External Auditory Canal Patents (Class 607/136)
  • Patent number: 10071246
    Abstract: A signal processing arrangement generates electrode stimulation signals to stimulation contacts in a cochlear implant electrode array. A signal filter bank transforms an input sound signal into band pass signals, which each represent an associated frequency band of audio frequencies. A signal processing module processes the band pass signals in a sequence of sampling time frames, wherein for each time frame, the processing includes performing a spectral feature analysis of the band pass signals, and dynamically assigning a stimulation focus pattern to one or more of the band pass signals based on the spectral feature analysis. A stimulation coding module is configured to code the processed band pass signals for each time frame to produce the electrode stimulation signals for delivery by the stimulation contacts to a region of adjacent auditory neural tissues.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: September 11, 2018
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Peter Schleich, Dirk Meister
  • Patent number: 9821153
    Abstract: The invention relates to a device for the punctual stimulation of endings, located in the region of the ears, of nerves leading to brain stem nuclei, and device (1) having a battery-powered therapeutic current generator (3), which is arranged in a housing (2) to be worn in the ear region and is provided with an electronic circuit that forms a low-frequency therapeutic current, and said device also having at least one flexible line (5) proceeding from the therapeutic current generator (3) for connecting to an electrode to be positioned at a nerve ending and having a base electrode (7), which is likewise connected to the therapeutic current generator and by means of which the therapeutic circuit leading across the former electrode is closed, wherein the device (1), at least by means of an external part of said device (1), can be adapted to the shape of the body point of patient intended for the positioning of the device due to a mechanically pliable structure.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: November 21, 2017
    Inventor: Josef Constantin Szeles
  • Patent number: 9031661
    Abstract: An apparatus and method for determining stimulation channels for a stimulating device is provided. This method and apparatus may involve computing a set of weights for the plurality of stimulation channels of the stimulating hearing prosthesis. These weights may be determined by determining a transimpedance matrix for the stimulating hearing prosthesis where a diagonal of the transimpedance matrix is determined by extrapolation. A transadmittance matrix may then be computed for this transimpedance matrix. An error may then be computed base on positive off-diagonal terms of the transadmittance matrix. The apparatus and method may determine the weights for the stimulation channels by determining an adjustment to the diagonal of the transimpedance matrix that results in a computed error that does not exceed a specified criterion level.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: May 12, 2015
    Assignee: Cochlear Limited
    Inventors: Zachary M. Smith, Christopher van den Honert
  • Patent number: 8996127
    Abstract: Assessment of neuron excitation is implemented by quantifying the interaction between focused and unfocused stimulation applied to a cochlear array. By applying focused and unfocused stimulation to the electrode array and comparing the difference in the responses to the two types of stimulation the interaction may be determined. The magnitude of the interaction may be related to neural excitation and using this data a neural excitation profile may be determined.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: March 31, 2015
    Assignee: Cochlear Limited
    Inventors: Christopher van den Honert, Zachary Smith, Christopher J. Long, Daniel M. Lisogurski, Robert P. Carlyon
  • Patent number: 8965518
    Abstract: The invention relates to a device for applying a transcutaneous electrical stimulation stimulus to the surface of a section of the human ear, which comprises a retaining element which is mountable on or in the ear and a number of electrodes which are arranged on or in an electrode carrier, wherein the device comprises a control apparatus which controls or regulates the generation of a potential difference between the electrodes. In order to permit an improved and safer transcutaneous stimulation the invention proposes that at least three electrodes are arranged on or in the electrode carrier, wherein the at least three electrodes are located in one plane, wherein the position of at least one of the at least three electrodes is adjustable on the electrode carrier and wherein the at least one electrode of which the position is adjustable is mounted such as to be displaceable in a translational manner in the plane. Furthermore, the invention relates a method for the operation of such a device.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: February 24, 2015
    Assignee: cerbomed GmbH
    Inventors: Jens Ellrich, Christoph Beck, Wolf Gerhard Frenkel, Andreas Hartlep
  • Patent number: 8938304
    Abstract: A cochlear implant system has an implantable portion that includes a stimulator module for producing for the auditory system of a user an electrical stimulation signal representative of an acoustic signal. The implantable portion further includes a battery for supplying power to the stimulator module, a receiver module for receiving an electrical power signal across the skin of a user, and a recharge module that uses the electrical power signal to recharge the battery. The recharge module recharges the battery at less than the maximum recharge rate.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: January 20, 2015
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Clemens M. Zierhofer, Ingeborg J. Hochmair
  • Patent number: 8934984
    Abstract: A BTE prosthetic device for use in a medical system or prosthesis comprises a connector configured to mechanically attach an auxiliary device of the system to the BTE prosthetic device. The connector is electrically connected to an transceiver of the BTE prosthetic device. The connector operates as an electromagnetic antenna for transmitting and/or receiving signals between the BTE prosthetic and other components of the medical system.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: January 13, 2015
