Electrical Energy Applicator Patents (Class 607/115)
  • Patent number: 11911133
    Abstract: Provided are an operation method and device for physiological health detection, wherein by arranging a body part identification area on a display unit, and arranging a sensing unit below the body part identification area, when a body part of a user is close to the body part identification area, the sensing unit may capture optical signal information reflected by the body part, and a processing unit may obtain, according to the optical signal information reflected by the body part, physiological health information corresponding to the body part, and the physiological health information may be displayed on the display unit. Compared with the existing method of a mobile device additionally arranging a sensor outside a display screen region, the present invention facilitates user operations and improves the user experience, and the whole thickness of the mobile device may also be effectively reduced, thereby enabling the mobile device to be lighter and thinner and satisfy the requirements of the market.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: February 27, 2024
    Assignee: SHANGHAI HARVEST INTELLIGENCE TECHNOLOGY CO., LTD.
    Inventor: Jiandong Huang
  • Patent number: 11896815
    Abstract: Apparatuses, systems, and methods for more accurate remote monitoring of a user's body to stabilize the user during fall events and to thereby prevent the user from falling. In some embodiments, a wearable device comprising a power source, one or more sensors configured to monitor a user's COG (COG), at least one plurality of electrodes, a communications interface and a control device is provided. The wearable device is configured to apply electrical pulses according to defined electrical pulse stimulation protocols via the electrodes to target muscle groups of the user's body, causing those target muscle groups to contract and thereby stabilize the user's body during a fall event.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: February 13, 2024
    Assignee: Optum Technology, Inc.
    Inventors: Aditya Madhuranthakam, Ninad D. Sathaye, Gregory J. Boss, Shyam Charan Mallena, V Kishore Ayyadevara, Sree Harsha Ankem
  • Patent number: 11883658
    Abstract: Methods of treating subjects may include assisting breathing of the subject via an external respiratory support device. The methods of treating subjects may further include delivering an electrical signal to a first nerve of the subject, wherein delivering of the first signal blocks a pain signal from a pulmonary stretch pain receptor. The methods may further include placing one or more electrodes proximate a first nerve, wherein the first electrodes are supported on an intravenous catheter.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: January 30, 2024
    Assignee: Lungpacer Medical Inc.
    Inventors: Douglas G. Evans, Viral S. Thakkar, Matthew J. Gani
  • Patent number: 11833344
    Abstract: Apparatuses, systems, and methods for more accurate remote monitoring of a user's body to stabilize the user during fall events and to thereby prevent the user from falling. In some embodiments, a wearable device comprising a power source, one or more sensors configured to monitor a user's COG (COG), at least one plurality of electrodes, a communications interface and a control device is provided. The wearable device is configured to apply electrical pulses according to defined electrical pulse stimulation protocols via the electrodes to target muscle groups of the user's body, causing those target muscle groups to contract and thereby stabilize the user's body during a fall event.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: December 5, 2023
    Assignee: Optum Technology, Inc.
    Inventors: Aditya Madhuranthakam, Ninad D. Sathaye, Gregory J. Boss, Shyam Charan Mallena, V Kishore Ayyadevara, Sree Harsha Ankem
  • Patent number: 11833342
    Abstract: A catheter pump is disclosed herein. The catheter pump can include a catheter assembly that comprises a drive shaft and an impeller coupled to a distal end of the drive shaft. A driven assembly can be coupled to a proximal end of the drive shaft within a driven assembly housing. The catheter pump can also include a drive system that comprises a motor and a drive magnet coupled to an output shaft of the motor. The drive system can include a drive assembly housing having at least one magnet therein. Further, a securement device can be configured to prevent disengagement of the driven assembly housing from the drive assembly housing during operation of the pump.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: December 5, 2023
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Richard L Keenan, Doug M. Messner, Michael R. Butler
  • Patent number: 11813451
    Abstract: An unattended approach can increase the reproducibility and safety of the treatment as the chance of over/under treating of a certain area is significantly decreased. On the other hand, unattended treatment of uneven or rugged areas can be challenging in terms of maintaining proper distance or contact with the treated tissue, mostly on areas which tend to differ from patient to patient (e.g. facial area). Delivering energy via a system of active elements embedded in a flexible pad adhesively attached to the skin offers a possible solution. The unattended approach may include delivering of multiple energies to enhance a visual appearance.
