Placed In Body Patents (Class 607/116)
  • Patent number: 11058870
    Abstract: A burr hole plug includes a base having a flange configured to rest on the skull of a patient and a sidewall configured to extend into a burr hole. The burr hole plug also includes a flexible cover configured to be disposed entirely over, and coupled to, the base. The flexible cover includes a skirt to fit around an outer perimeter of the base and a rim that fits inside the sidewall of the base. Between the skirt and the rim is an inset region having a shape corresponding to a shape of the flange of the base. Alternatively or additionally, the burr hole plug may include two lead retention members, each of the lead retention members including a lead engagement surface to engage and hold a lead; and a locking member for locking the two lead retention members in the base.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: July 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Zdzislaw Bernard Malinowski
  • Patent number: 11052244
    Abstract: The present disclosure relates to a bioelectric hydrogel. In one embodiment, a hydrogel comprises a hydrophilic polymer base and one or more biocompatible electrodes configured to generate at least one of a low level electric field (LLEF) or low level electric current (LLEC). The hydrogel is configured to provide a three-dimensional energy source within the hydrogel or to devises proximate to the hydrogel.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 6, 2021
    Assignee: Vomaris Innovations, Inc.
    Inventors: Wendell King, Joseph Del Rossi, Troy Paluszcyk
  • Patent number: 11052242
    Abstract: A lead wire assembly apparatus for an implantable medical device (IMD), the apparatus including a lead having first and second ends and a plurality of separate conductive segments serially located therebetween; a cover defining at least one cavity situated about ends of adjacent conductive segments; and a fluid located in the at least one cavity and coupling the adjacent conductive segments to each other. The fluid electrically couples adjacent conductive segments to pass driving signals of the implantable medical device. The fluid may further attenuate induced signals generated by radiofrequency (RF) signals of a magnetic resonance (MR) system.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: July 6, 2021
    Assignee: AVERY BIOMEDICAL DEVICES, INC.
    Inventor: Dilys Gore
  • Patent number: 11045655
    Abstract: A medical implant, such as an implantable component (22) of a tissue-stimulating prosthesis. One example of such a prosthesis being a cochlear implant. The component (22) is adapted to be implanted at or adjacent a tissue surface within the recipient, such as a bone surface. The component (22) has a housing and at least one flange (42) extending outwardly therefrom. The flange (42) can be secured to the tissue surface via a tissue fixation device, such as a bone screw (43).
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: June 29, 2021
    Assignee: Cochlear Limited
    Inventors: Peter Gibson, Lars Vendelbo Johansen
  • Patent number: 11040206
    Abstract: A neuromodulation system includes modulation output circuitry and control circuitry. The modulation output circuitry may be configured to deliver therapeutic electrical energy including therapeutic sub-threshold electrical energy and therapeutic a super-threshold electrical energy. The sub-threshold electrical energy is below a patient-perception threshold and the super-threshold electrical energy is above the patient-perception threshold. The patient-perception threshold is a boundary below which a patient does not sense delivery of the electrical energy and above which the patient does sense delivery of the electrical energy. The control circuitry is configured to control the modulation output circuitry to deliver the therapeutic electrical energy using alternating cycles of the sub-threshold electrical energy below the patient-perception threshold and the super-threshold electrical energy above the patient-perception-threshold.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: June 22, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Que T. Doan
  • Patent number: 11040195
    Abstract: The present disclosure provides systems and methods for reducing RF heating in implantable leads. An implantable lead includes a first electrode, and a coupling component spaced from the first electrode, wherein the first electrode and the coupling component form a capacitor, wherein the first electrode and the coupling component are electrically isolated from one another at therapy frequencies, and wherein the first electrode and the coupling component are electrically coupled to one another at magnetic resonance imaging (MRI) frequencies.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 22, 2021
    Assignee: PACESETTER, INC.
