturation is detected such as by entering an MRI mode that may include cessation of therapy, fixed-rate bradycardia pacing, and/or disablement of tachyarrhythmia therapy.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 18, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Nicholas J. Stessman
  • Patent number: 8260438
    Abstract: An electrode pad packaging system including an electrode pouch, an electrode pad (e.g., a defibrillation electrode pad), a wire and a shell is disclosed. The electrode pad is disposed at least partially within the electrode pouch. The wire extends from the electrode pad and, in a disclosed embodiment, at least a portion of the wire is attached to the shell. The shell is disposed in mechanical cooperation with the electrode pouch (e.g., the shell is secured to a portion of the electrode pouch). The shell includes a valve thereon that is configured to allow air to exit the electrode pouch. The valve may be configured to prevent air from entering the electrode pouch. A method of packaging an electrode pad is also disclosed. The method includes providing an electrode pouch, an electrode pad, a wire and a shell. A valve on the shell allows air to exit the electrode pouch.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: September 4, 2012
    Assignee: Tyco Healthcare Group LP
    Inventors: Peter Meyer, Lee C. Burnes, Scott Coggins, David Selvitelli
  • Patent number: 8244352
    Abstract: Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through one or more pacing electrodes incorporated onto one or more percutaneous transluminal vascular intervention (PTVI) devices during the revascularization procedure. In one embodiment, a PTVI device releases a conductive liquid to provide a conductive medium between a pacing electrode and tissue of pacing site.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: August 14, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Tracee Eidenschink, Matthew C. Heidner
  • Patent number: 8224442
    Abstract: A resuscitation device for automatic compression of victim's chest using a compression belt which exerts force evenly over the entire thoracic cavity. The belt is constricted and relaxed through a motorized spool assembly which repeatedly tightens the belt and relaxes the belt to provide repeated and rapid chest compression. An assembly includes various resuscitation devices including chest compression devices, defibrillation devices, and airway management devices, along with communications devices and senses with initiate communications with emergency medical personnel automatically upon use of the device.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: July 17, 2012
    Assignee: ZOLL Circulation, Inc.
    Inventors: Steven R. Bystrom, Darren R. Sherman, Kenneth H. Mollenauer
  • Patent number: 8180457
    Abstract: System and method for monitoring and controlling, defibrillation and pacing which allows a victim of a cardiac rhythm abnormality immediate access to a medical professional at a central station, who will remotely monitor, diagnose and treat the victim at one of a plurality of remote sites in accordance with the following steps: (1) providing a plurality of contact electrodes for a victim at a remote site for the receipt of ECG signals and for the application of electrical pulses to the victim; (2) transmitting the signals from the remote site to a central station and displaying them for review by the medical professional; (3) the medical professional selecting from a menu of defibrillation and pacing pulses, if the application thereof is appropriate; (4) transmitting the selection results to the remote site; and (5) receiving the selection results at the remote site and applying the selected pulses to the victim.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: May 15, 2012
    Inventor: Jeffrey A. Matos
  • Publication number: 20120035678
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: October 13, 2011
    Publication date: February 9, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Patent number: 8099164
    Abstract: Embodiments of the invention include an implantable medical device having a digital signal processing circuit associated with an implantable medical device function. The digital signal processing circuit can be selectively implementable according to the clinical need of a patient. Embodiments of the invention also include methods of making and using such implantable medical devices.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: January 17, 2012
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey M. Gillberg, Steven D. Goedeke
  • Patent number: 8036741
    Abstract: A method of performing a medical procedure, such as surgery, is provided. A nerve is stimulated in order to adjust the beating of the heart to a first condition, such as a stopped or slowed condition. The medical procedure is performed on the heart or another organ. The stimulation of the nerve is stopped in order to adjust the beating of the heart to a second condition, such as a beating condition. The heart itself may also be stimulated to a beating condition, such as by pacing. The stimulation of the nerve may be continued in order to allow the medical procedure to be continued. A sensor to sense a characteristic of a fluid or tissue, such as an impending contraction, may be also used during the medical procedure. Systems and devices for performing the medical procedure are also provided.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: October 11, 2011
    Assignee: Medtronic, Inc.
    Inventors: Scott E. Jahns, Michael R. S. Hill, James R. Keogh
  • Patent number: 8032203
    Abstract: The invention relates to a method and a medical imaging system for acquisition of image data of the heart using a medical imaging procedure during an intervention on the heart, while the heart is stimulated by a pacing signal from an external heart pacemaker, the acquisition and/or reconstruction of the image data being controlled, in particular triggered, by the pacing signal.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: October 4, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Boese, Andreas Meyer, Norbert Rahn
  • Patent number: 8027721
    Abstract: External pacemaker systems and methods deliver pacing waveforms that minimize hydrolysis of the electrode gel. Compensating pulses are interleaved with the pacing pulses, with a polarity and duration that balance the net charge at the electrode locations. The compensating pulses are preferably rectangular for continuous pacing, and decay individually for on-demand pacing.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: September 27, 2011
    Assignee: Physio-Control, Inc.