    Type: Grant
    Filed: February 24, 2023
    Date of Patent: November 14, 2023
    Assignee: BTL Healthcare Technologies A.S.
    Inventors: Tomás Schwarz, Lucia Jelínková, Vojtech Kubík
  • Patent number: 11806523
    Abstract: The present disclosure is directed towards devices, methods, and related systems that are minutely-invasively delivered to the brain parenchyma, subdural or subarachnoid space where the devices, methods, and systems directly interface with central nervous system media (i.e., fluid or tissue) enabling detecting, sensing, measuring, stimulating, altering and/or modulating of the media or tissue surfaces.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: November 7, 2023
    Assignee: VONOVA INC.
    Inventor: Jose Miguel Morales
  • Patent number: 11771894
    Abstract: A device for providing an energetic field to promote the body's self-healing process comprises electronics immersed in a dialectric oil in a first enclosure which accelerate and spin an energetic current within a gas-filed glass tube. The tube protrudes through a small opening into a second large metal (e.g. copper)-lined patient enclosure, such that the energy emitted from the tube is directed toward a circular concave baffle covered in a densely woven fabric. A plastic sheet optionally protects the patient from arcing with the baffle. Seating/support is provided to properly position the patient; as well as seating for the practitioner/therapist who both positions the patient, and provides mental and emotional guidance, to optimize patient receptivity to treatment.
    Type: Grant
    Filed: May 30, 2020
    Date of Patent: October 3, 2023
    Inventor: Phillip Shinnick
  • Patent number: 11771893
    Abstract: A system for neurorehabilitation is disclosed that includes a motion detector configured to generate a motion detection feedback signal, a transcutaneous auricular vagus nerve stimulation module, and a controller configured to receive the motion detection feedback signal and send a stimulation signal to the transcutaneous auricular vagus nerve stimulation module based on the motion detection feedback signal meeting a minimum threshold criteria. A method for neurorehabilitation is disclosed that includes the steps of detecting patient motor activity, determining if the detected patient motor activity meets a minimum threshold criteria, and stimulating a vagus nerve through transcutaneous auricular vagus nerve stimulation if the minimum threshold criteria is met.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: October 3, 2023
    Assignee: MUSC Foundation for Research Development
    Inventors: Bashar Badran, Mark S. George
  • Patent number: 11752331
    Abstract: Nerve cuff deployment apparatuses and methods of using them to deliver a nerve cuff electrode to a target nerve trunk.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: September 12, 2023
    Assignee: Neuros Medical, Inc.
    Inventor: Jon Joseph Snyder
  • Patent number: 11733776
    Abstract: A processing device is configured to interface with a region of the brain of a subject that is responsible for forming concepts without sensory input. The processing device receives brain signals representative of at least one concept formed by the region of the brain without sensory input, and processes the received brain signals so as to convert the at least one concept to data that is representative of a tangible form of the at least one concept. In certain embodiments, the processing device processes data that is representative of at least one concept to be formed by the region so as to convert the data into one or more brain signals, and selectively providing the one or more brain signals to the region of the brain such that the at least one concept represented by the data is formed by the region of the brain without sensory input.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: August 22, 2023
    Inventor: Moshe Ofer
  • Patent number: 11672611
    Abstract: A system and apparatus is disclosed to automatically determine the identification and selected information relating to instruments. The identification information may be read or determined by various reader systems and then transferred for various purposes. The identification information may be stored on the instrument with a storage system or printing and/or recalled from a memory once the identification is made.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: June 13, 2023
    Assignee: Medtronic Navigation, Inc.