    Inventors: Xi Lin Chen, Shiloh Sison
  • Patent number: 11013913
    Abstract: A kit or arrangement for securing a burr hole plug that includes a guide base having an upper flange, a lower flange, and a connecting member coupling the upper flange to the lower flange, each of the upper flange and the lower flange defining one or more guide holes, wherein the one or more guide holes of the upper flange are aligned with the one or more guide holes of the lower flange; a drill shank including a cutting element and a main shaft that are configured to pass through any one of the one or more guide holes in the upper flange; and one or more guide collets including a collet shaft and a fastener tube extending from the collet shaft to receive a fastener, where the collet shaft and fastener tube are configured for insertion into any one of the guide holes in the upper flange.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: May 25, 2021
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Zdzislaw Bernard Malinowski
  • Patent number: 11007372
    Abstract: Disclosed are micro-wire stimulators that magnetically stimulate nearby cells and/or their processes (e.g., nerve fiber, axons, dendrites, etc.). The micro-wire includes one or more bends. The micro-wire stimulator can facilitate the creation of stronger field gradients in one direction with much smaller gradients in orthogonal directions, allowing for selective targeting, or avoiding, of specific cell types within a targeted region. The bent micro-wire stimulator may be implanted into the cortex of the brain to selectively stimulate nearby neural cells having a particular orientation relative to the stimulator. A tip portion of the micro-wire may be rounded, or it may have corners forming other suitable geometric shapes.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: May 18, 2021
    Assignee: The General Hospital Corporation
    Inventors: Seungwoo Lee, Shelley Fried
  • Patent number: 11000683
    Abstract: An implantable medical therapy delivery device includes a non-conductive filament extending along a length of an outer surface of an insulative body of the device, wherein the filament includes a plurality of fixation projections and is secured to the outer surface of the insulative body such that the projections protrude outward from the outer surface and are spaced apart from one another along the length of the outer surface. The filament may be wound about the length with an open pitch. In some cases, the insulative body includes an open-work member forming at least a portion of the outer surface thereof, and the filament may be interlaced with the open-work member. In these cases, the filament may be bioabsorbable, for example, to provide only acute fixation via the projections thereof, while the open-work member provides a structure for tissue ingrowth and, thus, more permanent or chronic fixation.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: May 11, 2021
    Assignee: Medtronic, Inc.
    Inventors: Kevin R. Seifert, Nathan L. Olson
  • Patent number: 10994123
    Abstract: Methods and devices are provided for activating brown adipose tissue (BAT) using electrical energy. In general, the methods and devices can facilitate activation of BAT to increase thermogenesis. The BAT can be activated by applying an electrical signal thereto that can be configured to target sympathetic nerves that can directly innervate the BAT. The electrical signal can be configured to target the sympathetic nerves using fiber diameter selectivity. In other words, the electrical signal can be configured to activate nerve fibers having a first diameter without activating nerve fibers having diameters different than the first diameter. Sympathetic nerves include postganglionic unmyelinated, small diameter fibers, while parasympathetic nerves that can directly innervate BAT include preganglionic myelinated, larger diameter fibers.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 4, 2021
    Assignee: Cilag GmbH International
    Inventors: Jason L. Harris, Tamara C. Baynham
  • Patent number: 10994148
    Abstract: A leadless pacing device may include a power supply for providing a power supply voltage, a housing having a first end and a second end with a side extending between the first end and the second end, and a set of electrodes supported by the housing and in communication with the power supply. When leadless pacing device is disposed within a coronary sinus of a patient's heart, the housing may facilitate blood flow across the housing. The housing may include fixing members extending radially outward from the side of the housing to engage a wall of the coronary sinus and expand the coronary sinus to allow blood to flow past the housing. In some cases, the housing may have a recess along a length thereof that allows blood to flow past the housing. The recess may include a groove, a flat feature, or other feature.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: May 4, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Allan Charles Shuros, Lili Liu, G. Shantanu Reddy
  • Patent number: 10980581
    Abstract: An insert for receipt within a plate aperture having an inner wall along the plate aperture includes a body and collar. The body has inner and outer surfaces. The inner surface defines an insert aperture having a longitudinal axis. The collar extends from the outer surface in a first radial direction perpendicular to the longitudinal axis and extends along only a portion of the outer surface in a second radial direction transverse to the first radial direction and the longitudinal axis. The collar defines a first radial distance from the longitudinal axis at a first position of the collar and a second radial distance from the longitudinal axis at a second position of the collar that differs from the first radial distance. A fixation system includes the plate and insert which is receivable within the plate aperture such that the collar contacts and is slideable along the inner wall.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 20, 2021
    Assignee: Stryker European Holdings I, LLC
    Inventor: Andreas Wiederkehr
  • Patent number: 10953145
    Abstract: A connector assembly for connecting external power sources to an implanted medical device enables continual supply of electrical power to the implanted medical device during replacement of an external power source. A connector assembly includes a distal driveline contact assembly, a first driveline contact assembly, and a second driveline contact assembly. The second driveline contact assembly is connectable to the distal driveline contact assembly prior to disconnection of the first driveline contact assembly from the distal driveline contact assembly.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: March 23, 2021
    Assignee: TCI LLC
    Inventor: Ethan Petersen
  • Patent number: 10940313
    Abstract: An exemplary method treating a chronic low back pain condition in a patient includes 1) generating, by an electroacupuncture device implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05, and 2) applying, by the electroacupuncture device in accordance with the duty cycle, the stimulation sessions to a target tissue location within the patient by way of an electrode array located within the patient at an acupoint corresponding to the target tissue location.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 9, 2021
    Assignee: Valencia Bioscience, Inc.
