Heart Rate Regulating (e.g., Pacing) Patents (Class 607/9)
  • Patent number: 12109416
    Abstract: A method for stimulating nerve fibers to treat a condition in a patient first involves identifying carotid sinus nerve afferent fibers in a first side of the patient's neck and identifying cardiac-specific vagal nerve afferent fibers in the first side of the patient's neck. The method further involves placing a first multipolar electrode device around the carotid sinus nerve afferent fibers and the cardiac-specific vagal nerve afferent fibers. Finally, the method involves stimulating the carotid sinus nerve afferent fibers and the cardiac-specific vagal nerve afferent fibers, using the first multipolar electrode device. This method may be performed on a second side of the neck as well.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: October 8, 2024
    Assignee: BAROLOGICS, INC.
    Inventors: Dimitrios Georgakopoulos, Molly Wade
  • Patent number: 12106650
    Abstract: A variety of dispatcher user interfaces, communications architectures, methods, apparatus, APIs and protocols are described that can help facilitate the integration of volunteer responder networks into the workflows of PSAP dispatchers. In one aspect, a dispatcher user interface facilitates activation of the volunteer responder network, as well as tracking and/or communicating notes to medical devices such as AEDs in the responder network that have accepted an incident.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: October 1, 2024
    Assignee: Avive Solutions, Inc.
    Inventors: Rory M. Beyer, Sameer Jafri, Gordon Moseley P. Andrews
  • Patent number: 12070298
    Abstract: An electrocardiograph according to an aspect of the present invention includes an electrocardiographic measurement unit configured to measure electrocardiographic information of a user, a physiological indicator measurement unit configured to measure a physiological indicator of the user, the physiological indicator being different from the electrocardiographic information, a first determination unit configured to determine whether or not the user is in a relaxed state, on the basis of a measurement result of the physiological indicator, and a measurement control unit configured to control the electrocardiographic measurement unit on the basis of a determination result by the first determination unit.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: August 27, 2024
    Assignee: OMRON HEALTHCARE CO., LTD.
    Inventors: Tadahisa Terao, Tomohiro Kukita, Hirotaka Wada, Tamio Ueda
  • Patent number: 12064636
    Abstract: A method for heart failure management includes monitoring one or more sensor-based parameters for a patient to determine a pacing therapy. If the one or more parameters indicate atrial tachycardia or atrial fibrillation, a first pacing therapy is delivered. If the one or more parameters do not indicate atrial tachycardia or atrial fibrillation, it is determined whether the patient is asleep. If the patient is asleep, a second pacing therapy is delivered. If the one or more parameters do not indicate atrial tachycardia, atrial fibrillation, or that the patient is asleep, the patient's P-wave duration is evaluated with respect to a P-wave duration threshold value. When the patient's P-wave duration is determined to exceed the P-wave duration threshold value, a third pacing therapy is delivered, and when the patient's P-wave duration is determined to not exceed the P-wave duration threshold value, a fourth pacing therapy is delivered.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: August 20, 2024
    Assignee: Medtronic, Inc.
    Inventors: Lilian Kornet, Troy E. Jackson
  • Patent number: 12053303
    Abstract: One aspect includes a manufacturing method for a multielectrode system including providing several conductors, which are electrically conductive in their longitudinal direction; bundling the conductors at a proximal portion of the multielectrode system by means of a sheath surrounding the conductors to form a conductor bundle configured to be used as a lead of the multielectrode system; and providing several ring electrodes each surrounding one of the conductors at a distal portion of the multielectrode system and electrically connecting the ring electrodes and the conductors to form a multielectrode array of the multielectrode system. The multielectrode array is configured to be in a longitudinally extended or in a transversally expanded configuration.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 6, 2024
    Assignee: Heraeus Deutschland GmbH & Co. KG
    Inventors: Markus Jung, Oliver Keitel
  • Patent number: 12048488
    Abstract: Systems are provided for generating data representing electromagnetic states of a heart for medical, scientific, research, and/or engineering purposes. The systems generate the data based on source configurations such as dimensions of, and scar or fibrosis or pro-arrhythmic substrate location within, a heart and a computational model of the electromagnetic output of the heart. The systems may dynamically generate the source configurations to provide representative source configurations that may be found in a population. For each source configuration of the electromagnetic source, the systems run a simulation of the functioning of the heart to generate modeled electromagnetic output (e.g., an electromagnetic mesh for each simulation step with a voltage at each point of the electromagnetic mesh) for that source configuration.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: July 30, 2024
    Assignee: VEKTOR MEDICAL, INC.