    Inventors: Joseph Moctezuma, Craig Drager, Joseph Thomas Cilke, Victor D. Snyder, Wei-Shyang Yang, Justin Kemp, Andrew Wald, Jerald Lamont Redmond, Shai Ronen, Nikhil Mahendra
  • Patent number: 11623087
    Abstract: A method of non-surgical correction of joint deformity using a therapy stimulator machine that includes a first and second handheld probe electrode; using the hand held probe electrodes with water to apply pressure to locations and wiggle the probe electrodes around the joint to stimulate directing toxic waste to the blood circulatory system of the patient.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: April 11, 2023
    Inventor: Milly Ng
  • Patent number: 11607863
    Abstract: A deformable assembly may include a first structural layer, a first bonding layer bonded to the structural layer, and a pattern of functional material entrapped between the first structural layer and first the bonding layer. The functional material has a viscous characteristic, an elastic characteristic and/or a viscoelastic characteristic. The assembly may further include a second structural layer bonded to the first bonding layer. The first structural layer may include a first piece of fabric, the second structural layer may include a second piece of fabric, and the functional material may be electrically conductive. The functional material may include a conductive gel. The assembly may further include a second bonding layer bonded to the first bonding layer and the first structural layer, and the pattern of functional material may be entrapped between the first and second bonding layers.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: March 21, 2023
    Assignee: Liquid Wire Inc.
    Inventor: Mark Ronay
  • Patent number: 11589816
    Abstract: Numerous aspects of communication devices, methods, and systems are described in this application. One aspect is an apparatus comprising a plurality of energy generators arrangeable on or adjacent skin. Each energy generator of the plurality of energy generators may be operable to output a plurality of different energy types in a signal direction toward the skin. The plurality of energy generators may be operable to communicate with nerves associated with the skin when arranged on or adjacent the skin by outputting an energy signal in the signal direction with one or more energy types of the plurality of different energy types.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: February 28, 2023
    Inventor: Matthew Robert Leaper
  • Patent number: 11547849
    Abstract: Systems and methods for ruggedized neural probes are provided. Such probes may be adapted for penetrating tissue. An exemplary ruggedized penetrating electrode array system includes an elongate shank having one or more electrodes disposed on at least one exterior surface thereof and a backend structure. A proximal end of the elongate shank is secured to the backend structure. The exemplary array system further includes an elongate carrier secured to the backend structure and extending away from the backend structure toward the distal end of the elongate shank, the elongate carrier being more rigid than the elongate shank. Methods for fabricating such an array system are also provided.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: January 10, 2023
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: Jamille Farraye Hetke, Rio J. Vetter, Carlos Rackham, Daryl R. Kipke
  • Patent number: 11523763
    Abstract: An implantable electrode device includes a carrier made of a polymer material, at least one measurement electrode formed by an electrically conducting pad located on the carrier, wherein the electrically conducting pad has a contact surface, a barrier layer enclosing the carrier by covering all surfaces of the carrier, wherein the contact surface of the electrically conducting pad is exposed to an outside environment, at least one electrically conducting trace, and at least one electrically conducting terminal. The electrically conducting trace can electrically connect the measurement electrode to the electrically conducting terminal. A surface of the implantable electrode device on a side on which the measurement electrode is located can have a maximum valley depth or a maximum peak height between the contact surface of the measurement electrode and a meanline of a surface of the implantable electrode device, excluding measurement electrodes, being equal to or smaller than 100 micrometres.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: December 13, 2022
    Assignee: BRAINCARE OY
    Inventor: Katrina Wendel-Mitoraj
  • Patent number: 11420042
    Abstract: The present disclosure provides systems and methods for exogenous neurostimulation. An exogenous neurostimulation system includes an electrode pad comprising a plurality of electrodes configured to be applied to skin of a patient, and a pulse generator communicatively coupled to the electrode pad, the pulse generator operable to generate burst waveforms for delivery to the skin of the patient via the electrode pad.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: August 23, 2022
    Assignee: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: Aaron Raines, Manasi Reardon
  • Patent number: 11235146
    Abstract: The present disclosure generally relates to a system for treating headaches and other pain associated with the occipital nerves. More particularly, the disclosure relates to a system of treating pain by selectively activating specific nerve fibers with a single, fault-resistant contact situated proximate to, but not in direct contact with, portions of one or more the occipital nerves. Additional measures ensure the lead does not migrate or fracture, resulting in long-lasting pain relief.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: February 1, 2022
    Assignee: SPR THERAPEUTICS, INC.