    Inventors: Jeffrey H. Greiner, David K. L. Peterson, Chuladatta Thenuwara, Stacy Greiner Chambliss
  • Patent number: 10933233
    Abstract: One aspect relates to a production method for a ring electrode, to a ring electrode, and to an electrode system. One method for the ring electrode includes providing an outer element, including an outer tube, providing a first inner element, including a first inner tube having a first core of a sacrificial material, providing a second inner element, including a second core of a sacrificial material, forming a composite tube by arranging the first inner element and the second inner element inside the outer element, the first inner element and the second inner element being arranged off-center with respect to one another, drawing the composite tube in a longitudinal direction of the composite tube, separating a composite tube disk from the composite tube, removing the sacrificial material of the first core, and removing the sacrificial material of the second core in order to obtain a contacting opening in the ring electrode.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: March 2, 2021
    Assignee: Heraeus Deutschland GmbH & Co. KG
    Inventors: Christiane Leitold, Oliver Keitel, Hoang-Minh Le, Jörg Krenzer
  • Patent number: 10894122
    Abstract: A sheet-shaped application member includes: a first region, and a second region extending around the first region, wherein: the first region comprises a first region attachment surface to which a medical device is attachable, and a first region application surface opposite the first region attachment surface and adapted to be applied to a subject, the second region comprises a second region application surface adapted to be applied to the subject, and the first and second application regions are adapted such that, when the application member is applied to the subject, adhesion at the second region application surface is stronger than adhesion at the first region application surface; and an application member tear portion adapted to allow for tearing of a portion within the first region or for tearing the first region from the second region.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: January 19, 2021
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Kanako Nishimura, Shuhei Sasazawa
  • Patent number: 10892067
    Abstract: Devices and systems for obtaining conductance data and methods of manufacturing and using the same. In at least one embodiment of a device of the present disclosure, the device is an elongated body with at least one groove defined therein, the at least one groove configured to receive one or more conductor wires therein. In another embodiment, the device is an elongated core body having a plurality of conductive elements positioned thereon and a coating to result in a device having an overall round-cross section.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: January 12, 2021
    Assignee: 3DT Holdings, LLC
    Inventors: Ghassan S. Kassab, Mark Svendsen, William Combs, Kevin Mauser, John Browder, Lynette Peters
  • Patent number: 10881850
    Abstract: An implantable medical lead includes (i) a proximal end portion including a contact and having a proximal end; and (ii) a distal end portion including an electrode and having a distal end. The electrode is electrically coupled to the contact. The distal end portion is generally flat and sufficiently stiff to be pushed through subcutaneous tissue.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: January 5, 2021
    Assignee: Medtronic, Inc.
    Inventor: Michael D. Baudino
  • Patent number: 10881860
    Abstract: A medical device includes a pulse generator and a filter. The pulse generator is configured to generate a stimulation signal and to provide the stimulation signal to tissue of a patient via an implantable lead assembly. The filter is configured to couple to the implantable lead assembly. A combined impedance of the implantable lead assembly and the filter with respect to a current induced by an external electro-magnetic field satisfies an impedance threshold when the external electro-magnetic field has a first frequency and when the external electro-magnetic field has a second frequency. The combined impedance has a peak impedance value when the external electro-magnetic field has a third frequency that is between the first frequency and the second frequency.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: January 5, 2021
    Assignee: LivaNova USA, Inc.