    Inventor: Christopher Villongco
  • Patent number: 12042656
    Abstract: A method and external device for providing sub-perception stimulation to a patient via an implantable stimulator device is disclosed. Stimulation parameters for the patient are determined that provide sub-perception stimulation to address a symptom of the patient. A schedule is determined to provide scheduled boluses of stimulation, where each bolus comprises a duration during which stimulation is applied to the patient in accordance with the stimulation parameters, and where the scheduled boluses are separated by off times when no stimulation is provided to the patient. Preferably, the duration of each of the scheduled boluses is 3 minutes or longer, and the duration of each of the off times is 30 minutes or greater. Additional boluses can be provided on demand in addition to the scheduled boluses by selecting an option on the external device, although the provision of such additional boluses may be constrained by a lockout period.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: July 23, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Que T. Doan, Michael A. Moffitt
  • Patent number: 12036415
    Abstract: According to some aspects, a cardiac pacemaker for implantation within a subject is provided, the pacemaker including a housing, at least one sensor configured to detect an activity level of the subject, and at least one processor coupled to the sensor configured to detect inactivity of the subject based on output from the at least one sensor, produce a first signal configured to increase the heart rate of the subject to a first heart rate during a first time period, wherein the first heart rate is above a resting heart rate and below 100 beats per minute, and in response to determining that the first time period has elapsed, producing a second signal configured to increase the heart rate of the subject to a second heart rate during a second time period, wherein the second heart rate is between 100 and 140 beats per minute.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: July 16, 2024
    Assignee: The University of Vermont and State Agricultural College
    Inventor: Markus Meyer
  • Patent number: 12029570
    Abstract: A method for quantifying a metric indicative of a condition of cardiac tissue in an electrogram is disclosed. The method comprises detecting extrema in the electrogram, analyzing the detected extrema, selecting certain extrema based on a threshold and generating a fractionation metric comprising a count of the selected extrema.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: July 9, 2024
    Assignee: NEUTRACE INC.
    Inventor: Robert L. Lux
  • Patent number: 12023503
    Abstract: An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: July 2, 2024
    Assignee: Medtronic, Inc.
    Inventors: Ruth N. Klepfer, Manfred Justen, Subham Ghosh, Jeffrey M. Gillberg, Trent M. Fischer, Elizabeth A. Schotzko
  • Patent number: 12016693
    Abstract: An apparatus for providing arrhythmia information uses an esophageal probe having a longitudinal axis oriented in the direction of the esophagus where it is intended to be lodged, the probe comprising at least three electrode portions spaced in the longitudinal esophageal direction of the probe. The apparatus comprises a control unit, wherein the electrode portions are connected to the control unit, wherein the control unit is configured to detect potential differences between different pairs of the electrode portions. The control unit is configured to determine a repeating heart beat pattern as basis for a time resolved determination of the potential in the direction of the longitudinal axis and possibly also a perpendicular axis of the esophageal probe using compressive sensing. The apparatus is configured to provide a plot with the representation of the activation map as observed on the posterior wall or any other wall of the heart.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: June 25, 2024
    Assignee: Berner Fachhochschule, Technik und Informatik
    Inventor: Reto Andreas Wildhaber
  • Patent number: 12017079
    Abstract: Implantable medical devices include an enclosure that is constructed by machining of a material rather than by forming or stamping. The machining produces one or more internal features within the enclosure. These internal features may include shelves that may act as a stiffener and create separate compartments within the enclosure. These internal features may include contoured edges along the shelves to accommodate conductors and other structures that extend from one compartment to another. These features may include slots that are present in one or more locations, such as on a surface of one of the shelves. These internal features may also include standoffs that establish a gap between an internal component and the external wall of the enclosure. These internal features may also include different thicknesses in different areas of the enclosure, such as one wall thickness in one compartment and a different wall thickness in another compartment.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: June 25, 2024
    Assignee: MEDTRONIC, INC.
    Inventors: Michael J. Baade, Steven T. Deininger, Katherine J. Bach
  • Patent number: 12005258
    Abstract: Methods and systems for seamless adjustment of treatment are disclosed. A determination can be made as to whether to intervene with a patient's treatment based on data obtained from implantable electrodes and/or non-implantable electrodes. The data from non-implantable electrodes have a correction factor applied to adjust for less accuracy compared to data acquired from implantable electrodes.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: June 11, 2024
    Assignee: Medtronic, Inc.