    Assignee: Cochlear Limited
    Inventors: Werner Meskens, Tadeusz Jurkiewicz, Steve Winnall, Limin Zhong
  • Patent number: 8914124
    Abstract: An exemplary system includes a sound processor configured to 1) divide an audio signal into a plurality of analysis channels and 2) generate one or more tonality indices each representing a tonality of one of the analysis channels, and an implantable cochlear stimulator communicatively coupled to the sound processor and configured to 1) generate one or more stimulation pulses configured to represent the audio signal in accordance with one or more stimulation parameters, and 2) adjust the one or more stimulation parameters based on at least one of the tonality indices.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 16, 2014
    Assignee: Advanced Bionics AG
    Inventors: Leonid M. Litvak, Abhijit Kulkarni
  • Patent number: 8843216
    Abstract: An implantable electrode array includes an elongated carrier (20) and a plurality of electrodes mounted within the carrier. A actuator adjusts the curvature of the carrier and can be controlled by varying an electric potential applied to the actuator. The actuator is based on an electrochemical cells and may be a conducting polymer based actuator.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: September 23, 2014
    Assignee: Cochlear Limited
    Inventors: Gordon Wallace, Geoff Spinks, Dezhi Zhou, Claudiu Treaba, Peter Gibson, Elaine Saunders, Jin Xu, Robert Cowan
  • Patent number: 8792999
    Abstract: An electrode assembly including a carrier section, an electrode section(s), and joint section(s). Each electrode section including an electrode contact, and an electrode section body. Each joint section connecting the carrier section to at least one electrode section, and providing each connected electrode section with at least one of pitch, roll, and yaw about a point generally along an axis between the carrier section and the electrode section. The joint section made of material of durometer less the durometer of the carrier section. A fill section can substantially occupying the space between the carrier section and the electrode section that is not occupied by the joint section.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: July 29, 2014
    Assignee: Cochlear Limited
    Inventors: Peter Sibary, Nicholas Pawsey
  • Patent number: 8788036
    Abstract: A minimally invasive method of introducing an electrode to electrically stimulate one or both vocal cords of a subject includes inserting a hollow needle from outside of the subject's body into a postcricoidal region lateral to a posterior cricoarytenoid muscle and forming an insertion path downwardly towards a cricothyroid joint of the subject. The method also includes introducing the electrode via the hollow needle and positioning the electrode relative to at least one vocal cord muscle of the subject based on the insertion path.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: July 22, 2014
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventor: Werner Lindenthaler
  • Patent number: 8755910
    Abstract: A reference electrode for an inner ear stimulation device is disclosed. The reference electrode is to be implanted and includes a protruding conductor portion and an insulated conducting portion connected to a lead for connection to the device. The protruding conductor portion is shaped so as to present a generally smooth surface without any substantial projections to impede removal in the event that the electrode is withdrawn in the direction of the lead. The smooth profile and lack of an undercut assist in preventing biofilm accumulation and growth. This reduces the risk of post-surgical complications such as infection.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: June 17, 2014
    Assignee: Cochlear Limited
    Inventors: Derek I. Darley, Alf Dal'Castel
  • Patent number: 8755892
    Abstract: Disclosed herein, among other things, is a method for stimulating neural targets in the vicinity of a human ear. According to an embodiment, a device is clipped on a patient ear lobe, the device including a neural stimulation electrode. A neural stimulation signal is applied to the electrode to transcutaneously stimulate neural targets in the vicinity of the ear lobe, according to an embodiment. A physiological parameter is sensed using a sensor connected to the device. According to an embodiment, the neural stimulation signal is adjusted in response to the sensed parameter. The method is used is a variety of treatment regimens, including anti-hypertensive and cardiac improvement therapy.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: June 17, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Badri Amurthur, Imad Libbus
  • Patent number: 8733494
    Abstract: Presented herein are coil retention systems for use in implantable medical devices. In certain embodiments, a coil retention system comprises an implantable non-magnetized member having a central aperture and an external magnet also having a central aperture. The external magnet is configured to magnetically couple to the implantable non-magnetized member. In certain embodiments, the external magnet and the implantable non-magnetized member have corresponding annular shapes so as to self-align with one another.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: May 27, 2014
    Assignee: Cochlear Limited
    Inventor: Charles Roger Aaron Leigh
  • Publication number: 20140135886
    Abstract: The present disclosure relates to methods, devices and systems used for the treatment of medical disorders via stimulation of the superficial elements of the trigeminal nerve. More specifically, cutaneous methods of stimulation of the superficial branches of the trigeminal nerve located extracranially in the face, namely the supraorbital, supratrochlear, infraorbital, auriculotemporal, zygomaticotemporal, zygomaticoorbital, zygomaticofacial, infraorbital, nasal and mentalis nerves also referred to collectively as the superficial trigeminal nerve) are disclosed herein.