    Inventors: David L. Thompson, Jason F. Lindh
  • Patent number: 10857352
    Abstract: A neuromodulation system includes a first therapy element adapted for positioning within a superior vena cava, and a second therapy element adapted for positioning within a pulmonary artery. The first therapy element is carried on a first elongate flexible shaft, and the second therapy element is carried on a second elongate flexible shaft. One of the first and second shafts is slidably received within a lumen of the other of the first and second shafts—so that the second therapy element may be advanced within the body relative to the first therapy element. A stimulator is configured to energize the first therapy element within the first blood vessel to deliver therapy to a first nerve fiber disposed external to the superior vena cava and to energize the second therapy element within the pulmonary artery to deliver sympathetic therapy to a second nerve fiber disposed external to the pulmonary artery.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 8, 2020
    Assignee: NUXCEL Limited
    Inventors: Terrance J Ransbury, Richard S Stack, William E Sanders, Stephen C Masson
  • Patent number: 10850106
    Abstract: An implantable pulse generator includes a device housing containing pulse generator circuitry and a header molded to the device housing. The header can be formed of an epoxy header material. A header component can have a first part molded in the header material to fix the header component to the header at a surface of the header and a second part extending out of the header material.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: December 1, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Daragh Nolan, James Michael English, John O'Rourke, Sean Walsh, John H. Tangren, Brian D. Allen
  • Patent number: 10849676
    Abstract: The current invention concerns systems, devices and methods for the ablation of a vessel's wall from the inside, more specifically to implant devices and to the ablation of the wall of one or more pulmonary veins (PV) from the inside, preferably transmural ablation and preferably at the level of the antrum. Hereby, one or more implant devices can be implanted in the vessels and can subsequently be heated by external energy-providing means.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: December 1, 2020
    Assignee: MEDICAL DEVELOPMENT TEHCNOLOGIES S.A.
    Inventor: Glenn Van Langenhove
  • Patent number: 10821287
    Abstract: Described here are bioelectric modulation systems and methods for generating rotating or spatially-selective electromagnetic fields. A modulation system includes a multichannel electrode with independently controllable electrode channels that can be operated to generate rotating electromagnetic fields that stimulate cells regardless of their orientation, or to generate spatially-selective electromagnetic fields that preferentially stimulate cells oriented along a particular direction. The bioelectric modulation system may be implemented for stimulation of neurons or other electrically active cells. The bioelectric modulation described here may be used for a variety applications including deep brain stimulation (DBS), spinal cord and vagus nerve stimulation, stimulation of myocardial (heart) tissue, and directional stimulation of muscles.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: November 3, 2020
    Assignee: Regents of the University of Minnesota
    Inventors: Shalom Michaeli, Silvia Mangia, Olli Grohn, Artem Shatillo, Lauri Lehto, Matthew Johnson, Simeng Zhang, Julia Slopsema
  • Patent number: 10820895
    Abstract: Methods and apparatus are provided for fastening or clamping tissue to tissue or non-tissue layers and for occluding tubular body structures. Tissue fasteners having separate proximal and distal implants, each with self-expanding, radially extending legs are connected together on opposite sides of tissue and non-tissue layers. The legs of the proximal and distal implants are interdigitated in the absence of such layers.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: November 3, 2020
    Assignee: AMSEL MEDICAL CORPORATION
    Inventors: Arnold Miller, Raanan Miller, Nir Lilach, William Edelman
  • Patent number: 10799699
    Abstract: An embodiment relates to a method for delivering a vagal stimulation therapy to a vagus nerve, including delivering a neural stimulation signal to non-selectively stimulate both afferent axons and efferent axons in the vagus nerve according to a predetermined schedule for the vagal stimulation therapy, and selecting a value for at least one parameter for the predetermined schedule for the vagal stimulation therapy to control the neural stimulation therapy to avoid physiological habituation to the vagal stimulation therapy. The parameter(s) include at least one parameter selected from the group of parameters consisting of a predetermined therapy duration parameter for a predetermined therapy period, and a predetermined intermittent neural stimulation parameter associated with on/off timing for the intermittent neural stimulation parameter.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: October 13, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer
  • Patent number: 10791946
    Abstract: A flexible, optically transparent electrode array comprises at least one graph electrode. The electrode may be positioned on a substrate. The flexible, optically transparent electrode may be used for simultaneous optical imaging and electrophysiological monitoring.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: October 6, 2020
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Duygu Kuzum, Ertugrul Cubukcu, Brian Litt
  • Patent number: 10779747
    Abstract: A system for assessing brain health of a user includes an electronics module including an active brainwave sensor that collects channels of electroencephalography (EEG) brainwave data, a plurality of biological sensors, and a stimulation device. The biological sensors include a microphone that captures verbal responses of the subject during a battery of tasks, an image sensor that records eye positions, eye saccade and other biometric identification information, an accelerometer, a gyrometer, a thermometer, a pulse oximetry sensor, a dermal skin conductance sensor, and key strokes, mouse clicks or touch events to measure cognitive data of the user. The stimulation device applies a battery of tasks including a visual or photic stimulant, an auditory stimulant, a gastronomic stimulant, an olfactory stimulant, a touch stimulant, and a cognitive challenge stimulant to the user. The plurality of biological sensors simultaneously measure the body's response to stimulants for recordation by the electronics module.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 22, 2020
    Assignee: Cerora, Inc.