    Inventor: Vinod Sharma
  • Patent number: 12004870
    Abstract: The disclosed physiological feedback systems and methods assist with assessing, monitoring and/or treating a patient experiencing a cardiac arrest event. The systems and methods receive multiple inputs and are continuous and/or iterative during a treatment session to provide physiological state trends of the patient. An index of the physiological state of the patient can be derived and confounders, and/or their effects, can be identified, and/or removed, from the index. Additionally, the systems and methods can assist with determining ischemic injury in a patient based on cerebral tissue oxygenation and/or other physiological data.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: June 11, 2024
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman
  • Patent number: 11998749
    Abstract: An implantable medical device which performs the following steps during operation: a) performing a detection of whether the implantable medical device is in an implanted state; b) if it is detected that the implantable medical device is in an implanted state, activating a first diagnostic or therapeutic function of the implantable medical device, and subsequently activating a second diagnostic or therapeutic function of the implantable medical device, wherein the second diagnostic or therapeutic function is activated only after the fulfillment of at least one activation criterion selected from the group consisting of an elapse of a first time period from the activation of the first diagnostic or therapeutic function, an elapse of a second time period from the detection that the implantable medical device is in an implanted state, and a passing of a function test.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: June 4, 2024
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Thomas Doerr, Sergey Ershov, Torsten Radtke, Martin Roemer
  • Patent number: 11974853
    Abstract: Systems are provided for generating data representing electromagnetic states of a heart for medical, scientific, research, and/or engineering purposes. The systems generate the data based on source configurations such as dimensions of, and scar or fibrosis or pro-arrhythmic substrate location within, a heart and a computational model of the electromagnetic output of the heart. The systems may dynamically generate the source configurations to provide representative source configurations that may be found in a population. For each source configuration of the electromagnetic source, the systems run a simulation of the functioning of the heart to generate modeled electromagnetic output (e.g., an electromagnetic mesh for each simulation step with a voltage at each point of the electromagnetic mesh) for that source configuration.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: May 7, 2024
    Assignee: Vektor Medical, Inc.
    Inventor: Christopher J. T. Villongco
  • Patent number: 11969598
    Abstract: Systems and methods for controlling blood pressure via electrical stimulation of the heart are disclosed. Embodiments may include at least two different stimulation patterns, each configured to reduce blood pressure to a different degree, and may alternate between stimulation patterns based on the need of a patient, for example, alternating between day and night or between periods of strenuous and light activity. Some embodiments may take advantage of a slow baroreflex response that occurs after treatment is stopped, suspending treatment for extended periods, and then resuming treatment before blood pressure levels reach pretreatment values. Embodiments may control blood pressure by controlling atrial pressure and atrial stretch.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: April 30, 2024
    Assignee: BackBeat Medical, LLC
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Patent number: 11957914
    Abstract: Transcardiac diaphragmatic stimulation includes detecting a cardiac event based on signals sensed through a cardiac event sensor located in or on a region of a heart in proximity to a diaphragm, and delivering an ADS therapy through an ADS therapy mechanism that is located in proximity with the region of the heart, to induce a contraction of the diaphragm without inducing a contraction of the heart. The cardiac event sensor may be located a) on an interior surface of a cardiac wall that abuts the diaphragm, or 2) on an exterior surface of the heart, between a cardiac wall and the diaphragm. The ADS therapy mechanism may be located: a) on an interior surface of a cardiac wall that abuts the diaphragm, 2) on a superior surface of the diaphragm that abuts a cardiac wall, or 3) on an inferior surface of the diaphragm at a region of the diaphragm that abuts the heart.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: April 16, 2024
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Gregg Harris
  • Patent number: 11950930
    Abstract: Medical apparatus includes a probe with a basket assembly at its distal end, including a plurality of resilient spines with multiple electrodes arrayed along a length of each of the spines. Processing circuitry is configured to acquire a first bipolar electrical signal from the tissue between first and second electrodes at first and second locations along a first spine of the basket assembly, and to acquire a second bipolar electrical signal from the tissue between the first electrode and a third electrode in a third location on a second spine of the basket assembly, and to interpolate, based on the first and second bipolar electrical signals, a vectorial electrical property of the tissue along an axis that passes through the first location and between the second and third locations.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: April 9, 2024