    Type: Application
    Filed: December 14, 2011
    Publication date: May 15, 2014
    Applicant: UNITED STATES GOVERNMENT DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Ian A. Cook, Christopher M. Degiorgio, Leon Ekchian, Patrick Miller, Antonio Desalles, Alejandro Covalin
  • Patent number: 8688239
    Abstract: The invention relates to an electrode arrangement for applying of a transcutaneous electrical stimulation stimulus onto the surface of a section of the human ear, which comprises a holding element to be attached at or in the ear as well as at least one electrode, which electrode is arranged in or at an electrode carrier, wherein the holding element comprises a linear guide in which a supporting rod is arranged linear movable in the direction of a longitudinal axis (L) of the holding element and wherein the electrode carrier is arranged at the supporting rod. To obtain an improved transcutaneous stimulation the invention proposes that the electrode carrier comprises at least one carrier section on which the electrode is arranged, wherein the electrode comprises at least one cylindrical and/or spherical segment shaped and/or conical surface section.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: April 1, 2014
    Assignee: Cerbomed GmbH
    Inventors: Andreas Hartlep, Christoph Beck, Stefan Baer
  • Patent number: 8660658
    Abstract: Apparatus and methods for converting one type of speech processor unit into another type of speech processor unit.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 25, 2014
    Assignee: Advanced Bionics AG
    Inventors: Thomas Patrick Walsh, Carla Mann Woods, Richard C. Ross, Rankiri Tissa Karunasiri, Anthony K. Arnold, Lakshmi Narayan Mishra
  • Patent number: 8634924
    Abstract: A system and method for a Micro Electro-Mechanical System acoustic sensor, or MEMS acoustic sensor, to be used as an implanted microphone for totally implantable cochlear implants or middle ear implants is presented. The MEMS acoustic sensor comprises a coupler that attaches the sensor to an inner part of the ear, a MEMS acoustic sensor that converts acoustic vibrations into a change in capacitance, and a low-noise interface electronics circuit chip that detects the change in capacitance in the MEMS acoustic sensor, creates an signal representing a portion of the acoustic vibrations, and transmits the signal to one or more other devices, such as a cochlear implant. A method of fabrication enables the MEMS acoustic sensor to be fabricated as a small, less than 1 mm3, light weight, less than 30 mg, device suitable for implantation on a structure of the middle ear.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: January 21, 2014
    Assignee: Case Western Reserve University
    Inventors: Wen H. Ko, Darrin J. Young, Rui Zhang, Ping Huang, Jun Guo, Xuesong Ye, Cliff A. Megerian
  • Patent number: 8630721
    Abstract: An electrode array which is able to be inserted to a desired depth within the cochlea to provide useful percepts for the recipient which will also preferably not cause damage to the sensitive structures of the cochlea. The electrode array is insertable through an opening in the cochlea and into at least the basal region of the cochlea and comprises an elongate carrier having a proximal end, a distal end, and a plurality of electrodes supported by the carrier at respective spaced locations thereon in a region between the proximal end and the distal end. A stabilising collar extends outwardly from the elongate carrier at or adjacent a proximal end thereof and has an abutment surface adapted to abut a portion of the cochlea surface around the cochleostomy and at least substantially prevent movement of the carrier following completion of insertion of the array into the cochlea.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: January 14, 2014
    Assignee: The University of Iowa
    Inventor: Bruce J. Gantz