    Inventors: Joseph W. Boggs, II, Amorn Wongsarnpigoon
  • Patent number: 11213359
    Abstract: Various robotic surgical systems are provided. A robotic surgical system comprises a robotic tool, a control system, and a control module. The control system comprises a control console configured to receive a first user input, and also comprises a control unit in signal communication with the control console and the robotic tool. The control module is configured to receive a second user input, and is in signal communication with the control system.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 4, 2022
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, David C. Yates, Jeffrey D. Messerly
  • Patent number: 11191443
    Abstract: Apparatus for transcutaneous electrical nerve stimulation in a user, the apparatus comprising: stimulation means for electrically stimulating at least one nerve; an electrode array connectable to said stimulation means, said electrode array comprising a plurality of electrodes for electrical stimulation of the at least one nerve, said electrodes having a pre-formed geometry and known electrode-skin contact area size when in complete contact with the user's skin; monitoring means electrically connected to said stimulation means for monitoring the impedance of the electrical stimulation through said electrode array; and analysis means for analyzing said impedance to estimate a change in the electrode-skin contact area.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: December 7, 2021
    Assignee: NeuroMetrix, Inc.
    Inventors: Shai Gozani, Xuan Kong, Andres Aguirre, Tom Ferree
  • Patent number: 11185272
    Abstract: The electrode equipment of the present disclosure includes a first electrode, a second electrode having a different electrical polarity from the first electrode, and a sensor for detecting a vertical direction. The electrical polarities of the first electrode and the second electrode are determined based on output of the sensor.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 30, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Naotsugu Yoneda
  • Patent number: 11167134
    Abstract: A system for providing biphasic stimulation is disclosed. The system includes an electrode, an antenna coupled to a transmitter, a capacitor, a power supply, a backscatter load selectively coupled to the antenna via a switching device, a plurality of switches, and a controller configured to control the switching device to output, by the antenna, an acknowledgement signal to the transmitter responsive to receiving the power. The controller is further configured to control the plurality of switches to electrically couple a first plate of the capacitor to the electrode to provide a first nerve stimulation signal having a first polarity, and electrically couple a second plate of the capacitor to the electrode to provide a second nerve stimulation signal having a second polarity opposite the first polarity. The system further includes a housing encapsulating the antenna, the capacitor, the power supply, the backscatter load, the switches, and the controller.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: November 9, 2021
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Daniel J. Guyon, Daniel K. Freeman, Jesse J. Wheeler
  • Patent number: 11135423
    Abstract: A medical lead system includes a lead body, a plurality of electrical conductors, and a plurality of electrodes. The lead body may include a distal end and a proximal end defining a longitudinal axis of the lead body. The plurality of electrical conductors extending about the longitudinal axis of the lead body. The plurality of electrodes is positioned around an outer perimeter of the lead body. An inner surface of each of the plurality of electrodes defines an inner perimeter. Each respective electrode of the plurality of electrodes is electrically coupled to a respective electrical conductor of the plurality of electrical conductors. Each electrode of the plurality of electrodes includes at least one electrode locking feature extending into the lead body from the inner perimeter.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: October 5, 2021
    Assignee: Medtronic, Inc.
    Inventors: Sean P. Skubitz, Daniel C. Oster, Jacob Silverberg, Stephen L. Bolea, Jayesh R. Patel
  • Patent number: 10987511
    Abstract: A system for stimulating body tissue may include a user interface and a control unit. The control unit may include a processor and non-transitory computer readable medium. The non-transitory computer readable medium may store instructions that, when executed by the processor, causes the processor to identify an electrode combination and determine a threshold charge for use in stimulating the body tissue. The processors identifications and determinations may be based at least partially on input received via the user interface.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: April 27, 2021
    Assignee: Lungpacer Medical Inc.