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Vadim Gliner, Assaf Govari
  • Patent number: 11925807
    Abstract: Pacemaker-initiated atrial fibrillation during competitive atrial pacing is a common arrhythmia with potentially serious consequences The novel pacing method proposes a novel way to automatically detect and diagnose competitive atrial pacing, and to deliver an intervention via a pacing stimulus in the atrium simultaneously with delivering a pacing stimulus in the ventricle, and doing this after a longer waiting period. By doing this, potentially hazardous scenarios causing atrial fibrillation in competitive atrial pacing are avoided, while the rhythm regularity and the synchrony between the upper and lower chambers of the heart are maintained. At the same time, the vicious cycle of retrograde conduction from the ventricle to the atrium—the culprit of the problem—is terminated and not allowed to reoccur for several subsequent cardiac cycles, thereby preventing the extended propagation of repetitive non-reentrant ventriculo-atrial synchrony.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: March 12, 2024
    Inventor: Michael V Orlov
  • Patent number: 11925812
    Abstract: The present technology generally includes devices, systems, and methods for providing electrical stimulation to the left ventricle of a human heart in a patient suffering from Left Bundle Branch Block (LBBB). In particular, the present technology includes an implantable receiver-stimulator and an implantable controller-transmitter for leadless electrical stimulation of the heart. The receiver-stimulator can include one or more sensors capable of detecting the electrical conduction of the heart and the receiver-stimulator can be configured to pace the stimulation of the left ventricle based off the sensed electrical conduction to achieve synchronization of the left and right ventricles.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: March 12, 2024
    Assignee: EBR SYSTEMS, INC.
    Inventors: Steven Kim, Nathaniel Parker Willis
  • Patent number: 11918814
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. An embodiment of a medical system includes an electrostimulation circuit to generate His-bundle pacing (HBP) pulses to stimulate a His bundle, and a cardiac event detector to detect a His-bundle activity within a time window following an atrial activity. The cardiac event detector may use a cross-chamber blanking, or an adjustable His-bundle sensing threshold, to avoid or reduce over-sensing of far-field atrial activity and inappropriate inhibition of HBP therapy. The electrostimulation circuit may deliver HBP in the presence of the His-bundle activity. The system may further recognize the detected His-bundle activity as either a FFPW or a valid inhibitory event, and deliver or withhold HBP therapy based on the recognition of the His-bundle activity.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: March 5, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David Arthur Casavant, David L. Perschbacher, Deepa Mahajan
  • Patent number: 11916256
    Abstract: In some examples, an assembly for a medical device. The assembly includes a first electrode comprising a first conductive tab, and a first current collector; a second electrode including a second conductive tab, a second current collector, a third current collector, and at least one connector connecting the second current collector to the third current collector, wherein the second current collector and the third current collector are folded over each other about the at least one connector, wherein the second conductive tab is coupled to the second current collector, and wherein the third current collector is electrically coupled to second conductive tab via the at least one connector and the second current collector; and a foil package being sealed over the first conductive tab and the second conductive tab to partially enclose the first electrode and second electrode.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventors: Joseph J. Viavattine, Erik J. Hovland
  • Patent number: 11911168
    Abstract: Systems and methods are described herein for determining whether cardiac conduction system pacing therapy may be beneficial and/or determining how proximal or distal a cardiac conduction system block may be using external cardiac signals. To do so, one or more left-sided metrics of electrical heterogeneity information may be generated based on left-sided surrogate cardiac electrical measured using a plurality of left external electrodes.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: February 27, 2024
    Assignee: Medtronic, Inc.
    Inventor: Subham Ghosh
  • Patent number: 11908299
    Abstract: System and methods for delivering defibrillator incident information to a PSAP in real-time during emergency use of an AED are described. Such information is utilized by a telecommunicator at a PSAP to provide better guidance to volunteer caregivers during potential cardiac arrest incidents. In another aspect the AED's current instruction state and optionally the time in that state is provided to the PSAP.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: February 20, 2024
    Assignee: Avive Solutions, Inc.