  • Patent number: 8588920
    Abstract: Nanoscale photovoltaic devices fabricated from nanoscale waveguides that receive, propagate, and convert incident light into electrical neural signals, and methods of using these photovoltaic devices for visual perception are disclosed herein. A visual neuroprosthetic device includes an array of nanoscale waveguides each nanoscale waveguide in the array having a photovoltaic material located between an internal conductor and an external conductor, wherein each nanoscale waveguide receives, propagates, and converts incident light into electrical neural signals.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: November 19, 2013
    Assignee: The Trustees of Boston College
    Inventor: Michael J. Naughton
  • Patent number: 8577473
    Abstract: A system and method for activating stimulation electrodes in cochlear implant electrode is described. A preprocessor filter bank processes an input acoustic audio signal to generate band pass signals that each represent an associated band of audio frequencies. An information extractor extracts stimulation signal information from the band pass signals based on assigning the band pass signals to corresponding electrode stimulation groups that each contain one or more stimulation electrodes, and generates a set of stimulation event signals for each electrode stimulation group that define electrode stimulation timings and amplitudes. A pulse selector selects a set of electrode stimulation signals from the stimulation event signals based on a pulse weighting function that uses channel-specific weighting factors favoring lower frequencies for activating the stimulation electrodes to stimulate neighboring audio nerve tissue.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: November 5, 2013
    Assignee: Med-El Elektromedizinische Geraete GmbH
    Inventors: Peter Schleich, Dirk Meister, Peter Nopp
  • Patent number: 8545383
    Abstract: The invention relates to a hearing aid device for humans with impaired hearing, who have an at least partially functional cochlea and a functional nervous signalling pathway from the cochlea via the auditory nerve to the brain. The hearing aid device contains a receiver, a transducer of the sound or other acoustic signals into electrical current serving as a signal representing a sound, a pulsed irradiation source connected to the transducer for receiving the electrical current and for generating modulated pulsed irradiation in dependence from the electrical current, and preferably one or more optical fibers optically coupled to the exit of the pulsed irradiation source, wherein the optical path for conduction of irradiation within the device ends directly opposite a functional element of the natural vibration transduction pathway, e.g.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: October 1, 2013
    Assignee: Medizinische Hochschule Hannover
    Inventors: Gentiana I. Wenzel, Hubert H. Lim, Thomas Lenarz, Holger Lubatschowski
  • Publication number: 20130231729
    Abstract: The electrode arrangement applies a transcutaneous electrical stimulation stimulus to the surface of a section of the human ear. A holding element attaches at or in the ear. At least one electrode is held by an electrode carrier. The holding element has a linear guide on a supporting rod which is linear movable in the direction of a longitudinal axis of the holding element. The electrode carrier is arranged at the supporting rod. To improve the handling of the electrode arrangement latching means are between the linear guide and the supporting rod, so that the supporting rod can be latched relatively to the linear guide along the longitudinal axis in predetermined relative positions. The latching means is a rack shaped contour, which is on the supporting rod and which extends into the direction of the longitudinal axis of the holding element.