    Inventor: Adam J. Simon
  • Patent number: 10751537
    Abstract: An implant unit configured for implantation into a body of a subject is provided. The implant unit may include a flexible carrier unit including a central portion and two elongated arms extending from the central portion, an antenna, located on the central portion, configured to receive a signal, at least one pair of electrodes arranged on a first elongated arm of the two elongated arms. The at least one pair of electrodes may be adapted to modulate a first nerve. The elongated arms of the flexible carrier may be configured to form an open ended curvature around a muscle with the nerve to be stimulated within an arc of the curvature.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 25, 2020
    Assignee: Nyxoah SA
    Inventors: Adi Mashiach, Itzik Mashiach
  • Patent number: 10744319
    Abstract: Disclosed is a system including an electrode and a stylet configured to steer the electrode towards its intended position during implantation, and a method for such system's use. An electrode is provided having regions with varied flexibility. A stylet having bends that are indexed to specific regions of flexibility of the electrode may be inserted into the electrode, and upon minimal radial and/or longitudinal movement of the stylet within the electrode, will cause the magnitude of the angle to which the lead is bent to either increase or decrease so as to aid the operator in placement of the electrode.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: August 18, 2020
    Inventor: Richard B. North
  • Patent number: 10736572
    Abstract: Biomaterials, such as hydrogels, can be mechanically secured to electrodes of an implantable device, such as electrodes made of noble metals. The hydrogel can be mechanically secured via anchoring features of the electrode. Anchoring features can include apertures, voids, textures, or other patterns created in or on the electrode. The hydrogel can incorporate into the anchoring features to mechanically hold the hydrogel against the electrode. The anchoring features, by being located in or on the electrode, can further increase the surface area of the electrode that is exposed to the hydrogel, which can facilitate the conduction of electrical signals between the electrode and surrounding biological tissue. The substrate supporting the electrode can include additional anchoring features that further assist in mechanically securing the hydrogel.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: August 11, 2020
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Huanfen Yao, Kimberly Kam, Daniel Otts
  • Patent number: 10737091
    Abstract: An electrode for the electrical stimulation of brain tissue or other tissue of a patient is configured for location between skull and scalp of the patient. The electrode has a stimulation surface which is configured for contacting the skull of the patient. The electrode is a disc-shaped electrode having a pre-shaped flat or concave stimulation surface.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: August 11, 2020
    Assignee: PRECISIS AG
    Inventors: Gregor Remmert, Stefan Menzl
  • Patent number: 10729456
    Abstract: A reservoir of a system for deploying an implantable lead to an extravascular location delivers a flow of fluid through a lumen of one or both of a tunneling tool and an introducer of the system. In some cases, the tunneling tool includes a pressure sensor assembly for monitoring a change in a pressure of the flow through the lumen thereof. Alternately, or in addition, a flow-controlled passageway, through which the flow of fluid from the reservoir is delivered to the lumen of the introducer, includes a compliant chamber to hold a reserve of the fluid. Fluid from the reserve may be drawn into the lumen of the introducer as the tunneling tool is withdrawn therefrom. Alternately, the introducer may include a chamber located between two seals, wherein fluid that fills the chamber is drawn distally into the lumen of the introducer, as the tunneling tool is withdrawn therefrom.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: August 4, 2020
    Assignee: Medtronic, Inc.