    Inventors: Rory M. Beyer, Micah R. Bongberg, Sameer Jafri, Gordon Moseley P. Andrews
  • Patent number: 11890476
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: February 6, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 11883138
    Abstract: A method of determining one or more diagnostic metrics to assess a blood vessel using intravascular data includes: sampling a sensor of an intravascular data collection probe disposed in the blood vessel during a pullback of the intravascular data collection probe through the blood vessel to obtain sampled distal pressure (Pd) values; receiving, at an intravascular data processing system, the sampled distal pressure (Pd) values and proximal pressure (Pa) values; determining sets of Pd/Pa ratios, each set including Pd/Pa ratios that are determined through an entirety of one heart cycle; determining minimum Pd/Pa ratios, each of which is a minimum within one of the sets of Pd/Pa ratios over the entirety of the corresponding heart cycle; and controlling a display system to generate a plot of a moving average of the minimum Pd/Pa ratios over time during the pullback.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: January 30, 2024
    Assignee: ST. JUDE MEDICAL COORDINATION CENTER BVBA
    Inventor: Johan Svanerudh
  • Patent number: 11883152
    Abstract: Systems and methods for determining a contact angle of a catheter relative to tissue are provided. In one embodiment, a system includes a catheter with three or more electrodes, and a processor circuit in communication with the catheter. The processor circuit controls the three or more electrodes to emit a plurality of electrical voltages and to measure the plurality of electrical voltages. Based on the measured electrical voltages, the processor circuit calculates a first interelectrode impedance and a second interelectrode impedance. The processor circuit calculates, for each of a plurality of hypothetical i.e. model angles, a first hypothetical i.e. model contact force and a second hypothetical i.e. model contact force based on the first and second interelectrode impedances. The processor circuit determines and outputs the contact angle of the catheter based on a comparison of the first and second model contact forces calculated for each of the plurality of model angles.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: January 30, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Oran Gerbat, Shlomo Ben Haim, Asi Elad
  • Patent number: 11883673
    Abstract: In some examples, an implantable medical device includes a battery, an electronics module electrically connected to the battery, and an elongated housing comprising a side wall positioned between the battery and an end cap, wherein the electronics module is positioned within the elongated housing between the battery and the end cap. The implantable medical device also includes an electrical contact assembly comprising a first spring contact and a second spring contact. The electrical contact assembly of the implantable medical device is positioned within the elongated housing between the electronics module and the battery or the end cap.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: January 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Andrew J. Ries, Chunho Kim, Mark E. Henschel, Robert A. Munoz, Christopher T. Kinsey, Jeffrey S. Voss
  • Patent number: 11883677
    Abstract: An implantable medical device has a therapy module configured to generate a composite pacing pulse including a series of at least two individual pulses. The therapy module is configured to generate the composite pacing pulse by generating a first pulse of the at least two individual pulses by selectively coupling a first portion of a plurality of capacitors to an output signal line and generate a second pulse of the at least two individual pulses by selectively coupling a second portion of the plurality of capacitors to the output signal line.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: January 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: David A Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
  • Patent number: 11872393
    Abstract: An implantable electrode includes an outer tube, which has a distal end and a proximal end, wherein the implantable electrode is connectable in the region of the proximal end to an active device. At least one electrode line is arranged in the outer tube. At least one electrode pole, which is electrically connected to the at least one electrode line, for electrically contacting tissue surrounding the electrode in the implanted state of the electrode is arranged in the region of the distal end. A stub line for extending the electrical length of the at least one electrode line is connected to the at least one electrode line in the region of the distal end or the proximal end.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: January 16, 2024
    Assignee: Biotronik SE & Co. KG
    Inventor: Jens Rump
  • Patent number: 11857779
    Abstract: An implantable cardiac defibrillator (ICD) system includes an ICD implanted subcutaneously in a patient, a defibrillation lead having a proximal portion coupled to the ICD and a distal portion having a defibrillation electrode configured to deliver a defibrillation or cardioversion shock to a heart of the patient, and a pacing lead that includes a distal portion having one or more electrodes and a proximal portion coupled to the ICD. The distal portion of the pacing lead is implanted at least partially along a posterior side of a sternum of the patient within the anterior mediastinum. The ICD is configured to provide pacing pulses to the heart of the patient via the pacing lead and provide defibrillation shocks to the patient via the defibrillation lead. As such, the implantable cardiac system provides pacing from the substernal space for an extravascular ICD system.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: January 2, 2024
    Assignee: Medtronic, Inc.