    Type: Application
    Filed: March 1, 2013
    Publication date: September 5, 2013
    Applicant: CERBOMED GMBH
    Inventors: Andreas HARTLEP, Christoph BECK, Stefan BAER
  • Patent number: 8447391
    Abstract: A detection method for detecting a QRS wave is disclosed. An electrocardiogram (ECG) signal is provided. The ECG signal is enhanced to generate a processed signal. A first crest of the processed signal is determined. Each crest following the first crest is defined as a second crest. The level of each second crest is higher than a first threshold value. The result of defining the second crest is utilized to determine whether the QRS wave has occurred and approached a first crest.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: May 21, 2013
    Assignee: Industrial Technology Research Institute
    Inventor: Chun-Te Chuang
  • Patent number: 8437860
    Abstract: A hearing assistance system includes a hearing assistance unit, with an interface for receiving a removable module, and a removable module configured to be retained in the interface.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 7, 2013
    Assignee: Advanced Bionics, LLC
    Inventors: Scott A. Crawford, Lee F. Hartley
  • Patent number: 8412340
    Abstract: Methods and systems of optimizing sound sensation of a cochlear implant patient include dividing an audio signal into a plurality of analysis channels, generating one or more tonality indices each representing a tonality of one of the analysis channels, generating one or more stimulation pulses configured to represent the audio signal in accordance with one or more stimulation parameters, and adjusting at least one of the stimulation parameters based on at least one of the tonality indices.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 2, 2013
    Assignee: Advanced Bionics, LLC
    Inventors: Leonid M. Litvak, Abhijit Kulkarni
  • Patent number: 8412342
    Abstract: An implantable sound pickup system. The system comprises an intracochlear acoustic sensor implantable in a recipient's cochlea comprising: an elongate core conductor, and a piezoelectric element disposed on the surface of the core conductor configured to detect pressure waves in the perilymph of the cochlea when the acoustic sensor is at least partially implanted in the cochlea, and to produce electrical signals corresponding to the detected pressure waves.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 2, 2013
    Assignee: Hearworks PTY, Limited
    Inventors: Andy L. Zhang, Peter Seligman, Anthony Klein, Robert Cowan
  • Patent number: 8406884
    Abstract: A physiological parameter measuring device (14) is disposed within or near an ear canal of a subject (16) to non-invasively sense at least one physiological parameter of the subject which one physiological parameter is associated with at least one physiological condition of the subject. An analyzing device (48) is operatively coupled to the physiological parameter measuring device (14) to analyze the sensed physiological parameter and detect the physiological condition of the subject (16). Based on the detection and analysis of the physiological condition of the subject (16), a stimulating device (20) stimulates the subject (16) with the physiological parameter measuring device (14) within or near the ear canal of the subject (16) to mitigate the physiological condition of the subject (16).
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: March 26, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Larry Nielsen
  • Patent number: 8391993
    Abstract: Assessment of neuron excitation is implemented by quantifying the interaction between focused and unfocused stimulation applied to a cochlear array. By applying focused and unfocused stimulation to the electrode array and comparing the difference in the responses to the two types of stimulation the interaction may be determined. The magnitude of the interaction may be related to neural excitation and using this data a neural excitation profile may be determined.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: March 5, 2013
    Assignee: Cochlear Limited
    Inventors: Christoper van den Honert, Zachary Smith, Christopher J. Long, Daniel M. Lisogurski, Robert P. Carlyon
  • Patent number: 8346368
    Abstract: Coding of received audio signals and the resulting application of electrical stimuli applied to electrodes used in a cochlear implant system are disclosed together with a method of fitting this new coding strategy. One of the aims is to improve place specific stimulation representing pitch by applying near threshold electrical stimuli with limited and focused excitation fields. A range of stimulation rates and a minimal range of current levels above threshold are used for creation of a dynamic loudness percept for a cochlear implant recipient. Another aim is to disclose a coding scheme based on a model of physiological measures (i.e. refractoriness, adaptation, spread of activation field, spatiotemporal acoustical cochlear activation patterns and spontaneous activity) to estimate the proportions of available excitable auditory neurons close to the electrodes available for stimulation.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 1, 2013
    Assignee: Cochlear Limited
    Inventor: Matthijs J. P. Killian
  • Patent number: 8311642
    Abstract: An adjustable implant electrode system comprises an adjustable implant electrode assembly and an adjustment device for adjusting the adjustable implant electrode assembly to a desired position. The adjustable implant electrode assembly comprises an implant, a plurality of electrodes, and a plurality of magnetic components. The electrodes are disposed in the implant for providing stimulating currents according to a control signal. The magnetic components are combined with the electrodes in one-to-one correspondence. The adjustment device comprises a control unit, an excitation unit, and one or more magnetic units. The control unit is used to select one or more magnetic components to be moved from the magnetic components, and the excitation unit is used to excite the selected one or more magnetic components for the same to generate a magnetic pole, and the magnetic unit is adapted to generate a magnetic field to drive the magnetic pole and accordingly move the implant.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: November 13, 2012
    Assignee: National Chiao Tung University
    Inventors: Charles Tak-Ming Choi, Chien-Hua Hsu
  • Patent number: 8244365
    Abstract: A bimodal hearing prosthesis configured to deliver electrical and acoustic stimulation to a recipient such that a frequency range of a received sound that is represented by the electrical stimulation is perceived simultaneously with the frequency range of the received sound that is represented by the acoustic stimulation.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: August 14, 2012
    Assignee: Cochlear Limited
    Inventors: Bastiaan van Dijk, Ibrahim Bouchataoui, Mark Majoral, Ernst von Wallenberg, Christopher J. James, Matthijs Killian
  • Patent number: 8244366
    Abstract: There is provided a cochlear implant for improving the hearing ability of a patient suffered from hearing impairment comprising an internal receiving unit implanted into the body, which comprises a receiving part for receiving external signal, an active electrode and a reference electrode, characterized in that the active electrode is constructed with a single electrode wire having different thickness in at least two different regions. The active electrode of the internal receiving unit is inserted into a space formed at between the mastoid bone and the ear canal skin and end of the active electrode is inserted into the scala tympani of the cochlea and directly stimulates spiral ganglion. The cochlear implant provides easier implantation into the body and improved hearing ability at a lower cost.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: August 14, 2012
    Assignee: Material Solutions Technology Co., Ltd.