    Inventor: Joseph L. Sullivan
  • Patent number: 7996081
    Abstract: A resuscitation device for automatic compression of victim's chest using a compression belt which exerts force evenly over the entire thoracic cavity. The belt is constricted and relaxed through a motorized spool assembly which repeatedly tightens the belt and relaxes the belt to provide repeated and rapid chest compression. An assembly includes various resuscitation devices including chest compression devices, defibrillation devices, and airway management devices, along with communications devices and senses with initiate communications with emergency medical personnel automatically upon use of the device.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: August 9, 2011
    Assignee: ZOLL Circulation, Inc.
    Inventors: Steven R. Bystrom, Darren R. Sherman, Kenneth H. Mollenauer
  • Publication number: 20110152962
    Abstract: An embodiment of a cable detection system described in this application comprises at least one cable connector adapted to connect with a cable, a field generator adapted to induce an electrical signal across the at least one cable connector, the electrical signal having an amplitude and a frequency, and a detector for detecting a change in the amplitude or the frequency of the electrical signal across the at least one cable connector.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 23, 2011
    Applicant: MEDTRONIC, INC.
    Inventors: Michael D. Behm, Paul T. Simonette
  • Publication number: 20110015689
    Abstract: A method of treating a wide variety of heretofore considered unrelated ailments comprises delivering electricity through a circuit in the body. The circuit includes at least four nerves leading from at least two of the patient's extremities to various nerve roots adjacent the spinal column. Electrical energy from an electrical interferential therapy device is delivered through electrodes on the extremities adjacent the nerve endings until symptoms of the diagnosed ailment ameliorates. Sending impulses from the periphery to the central nervous system appears to the help the body manufacture various neuropeptides and other chemicals which control the essential basics of the body's health and well being.
    Type: Application
    Filed: September 13, 2010
    Publication date: January 20, 2011
    Inventor: Donald A. Rhodes
  • Publication number: 20100324621
    Abstract: A neurostimulation device includes an external neurostimulator worn by a patient using a bracing element that braces a portion of the patient's body. The external neurostimulator delivers neurostimulation to modulate a cardiovascular function of the patient. In one embodiment, the external stimulator delivers the neurostimulation transcutaneously to a stimulation target in the patient's body using surface stimulation electrodes placed on the body approximately over the stimulation target.
    Type: Application
    Filed: August 26, 2010
    Publication date: December 23, 2010
    Inventors: Imad Libbus, Anthony V. Caparso, Andrew P. Kramer
  • Publication number: 20100324619
    Abstract: A constant current pacing apparatus and method for pacing uses, for example, H-bridge circuitry and a constant current source connected to the H-bridge circuitry. Further, for example, protection is provided from high voltage pulses applied to the patient via one or more other medical devices.
    Type: Application
    Filed: October 22, 2009
    Publication date: December 23, 2010
    Applicant: Medtronic, Inc.
    Inventor: Kevin A. Wanasek
  • Publication number: 20100324620
    Abstract: A neurostimulation device includes an external neurostimulator worn by a patient using a bracing element that braces a portion of the patient's body. The external neurostimulator delivers neurostimulation to modulate a cardiovascular function of the patient. In one embodiment, the external stimulator delivers neurostimulation percutaneously to a stimulation target in the patient's body using at least one percutaneous stimulation electrode having a distal end lodged on or near the stimulation target.
    Type: Application
    Filed: August 26, 2010
    Publication date: December 23, 2010
    Inventors: Imad Libbus, Anthony V. Caparso, Andrew P. Kramer
  • Patent number: 7840277
    Abstract: The present disclosure relates to systems and methods for: 1) displaying all vital central station (CS) information and controls on a single screen; 2) linking peripheral central stations (pCSs) to a master central station (mCS); 3) operating the system disclosed in U.S. Ser. No. 10/460,458, without medical professionals (MPs) in the mCS or without any mCS; 4) linking a remote controlled defibrillator (RCD™) unit to an arrest sensor; 5) operating an RCD unit in a motor vehicle and linking an RCD unit to a vehicle communications system; 6) linking an RCD unit to a CS through a network of: a) non-vehicle-based stationary units (SUs), b) vehicle-based SUs/vehicle communication systems, or c) non-vehicle-based SUs and vehicle-based SUs/vehicle communication systems; 7) using an RCD unit with a chest compression device; 8) using the network of RCD units and MPs for disaster monitoring; and 9) monitoring and treating hospital patients and motor vehicle passengers.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 23, 2010
    Inventor: Jeffrey A. Matos