    Inventors: Matthew J. Gani, Kaitlin Taylor, Viral S. Thakkar, Douglas G. Evans
  • Patent number: 10967167
    Abstract: Certain substances (e.g., large molecules) that ordinarily cannot traverse the blood brain barrier can be introduced into the brain by applying an alternating electric field to the brain for a period of time, wherein the frequency of the alternating electric field is selected so that application of the alternating electric field increases permeability of the blood brain barrier. In some embodiments, the frequency of the alternating electric field is less than 190 kHz (e.g., 100 kHz). Once the permeability of the blood brain barrier has been increased, the substance is able to cross the blood brain barrier.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 6, 2021
    Inventors: Carsten Hagemann, Mario Lohr, Almuth F. Kessler, Malgorzata Burek, Carola Forster, Catherine Brami, Hadas Sara Hershkovich, Tali Voloshin-Sela
  • Patent number: 10966624
    Abstract: The invention relates to a method for obtaining brain wave data using a microelectrode array, comprising a plurality of electrodes for electrically measuring brain waves and an integrated optical stimulation unit for stimulating brain regions by means of optical signals, wherein the stimulation unit has one or more electrical light sources, and wherein the method includes stimulating neurons of the brain via optical signals produced by the light sources, recording a response of the neurons to the stimulation via the electrodes, unambiguously assigning the recorded response to individual optical stimulation signals provided by the light source, and determining an unambiguous correlation between the optical stimulation signals and resulting brain waves measured by the electrodes.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 6, 2021
    Assignees: Leibniz-Institut Für Neurobiologie, Otto-Von-Guericke-Universität
    Inventors: Frank Ohl, Michael Lippert, Sören Hirsch, Bertram Schmidt, Martin Deckert
  • Patent number: 10967182
    Abstract: Systems and methods for reducing pulmonary inflammation and/or increasing bronchial compliance in a patient utilize transcutaneous stimulation of neural structures in a region of an ear of a patient delivered by an auricular stimulation device having an in-ear component with a first electrode disposed in a patient's ear and an earpiece component with a second electrode placed around the auricle. A pulse generator may control delivery of therapy by delivering both a first series of stimulation pulses to the first electrode for stimulating a first neural structure(s) and a second series of stimulation pulses to the second electrode for stimulating second neural structure(s). The first and second electrodes are in non-piercing contact with tissue on and/or surrounding the ear. The systems and methods may be used to treat viral or bacteria infections, such as SARS, MERS, or COVID-19.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: April 6, 2021
    Assignee: Spark Biomedical, Inc.
    Inventors: Navid Khodaparast, Alejandro Covalin
  • Patent number: 10959752
    Abstract: Described here are devices, systems, and methods for accessing the pericardial space through the pericardium. The access devices may include a plurality of elongate members having lumens that may be advanced together through the body to the pericardium. The elongate members may have different lengths and may be slideably positioned one within the lumen of another. At least one of the elongate members may comprise a distal tip configured to pierce tissue. In some instances, the access devices may also comprise a locking member to constrain the position of one elongate member relative to another.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: March 30, 2021
    Assignee: SentreHEART LLC
    Inventors: Gregory W. Fung, Arnold M. Escano
  • Patent number: 10940309
    Abstract: Systems, devices, and techniques are disclosed for forming an elongate lead body module of a modular lead. The method may comprise rotating a mandrel, wherein the mandrel extends through a through-hole of a conductor hub, wherein each conductor of a plurality of conductors extend through a respective channel of a plurality of channels of the conductor hub, wherein each conductor of the plurality of conductors extends from a respective bobbin of plurality of bobbins to the channels, wherein the plurality of bobbins are coupled to a carriage, the carriage defining a central opening through which the mandrel passes. The method may comprise moving the carriage away from the conductor hub along a length of the mandrel while the mandrel rotates causing the conductors to coil around the mandrel.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: March 9, 2021
    Assignee: Medtronic, Inc.
    Inventors: Dale F. Seeley, Michael T. Hegland
  • Patent number: 10923235
    Abstract: An embodiment of the invention includes (a) modeling a first internal force applied to a model of a user's joint based on a first external force externally applied to the joint at a first position; (b) modeling a second internal force applied to the model based on a second external force externally applied to the joint at a second position unequal to the first position; (c) comparing the first and second modeled internal forces; and (d) stimulating the user based on the comparison. Other embodiments are described herein.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: February 16, 2021
    Assignee: Articulate Labs, Inc.