    Inventors: Y. Jay Chang, Dong Hyuk Lee
  • Patent number: 8233989
    Abstract: Alternative stimuli, i.e., stimuli other than the constant amplitude stimuli used in prior fitting schemes, are used to set the parameters of a hearing prosthesis, such as a cochlear implant system. The use of such alternative stimuli allows the entire fitting process to be completed in a very short time period, and generally eliminates the need for secondary adjustments. In one preferred embodiment, the alternative stimuli comprise white noise that is internally generated within the speech processor.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: July 31, 2012
    Assignee: Advanced Bionics, LLC
    Inventors: Philip A. Segel, Edward H. Overstreet, Tracey L. Kruger, Lakshmi N. Mishra
  • Patent number: 8160715
    Abstract: An implantable fixation structure includes a c-shape bone fixation clip adapted to fit over and attach to a bony bridge element in the middle ear of a patient. A c-shape electrode fixation clip is adapted to fit over and attach to an electrode array element in the middle ear of the patient. A connecting bar has a first end connected to the bone fixation clip and a second end connected to the electrode fixation clip. A coupling clip is connected to the connecting bar between the first end and the second end and adapted to fit over and attach to a cochlear implant element and hold the cochlear implant element in a desired position relative to the middle ear of the patient.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 17, 2012
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Marcus Schmidt, Claude Jolly, Stefan B. Nielsen, Joachim Muller, Daniel Schaudel
  • Patent number: 8155747
    Abstract: Methods and systems for modifying the parameters of at least one hearing device for a patient with residual hearing provide needed orchestration of acoustic and electric stimulation of patients wearing such devices.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 10, 2012
    Assignee: Advanced Bionics, LLC
    Inventors: Michael A. Faltys, Philip A. Segel, Edward H. Overstreet, William Vanbrooks Harrison
  • Patent number: 8155746
    Abstract: A cochlear implant sound processor is powered by a rechargeable battery that is permanently integrated into the sound processor. The sound processor contains an inductive coil that may be tuned to an external charging coil for battery recharging. The electronic circuits and coil of the sound processor are housed in a material transparent to RF signals. The sound processor may be placed in a recharging base station in which the sound processor is positioned in a space surrounded by the inductive charging coil embedded in a material transparent to RF signals. The inductive charging coil sends power to the coil inside the processor and thereby recharges the battery. An alternative embodiment utilizes contacts in the sound processor case and aligned terminals in the recharging base station that allow direct charging of the battery.