    Inventors: Amy E. Thompson-Nauman, Melissa G. T. Christie, Paul J. DeGroot, Rick D. McVenes, Becky L Dolan
  • Patent number: 11850063
    Abstract: In some examples, processing circuitry of a medical device system determines, for each of a plurality of patient parameters, a difference metric for a current period based on a value of a patient parameter determined for the current period and a value of the patient parameter determined for an immediately preceding period, and determines a score for the current period based on a sum of the difference metrics for at least some of the plurality of patient parameters. The processing circuitry determines a threshold for the current period based on scores determined for N periods that precede the current period, compares the score for the current period to the threshold, and determines whether to generate an alert indicating that an acute cardiac event of the patient, e.g., ventricular tachyarrhythmia, is predicted, and/or deliver a therapy configured to prevent the acute cardiac event, based on the comparison.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: December 26, 2023
    Assignee: Medtronic, Inc.
    Inventor: Xiaohong Zhou
  • Patent number: 11844616
    Abstract: Methods, apparatus, and systems for medical procedures are disclosed herein and include sensing a plurality of tissue electrical potentials at an organ area of an organ, by one or more electrodes on a catheter, determining a number of peak electrical potentials from the plurality of first tissue electrical potentials such that the a peak electrical potential exceeds a potential threshold, determining a first visual characteristic based on the number of peak electrical potential and displaying a rendering of the organ comprising the organ area such that the rendering of the first organ area comprises the first visual characteristic.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: December 19, 2023
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Refael Itah, Aharon Turgeman, Daniel Melby, Gal Hayam, Tal Bar-on
  • Patent number: 11826575
    Abstract: A method for controlling an adaptive pacing therapy that includes utilizing one or more processors to perform measuring an atrial-ventricular (AV) interval corresponding to an interval between an atrial paced (Ap) event or an atrial sensed (As) event and a sensed ventricular (Vs) event, setting an AV delay based on the AV interval, and measuring an S1 heart sound characteristic of interest (COI) while utilizing the AV delay in connection with delivering a pacing therapy by the IMD. The one or more processors also perform adjusting the AV delay, repeating the measuring, and adjusting to obtain a collection of S1 heart sound COIs and corresponding AV delays, selecting one of the AV delays, that corresponds to a select one of the S1 heart sound COIs, as a resultant AV delay, and managing the pacing therapy, utilized by the IMD, based on the resultant AV delay.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: November 28, 2023
    Assignee: Pacesetter, Inc.
    Inventor: Jan O. Mangual-Soto
  • Patent number: 11819698
    Abstract: A medical device is configured to sense a cardiac signal that includes far field ventricular event signals and determine a ventricular activity metric from the sensed cardiac signal. The ventricular activity metric may be representative of a ventricular rate or an atrioventricular time interval. The medical device is configured to determine an atrioventricular synchrony metric based on the ventricular activity metric and generate an output based on the atrioventricular synchrony metric. The device may include a memory configured to store data corresponding to the atrioventricular synchrony metric.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: November 21, 2023
    Assignee: Medtronic, INC.
    Inventors: Vincent P. Ganion, Yanina Grinberg, Paul R. Solheim
  • Patent number: 11786732
    Abstract: An assessment system is provided for vagus nerve stimulation treatment with a neurostimulator configured to deliver a stimulation signal having a plurality of ON-periods and OFF-periods. The assessment system includes a wand assembly configured to generate a delivery detection signal indicating delivery of the stimulation signal, a lead assembly configured to acquire an ECG signal, and a data acquisition system configured to capture the delivery detection and ECG signals. The assessment system further includes a processor and a non-transitory computer-readable memory storing instructions that, when executed by the processor, cause the assessment system to record the ECG signal over at least one successive pair of ON- and OFF-periods, determine a heart rate dynamic response from the ECG signal, and determine an instantaneous heart rate for each determined R-R interval to determine heart rate dynamics for assessment of autonomic engagement in response to the vagus nerve stimulation treatment.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: October 17, 2023
    Assignee: LivaNova USA, Inc.