    Inventor: Larry J. Kirn
  • Patent number: 10797393
    Abstract: An IC tag reading device is provided that has increased directivity and is capable of determining an accurate position of an IC tag inserted into and placed in a human body even when the operation range of the antenna of the reading device is limited, such as in thoracoscopy, without causing reduction in detectable distance. A reading device antenna for reading an IC tag that has been inserted into a human body and placed at a certain position in order to locate a lesion includes a coil portion having a coil with a predetermined number of turns in a circumferential direction, and a shield portion that covers at least an approximately half of the coil portion in the circumferential direction and causes a bias in a magnetic flux generated from the coil.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: October 6, 2020
    Assignees: KYOTO UNIVERSITY, HOGY MEDICAL CO., LTD., IDEC AUTO-ID SOLUTIONS CORPORATION
    Inventors: Toshihiko Sato, Yojiro Yutaka, Koichi Matsushita, Jiro Kato, Kaoru Nayuki
  • Patent number: 10780269
    Abstract: Apparatus for transcutaneous electrical nerve stimulation in humans, the apparatus comprising: a housing; stimulation means mounted within the housing for electrically stimulating nerves; an electrode array releasably mounted to the housing and connectable to the stimulation means, the electrode array comprising a plurality of electrodes for electrical stimulation of nerves; control means mounted to the housing and electrically connected to the stimulation means for controlling at least one characteristic of the stimulation means; monitoring means mounted to the housing and electrically connected to the stimulation means for monitoring at least one characteristic of the stimulation means; user interface means mounted to the housing and electrically connected to the control means for controlling the stimulation means; display means mounted to the housing and electrically connected to the control means and the monitoring means for displaying the status of the stimulations means; and a strap attached to the h
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: September 22, 2020
    Assignee: NeuroMetrix, Inc.
    Inventors: Shai N. Gozani, Xuan Kong, Andres Aguirre, Glenn Herb, Marc Cryan, Michael Williams
  • Patent number: 10779826
    Abstract: Methods for operating a surgical end effector that includes first and second jaws that are pivotally coupled together and are selectively movable between a fully open position and fully closed position. At least one method includes moving a dynamic clamping assembly through a closure stroke to apply a closure motion to the first and second jaws to move the first and second jaws from the fully open position to the fully closed position. A method also includes moving the dynamic clamping assembly through a firing stroke to perform a surgical function until the dynamic clamping assembly reaches an ending position within the closed first and second jaws. A method also includes moving the dynamic clamping assembly in direction configured to contact at least one positive jaw opening feature on at least one of the first and second jaws with to move the first and second jaws to the fully open position.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: September 22, 2020
    Assignee: Ethicon LLC
    Inventors: Frederick E. Shelton, IV, Daniel J. Mumaw, Jason L. Harris, Jerome R. Morgan
  • Patent number: 10737123
    Abstract: Methods for treating and managing pain in a patient with therapeutic neuromodulation and associated systems and methods are disclosed herein. Chronic or debilitating pain can be associated, for example, with a disease or condition of the abdominal or reproductive viscera. One aspect of the present technology is directed to methods that at least partially inhibit sympathetic neural activity in nerves proximate a target blood vessel of a diseased or damaged organ of a patient experiencing pain. Targeted sympathetic nerve activity can be modulated at least along afferent pathways which can improve a measurable parameter associated with the pain of the patient The modulation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly, e.g., a therapeutic assembly configured to use electrically-induced, thermally-induced, and/or chemically-induced approaches to modulate the target sympathetic nerve.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 11, 2020
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Carol Sullivan, Neil Barman, Dwayne S. Yamasaki
  • Patent number: 10729343
    Abstract: A stimulation electrode assembly configured to be positioned relative to a patient for an operative procedure is disclosed. The stimulation electrode may be a connection or self-contained component to contact a portion of a nerve. The stimulation electrode may provide or receive a signal to and/or from the nerve to assist in testing integrity of the nerve.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: August 4, 2020
    Assignee: Medtronic Xomed, Inc.