    Type: Grant
    Filed: March 1, 2008
    Date of Patent: April 10, 2012
    Assignee: Advanced Bionics, LLC
    Inventors: Albert A. Maltan, David Miller, W. Vanbrooks Harrison
  • Patent number: 8155748
    Abstract: Apparatus and methods for converting one type of speech processor unit into another type of speech processor unit.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: April 10, 2012
    Assignee: Advanced Bionics, LLC
    Inventors: Thomas Patrick Walsh, Carla Mann Woods, Richard C. Ross, Rankiri Tissa Karunasiri, Anthony K. Arnold
  • Patent number: 8150527
    Abstract: Methods and systems for modifying the parameters of at least one hearing device for a patient with residual hearing provide needed orchestration of acoustic and electric stimulation of patients wearing such devices.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 3, 2012
    Assignee: Advanced Bionics, LLC
    Inventors: Michael A. Faltys, Philip A. Segel, Edward H. Overstreet, William Vanbrooks Harrison
  • Publication number: 20120078337
    Abstract: A reference electrode for an inner ear stimulation device is disclosed. The reference electrode is to be implanted and includes a protruding conductor portion and an insulated conducting portion connected to a lead for connection to the device. The protruding conductor portion is shaped so as to present a generally smooth surface without any substantial projections to impede removal in the event that the electrode is withdrawn in the direction of the lead. The smooth profile and lack of an undercut assist in preventing biofilm accumulation and growth. This reduces the risk of post-surgical complications such as infection.
    Type: Application
    Filed: June 15, 2010
    Publication date: March 29, 2012
    Inventors: Derek I. Darley, Alf Dal'Castel
  • Patent number: 8126564
    Abstract: An electrode array which is able to be inserted to a desired depth within the cochlea to provide useful percepts for the recipient which will also preferably not cause damage to the sensitive structures of the cochlea. The electrode array is insertable through an opening in the cochlea and into at least the basal region of the cochlea and comprises an elongate carrier having a proximal end, a distal end, and a plurality of electrodes supported by the carrier at respective spaced locations thereon in a region between the proximal end and the distal end. A stabilising collar extends outwardly from the elongate carrier at or adjacent a proximal end thereof and has an abutment surface adapted to abut a portion of the cochlea surface around the cochleostomy and at least substantially prevent movement of the carrier following completion of insertion of the array into the cochlea.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: February 28, 2012
    Assignee: The University of Iowa
    Inventor: Bruce J. Gantz
  • Patent number: 8121698
    Abstract: Contrast between various frequency components of sound is enhanced through a lateral suppression strategy to provide increased speech perception in the electrically stimulated cochlea. A received audio signal is divided into a plurality of input signals, wherein each input signal is associated with a frequency band. A plurality of envelope signals are generated by determining the envelope of each of a plurality of the input signals. At least one of the envelope signals is scaled in accordance with a scaling factor to generate at least one scaled envelope signal. An output signal is generated by combining at least one envelope signal with at least one scaled envelope signal, and the cochlea is stimulated based on the generated output signal. The lateral suppression strategy can be applied to one or more frequency bands using scaled amplitude signals associated with one or more neighboring frequency bands.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: February 21, 2012
    Assignee: Advanced Bionics, LLC
    Inventors: Gene Y. Fridman, Leonid M. Litvak
  • Patent number: 8112161
    Abstract: A cochlear implant electrode is described. A basal electrode lead carries electrical stimulation signals from an implant housing to a cochleostomy opening, and a portion of the electrode lead has a periodically recurring lead shape. An apical electrode array at the cochleostomy end of the electrode lead passes into a cochlea scala and includes electrode contacts for applying the electrical stimulation signals to target neural tissue. A portion of the electrode array has a periodically recurring array shape different from the lead shape.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 7, 2012
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Claude Jolly, Stefan Nielsen, Fabrice Béal
  • Patent number: 8068914
    Abstract: A case for use with a speech processor unit including a housing configured to receive the speech processor unit and a connector configured to be connected to a connector on the speech processor unit.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: November 29, 2011
    Assignee: Advanced Bionics, LLC
    Inventors: Thomas Patrick Walsh, Carla Mann Woods, Richard C. Ross, Rankiri Tissa Karunasiri, Anthony K. Arnold
  • Patent number: 8019429
    Abstract: Generation of electrode stimulation signals for an implanted electrode array is described. An acoustic audio signal is processed to generate band pass signals which include a fine structure carrier signal and a modulator envelope signal. For each band pass signal, fine time structure information is extracted from the carrier signal to determine a sequence of stimulation event signals. For one or more low frequency band pass signals, the modulator envelope signal is sampled synchronously with the carrier signal to create envelope weighted stimulation event signals. For one or more higher frequency band pass signals, if and only if the modulator envelope signal exceeds a sampling threshold value, then the modulator envelope signal is sampled synchronously with the carrier signal to create envelope weighted stimulation event signals. The envelope weighted stimulation event signals are then processed to produce electrode stimulation signals for the implanted electrode array.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: September 13, 2011
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Ernst Aschbacher, Peter Schleich
  • Publication number: 20110178586
    Abstract: An electrode unit is provided for use in cranial electrostimulation in which an electric current transferring electrode operatively transfers electrical energy to the region of an ear of a patient. The electrode unit has an electrode carried on the outer periphery of an audio earphone of the type suitable for engagement in the entrance to, or within, the auditory canal of an ear of a patient. The electrode has an electrical contact area for operatively transferring electrical energy between the electrode and the skin of a patient fitted with the electrode unit. The electrode may have a contact surface layer exposed for direct contact with the skin of a patient, in use, or it may have an electrically conductive cover for the electrode itself. Typically, the electrode unit forms one of a pair thereof in which instance the audio earphones are a pair of stereo earphones of substantially conventional type.