    Inventors: Imad Libbus, Scott R. Stubbs, Scott Mazar, Bruce KenKnight, Badri Amurthur
  • Patent number: 11771359
    Abstract: A system and method of identifying focal sources is presented. The method can comprise detecting, via sensors, electro-cardiogram (ECG) signals over time, each ECG signal detected via one of the sensors having a location in a heart and indicating electrical activity of the heart, each signal comprising at least an R wave and an S wave; creating an R-S map comprising an R-to-S ratio for each of the ECG signals, the R-to-S ratio comprising a ratio of absolute magnitude of the R wave to absolute magnitude of the S wave; identifying, for each of the ECG signals, local activation times (LATs); and correlating the R-to-S ratios for the ECG signals on the R-S map and the identified LATs and using the correlation to identify the focal sources.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: October 3, 2023
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Roy Urman, Meir Bar-Tal, Yaniv Ben Zrihem, Ziyad Zeidan, Gal Hayam, Stanislav Goldberg, Atul Verma, Yariv Avraham Amos, Richard P. M. Houben
  • Patent number: 11759639
    Abstract: A method and apparatus for treatment of hypertension and heart failure by increasing secretion of endogenous atrial hormones by pacing of the heart. Pacing is done during the ventricular refractory period resulting in premature atrial contraction that does not result in ventricular contraction. Pacing results in the atrial wall stress, peripheral vasodilation, ANP secretion. Concomitant reduction of the heart rate is monitored and controlled as needed with backup pacing.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: September 19, 2023
    Assignee: BackBeat Medical, LLC
    Inventors: Howard Levin, Mark Gelfand
  • Patent number: 11759141
    Abstract: The disclosure relates to a computer-implemented method for monitoring diaphragmatic response to phrenic nerve stimulation. The method comprises receiving in real-time a diaphragmatic CMAP signal. The method comprises computing a baseline value of a characteristic of the CMAP signal. The characteristic represents a diaphragmatic response intensity to a phrenic nerve stimulation. The method comprises determining a threshold value of the characteristic, representing a boundary of values of the characteristic indicative of upcoming diaphragmatic palsy. The determining of the threshold value includes shifting the baseline value. The method comprises receiving in real-time a ECG signal. The method comprises repeating in real-time: detecting a QRS complex in the ECG signal, monitoring the CMAP signal, computing a real-time value of the characteristic, comparing the real-time value to the threshold value, and outputting an alert when the threshold is passed.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: September 19, 2023
    Assignee: CIRCLE SAFE
    Inventors: Frédéric Franceschi, Bertrand Thiery
  • Patent number: 11759646
    Abstract: A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: September 19, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Kenneth J. Carroll, Alan Ostroff, Peter M. Jacobson
  • Patent number: 11738199
    Abstract: Systems and methods are provided for delivering neurostimulation therapies to patients for treating chronic heart failure. A neural fulcrum zone is identified and ongoing neurostimulation therapy is delivered within the neural fulcrum zone. This neural fulcrum zone corresponds to a combination of stimulation parameters at which autonomic engagement is achieved, while the tachycardia-inducing stimulation effects are offset by the bradycardia-inducing effects, thereby minimizing side effects such as significant heart rate changes while providing a therapeutic level of stimulation.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: August 29, 2023
    Assignees: LivaNova USA, Inc., East Tennessee State University
    Inventors: Bruce H. KenKnight, Jeffrey L. Ardell, Imad Libbus, Badri Amurthur
  • Patent number: 11730414
    Abstract: In one embodiment, a medical system includes respective electrodes for application to a body of a subject and to output a set of respective activation signals in response to electrical activity of a heart of the subject captured over a sequence of heartbeat intervals, and a processor to classify a first heartbeat interval of the set of activation signals as a first morphological template, compute a measure of similarity between a second heartbeat interval of the set of activation signals and the first morphological template, group the second heartbeat interval of the set of activation signals in a first morphological group with the first morphological template responsively to the measure exceeding a predefined threshold, and classify the second heartbeat interval of the set of activation signals as a second morphological template responsively to the measure not exceeding the predefined threshold, and repeat the above, mutatis mutandis, for subsequent heartbeat intervals.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: August 22, 2023
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Jonathan Yarnitsky, Elad Nakar, Lior Greenbaum, Goren Cohn, Amiram Ben Dor
  • Patent number: 11717688
    Abstract: A medical device includes a motion sensor configured to sense a motion signal. The medical device includes a control circuit configured to determine at least one ventricular event metric from the motion signal sensed over multiple of atrial cycles, determine that the ventricular event metric meets atrioventricular block criteria and generate an output in response to determining the atrioventricular block.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: August 8, 2023
    Assignee: Medtronic, Inc.