    Inventors: Matthew L. Cantwell, Bryan L. Courtney, David C. Hacker, Kevin L. McFarlin
  • Patent number: 10695568
    Abstract: A treatment system and method for inducing endogenous release of peptides is provided including a concha apparatus including a first electrode in contact with vagal related neural structures; an earpiece connected to the concha apparatus by a first connector, the earpiece including a PCB layer including a second electrode configured to be in contact with a neural structure related to the auriculotemporal nerve, and at least another electrode configured to be in contact with or in proximity to neural structures related to the great auricular nerve and/or its branches and/or the lesser occipital nerve and/or its branches, and an adhesive configured to secure the electrodes on the earpiece to the skin; and a pulse generator connected to the earpiece by a second connector, the pulse generator including circuitry in communication with the first electrode of the concha apparatus, the second electrode and the at least another electrode of the earpiece.
    Type: Grant
    Filed: July 14, 2019
    Date of Patent: June 30, 2020
    Assignee: Spark Biomedical, Inc.
    Inventor: Alejandro Covalin
  • Patent number: 10682510
    Abstract: Connector assemblies that are separate from medical lead extensions provide features such as bores for receiving both a medical lead and a medical lead extension and provide electrical connections between connectors of the leads and connectors of the lead extensions. Connector assemblies may include additional features such as contours and wings that reduce subcutaneous erosion. Connector assemblies may also include retention structures such as movable clips that are moved into engagement with leads and lead extensions to retain them within the connector assembly. Integrated lead extension connectors may also include contours and wings as well as retention structures including movable clips.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: June 16, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Spencer M. Bondhus, Patrick D. Wells
  • Patent number: 10681805
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: June 9, 2020
    Assignee: KARDIUM INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Patent number: 10675468
    Abstract: Electrical stimulation therapy is provided to a patient in order to induce a patient sensation. The patient sensation may be selected from a number of patient sensations. A set of therapy parameter values are associated with each of the number of patient sensations. A user interface allows a user to adjust one or more characteristics of the patient sensation.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: June 9, 2020
    Assignee: Medtronic, Inc.
    Inventor: Nathan A. Torgerson
  • Patent number: 10668271
    Abstract: A surgically implanted lead stabilizer used to stabilize leads is described herein. A lead stabilizer may include a plate that is permanently or semi-permanently surgically installed on a patient's skull under their skin via screws. The plate may hold one or more lead in place. In further embodiments, the plate has two hinged halves that may be affixed fully closed or may include a slotted arm allowing the two hinged halves to be affixed partially open. The plate may include apertures through which electrical leads may pass. Example leads may be guided through one or more surface channels on the top surface of the plate causing the leads to lay flat along the patient's skull.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: June 2, 2020
    Inventors: Brian A. Buss, Kris Smith
  • Patent number: 10543360
    Abstract: A lead fixation accessory configured to be positioned over a skull hole and to transition between an opened state and a closed state during a lead implant procedure protects against lead migration by providing a mechanism for securing the lead in place at the skull hole while a stylet is removed from the lead. The lead fixation accessory remains in place after the implant procedure to provide chronic lead stability. A lead stabilization tool configured to access and grip a lead through a slotted cannula during the lead implant procedure also protects against lead migration by providing a mechanism for securing the lead in place at a point where the lead exits the skull hole while the slotted cannula is removed from the skull hole and peeled away from the lead.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 28, 2020
    Assignee: NeuroPace, Inc.
    Inventors: Emily A. Mirro, Jacob A. Mandell, David A. Greene
  • Patent number: 10542620
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: January 21, 2020
    Assignee: KARDIUM, INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Patent number: 10524941
    Abstract: This disclosure provides for a medical device to be implanted in the vasculature and a method for treatment in the vasculature. The device has an outer layer of a first material and an inner layer of a second material attached to the outer layer. The inner layer further has a plurality of elastomeric tensioners. If the device experiences relaxation, resulting in a decreased radial force against the vessel wall, the elastomeric tensioners may provide a contraction force to the inner layer and the outer layer, resulting in a maintained radial force on the vessel wall.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: January 7, 2020
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventor: Kasper Klausen
  • Patent number: 10456588
    Abstract: Method and systems for optimizing acoustic energy transmission in implantable devices are disclosed. Transducer elements transmit acoustic locator signals towards a receiver assembly, and the receiver responds with a location signal. The location signal can reveal information related to the location of the receiver and the efficiency of the transmitted acoustic beam received by the receiver. This information enables the transmitter to target the receiver and optimize the acoustic energy transfer between the transmitter and the receiver. The energy can be used for therapeutic purposes, for example, stimulating tissue or for diagnostic purposes.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: October 29, 2019
    Assignee: EBR Systems, Inc.