    Type: Application
    Filed: September 17, 2009
    Publication date: July 21, 2011
    Applicant: To Be First AG
    Inventor: Robert Russell Grey
  • Patent number: 7962226
    Abstract: An elongate electrode carrier member including a longitudinally-extending central region, two side regions laterally extending from opposing sides of the central region, a lateral surface defined by the central and side regions together forming a convex circumferential surface, a medial surface defined by a convex surface of the central region and a concave surface for each of the side regions, a plurality of longitudinally-spaced electrodes disposed on or in the convex surface of the central region of the medial surface, and a support structure including a plurality of longitudinally extending wires each connected to one or more of the electrodes, wherein a subset of the plurality of wires is disposed in the central region and at least one of the plurality of wires is disposed in one of the side regions.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: June 14, 2011
    Assignee: Cochlear Limited
    Inventors: Ernst Lehnhardt, Horst Hessel, Peter Gibson, John Parker, Ernst von Wallenberg
  • Patent number: 7949412
    Abstract: Implantable electrode leads, e.g. cochlear, spinal cord stimulation, or any type of neurostimulation leads, used in a patient's body to stimulate muscle or nerve tissue, provide enhanced stimulation for treating, e.g., hearing loss or chronic pain. One such lead includes, an implantable electrode array, adapted for insertion into a cochlea, which lead provides improved stability of electrode contact direction. In-line electrodes are spaced-apart along one side of a flexible carrier having non-conductive bumps coated with a bioresorbable material spaced apart between each electrode contact. Over time the bioresorbable material is absorbed thereby reducing chronic placement pressure caused during the insertion of the electrode array into the cochlea. The bioresorbable material may also serve as a carrier for drugs or other materials that would improve performance of the electrode for any type of lead.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: May 24, 2011
    Assignee: Advanced Bionics, LLC
    Inventors: William Vanbrooks Harrison, Michael S Colvin, Janusz A Kuzma, Thomas J Balkany
  • Patent number: 7933657
    Abstract: Alternative stimuli, i.e., stimuli other than the constant amplitude stimuli used in prior fitting schemes, are used to set the parameters of a cochlear implant system. The use of such alternative stimuli allows the entire fitting process to be completed in a very short time period, and generally eliminates the need for secondary adjustments. In one preferred embodiment, the alternative stimuli comprise white noise that is internally generated within the speech processor.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: April 26, 2011
    Assignee: Advanced Bionics, LLC
    Inventors: Philip A. Segel, Edward H. Overstreet, Tracey L. Kruger, Lakshmi N. Mishra
  • Patent number: 7809444
    Abstract: An implantable tissue-stimulating device comprising an elongate electrode carrier member (11) having a plurality of electrodes thereon. The electrodes are preferably disposed in a linear array on the carrier member (11) and are adapted to apply a preselected tissue stimulation to the cochlea. The carrier member (11) is preformed from a resiliently flexible biocompatible silicone and extends from a distal end (12) to a stop member (13). The carrier member (11) is adapted for intracochlear but extraluminar insertion within the cochlea of an implantee. In particular, the carrier member (11) is adapted to be implanted in the crevice (21) between the spiral ligament (22) and the endosteum (23) of the lateral wall of the cochlea (20). This is a quite different location to the normal placement of the cochlear implant electrode array in the scala tympani (24) of the cochlea (20).
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: October 5, 2010
    Assignee: Cochlear Limited
    Inventors: Peter Gibson, Ernst Lehnhardt, John L. Parker