    Inventors: Michelle M. Galarneau, Vincent P. Ganion, Saul E. Greenhut, Yanina Grinberg, Todd J. Sheldon, Paul R. Solheim, Hyun J. Yoon
  • Patent number: 11697023
    Abstract: A medical device is configured to deliver therapeutic electrical stimulation pulses by generating frequency modulated electrical stimulation pulse signals. The medical device includes a pulse signal source and a modulator. The pulse signal source generates an electrical stimulation pulse signal having a pulse width. The modulator may include a high frequency modulator configured to modulate a frequency of the pulse signal from a starting frequency down to a minimum frequency during the pulse width. The modulator may include a low frequency bias generator to modulate the offset of the pulse signal between a minimum offset and a maximum offset in other examples.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: July 11, 2023
    Assignee: Medtronic, Inc.
    Inventors: Vladimir P. Nikolski, Melissa G. T. Christie, Mark T. Marshall, Amy E. Thompson-Nauman
  • Patent number: 11690575
    Abstract: A physiological information processing apparatus includes a processor and a memory storing computer-readable instructions. When the instructions are executed by the processor, the physiological information processing apparatus obtains physiological information data indicative of physiological information of a subject, obtains a first parameter associated with a vital sign of the subject based on the physiological information data, displays a first trend graph showing temporal change in the first parameter in a first display area of a display screen of a display, obtains a second parameter associated with an autonomic nerve function of the subject based on the physiological information data, and displays a second trend graph showing temporal change in the second parameter in a second display area of the display screen. The first and second display areas are displayed next to each other such that time axes of the first and second display areas are synchronized with each other.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: July 4, 2023
    Assignee: NIHON KOHDEN CORPORATION
    Inventors: Masami Tanishima, Takashi Mato, Shunichi Miyata
  • Patent number: 11684272
    Abstract: Systems and methods for monitoring patient vasoactivity are discussed. An exemplary patient monitor system includes a sensor circuit configured to generate a heart sound (HS) metric using a HS signal sensed from a patient, and a vasoactivity monitor configured to monitor vasoactivity, such as degree of vasoconstriction or vasodilation, using the HS metric. The system can provide the monitored vasoactivity to a user to alert patient hemodynamic responses to vasoactive drugs, or initiate or adjust a vasoactive therapy according to the vasoactivity. The system may use the monitored vasoactivity to detect a medical condition such as worsening heart failure, pulmonary edema, or syncope.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: June 27, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Viktoria A. Averina, Qi An
  • Patent number: 11679264
    Abstract: The present disclosure provides systems and methods for generating burst waveforms. An implantable neurostimulation system includes an implantable stimulation lead including a plurality of contacts, and an implantable pulse generator communicatively coupled to the stimulation lead. The pulse generator is configured to generate a waveform including a burst that includes a leading anodic pulse followed by alternating cathodic pulses and anodic pulses, each cathodic pulse in the burst having a greater amplitude than the previous cathodic pulse.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: June 20, 2023
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Simeng Zhang, Hyun-Joo Park, Filippo Agnesi, Yagna Pathak, Erika Ross
  • Patent number: 11672985
    Abstract: Various aspects of the present subject matter provide an implantable medical device. In various embodiments, the device comprises a pulse generator, a first monitor and a controller. The pulse generator is adapted to generate a neural stimulation signal for a neural stimulation therapy. The neural stimulation signal has at least one adjustable parameter. The first monitor is adapted to detect an undesired effect. In some embodiments, the undesired effect is myocardial infarction. The controller is adapted to respond to the first monitor and automatically adjust the at least one adjustable parameter of the neural stimulation signal to avoid the undesired effect of the neural stimulation therapy. Other aspects are provided herein.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: June 13, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Imad Libbus
  • Patent number: 11676340
    Abstract: A system for computational localization of fibrillation sources is provided. In some implementations, the system performs operations comprising generating a representation of electrical activation of a patient's heart and comparing, based on correlation, the generated representation against one or more stored representations of hearts to identify at least one matched representation of a heart. The operations can further comprise generating, based on the at least one matched representation, a computational model for the patient's heart, wherein the computational model includes an illustration of one or more fibrillation sources in the patient's heart. Additionally, the operations can comprise displaying, via a user interface, at least a portion of the computational model. Related systems, methods, and articles of manufacture are also described.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: June 13, 2023
    Assignee: The Regents of the University of California
    Inventors: David E. Krummen, Andrew D. McCulloch, Christopher T. Villongco, Gordon Ho