    Inventors: N. Parker Willis, Axel F. Brisken, Mark W. Cowan, Michael Pare, Robert Fowler, James Brennan
  • Patent number: 10426362
    Abstract: A probe suitable for deep-brain recording and stimulation is provided. The probe comprises a wire bundle that includes a plurality of wires, an integrated circuit having a plurality of electrodes, and an interposer that joins the wire bundle and the integrated circuit such that each of the plurality of electrodes is electrically connected with a different wire of the plurality of wires.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: October 1, 2019
    Assignees: The Board of Trustees of the Leland Stanford Junior University, THE FRANCIS CRICK INSTITUTE
    Inventors: Nicholas Alexander Melosh, Matt R. Angle, Jun Ding, Andreas Schaefer, Mina-elraheb S. Hanna
  • Patent number: 10383681
    Abstract: A probe applicator (1) is provided for positioning a bipolar electrosurgical probe (2) that has a bendable distal end (5) with a tip that forms a bipolar electrode head (9) connected to two electrical conductors (7, 8). The probe (2) is arranged in a casing (6), and both the probe (2) and the casing (6) are longitudinally displaceable in a rigid shaft tube (3). The distal probe end (5) is pre-tensioned into a curved shape when the shaft tube end (17) is retracted. However, the probe end (5) is tensioned into an extended position by the surrounding end (17) of the shaft tube (3) when the shaft tube (3) is advanced. The second electrical conductor (8) is a flexible wire cable.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: August 20, 2019
    Assignee: BOWA-electronic GmbH & Co. KG
    Inventors: Joerg Kleih, Alexander Doppelstein, Heinz Hluchy
  • Patent number: 10375827
    Abstract: Some aspects of this disclosure generally are related to improving the robustness of a flexible circuit structure, for example, by providing fault-tolerant electrical pathways for flow of electric current through the flexible circuit structure. In some embodiments, such fault tolerance is enhanced by way of a conductive mesh provided between an adjacent pair of resistive elements. Some aspects are related to improved voltage, current, or voltage and current measurement associated with various pairs of adjacent resistive elements at least when the various pairs have differing distances between them.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: August 6, 2019
    Assignee: KARDIUM INC.
    Inventors: Daniel Robert Weinkam, Shane Fredrick Miller-Tait, Fernando Luis de Souza Lopes
  • Patent number: 10342578
    Abstract: A delivery tool is provided for use in implanting a paddle lead including a paddle electrode array disposed at a distal end of a paddle lead body. The delivery tool has a proximal tool end and a distal tool end opposite the proximal end and a tool body extending therebetween. The tool body is adapted to receive a portion of the paddle lead body and includes a longitudinal member extending along the tool body and a plurality of structural members extending from the longitudinal member. The structural members are distributed along the longitudinal member such that gaps are defined between longitudinally adjacent structural members. The tool body is structured to have increased resistance to bending in a first direction and reduced resistance to bending in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 9, 2019
    Assignee: PACESETTER, INC.
    Inventor: Aaron Raines
  • Patent number: 10279171
    Abstract: A shield layer is added to an existing lead or lead extension by applying the shield layer to the lead body between the proximal contact and distal electrode of the lead body. The shield layer may be covered with an outer insulative layer. An inner insulative layer may be applied over the lead body prior to adding the shield layer and the outer insulative layer. The shield layer may have a terminator applied to the end of the shield layer to prevent migration of the shield layer through the outer insulative layer. The shield layer may be of various forms including a tubular braided wire structure or a tubular foil. The tubular braided wire structure may be applied to the lead body by utilizing the lead body as a mandrel within a braiding machine.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: May 7, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Bryan D. Stem, James M. Olsen