    Inventors: Ronald A. Drake, Kenneth C. Gardeski, Zhongping Yang, Rick D. McVenes
  • Patent number: 10729901
    Abstract: Biomaterials, such as hydrogels, can be mechanically secured to an electrode of an implantable device using a non-swellable shell. Hydrogel can be applied to an electrode surface and then mechanically constrained in place by a non-swellable shell. The non-swellable material can be secured to a substrate supporting an electrode or can otherwise surround an electrode and the hydrogel. The non-swellable shell can include openings or passthroughs that allow for electrical conduction across the non-swellable shell. The hydrogel can extend out of the openings to contact adjacent biological tissue. In some cases, an outer layer of hydrogel can surround the non-swellable shell and connected to the inner layer of hydrogel through the openings of the non-swellable shell.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: August 4, 2020
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Huanfen Yao, Kimberly Kam, Daniel Otts
  • Patent number: 10716947
    Abstract: Disclosed herein is an implantable electronic device. The device includes a housing and a header connector assembly coupled to the housing. The header connector assembly includes a DF4/IS4 assembly and a header including a bore. The DF4/IS4 assembly is locked within the bore via a locking datum arrangement that exists between the DF4/IS4 assembly and the header.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: July 21, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Evan Sheldon, Armando M. Cappa, Christopher J. Fleck, Arees Garabed
  • Patent number: 10709886
    Abstract: An electrical stimulation lead includes a body having distal and proximal end portions, a longitudinal length, at least one anchoring lumen, and at least one open slot spaced apart from each end of the lead body. Each anchoring lumen is open at a slot and extends both distally and proximally from the slot. The lead also includes electrodes; terminals; conductors electrically coupling the terminals to the electrodes; and at least one anchoring element at least partially disposed in an anchoring lumen. Each anchoring element includes at least one bent portion biased to extend an extension portion of the anchoring element out of a slot when the anchoring element is in a deployed position and can retract the extension portion into an anchoring lumen when the anchoring element is in a constrained position. The lead further includes an attachment member attached to each anchoring element and disposed proximal to each slot.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: July 14, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Eric Koji Nagaoka, Jacob B. Leven, Abraham Molina Ortega
  • Patent number: 10715938
    Abstract: A hearing aid includes: a hearing aid housing with a connector socket; and an earpiece connector with a connector plug; wherein the connector plug of the earpiece connector is configured to releasably couple to the connector socket of the hearing aid housing for connecting the earpiece connector to the hearing aid housing; and wherein the connector plug of the earpiece connector comprises a connector plug body having a deadbolt movably arranged in the connector plug body.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: July 14, 2020
    Assignee: GN Hearing A/S
    Inventors: Laurids Egedal Kirchhoff, Anders Hjermø Michaelsen
  • Patent number: 10695567
    Abstract: A neurostimulation paddle lead, method of neurostimulation, and neurostimulation system are provided. The neurostimulation paddle lead carries a plurality of electrodes comprising at least four columns of electrodes having a spacing between two inner electrode columns less than a spacing between the inner electrode columns and adjacent outer electrode columns. The inner electrode columns may also be longitudinally offset from the outer electrode columns. The methods and neurostimulation systems steer current between the electrodes to modify a medial-lateral electrical field created adjacent spinal cord tissue.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: June 30, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Dongchul Lee, Kerry Bradley, David K. L. Peterson
  • Patent number: 10695564
    Abstract: A flexible sheet for neurostimulation is described having a flexible non-conductive substrate matrix in which electrodes are embedded along a lower surface. Electrically conductive wires extend from the electrodes through the flexible substrate to another exterior surface of the substrate. Methods of making the flexible sheet and making a device using the flexible sheet are also disclosed.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: June 30, 2020
    Assignee: Battelle Memorial Institute
    Inventors: John Bartholomew, Jeffrey Friend
  • Patent number: 10639483
    Abstract: A subcutaneously implantable device includes a housing, a clip attached to a top side of the housing, and an electrode. The clip is configured to anchor the device to a muscle, a bone, and/or a first tissue. The electrode is configured to contact an organ, a nerve, the first tissue, and/or a second tissue. Circuitry in the housing is in electrical communication with the electrode and is configured to sense an electrical signal from the organ, the nerve, the first tissue, and/or the second tissue through the electrode; deliver electrical stimulation to the organ, the nerve, the first tissue, and/or the second tissue through the electrode; and/or deliver a signal to a drug pump to provide a targeted or systemic therapeutic drug to the organ, the nerve, the first tissue, and/or the second tissue.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: May 5, 2020
    Assignee: Manicka Institute LLC
    Inventor: Yatheendhar D. Manicka
  • Patent number: 10639097
    Abstract: Extraction devices for extracting chronically implanted devices such as leadless cardiac pacemakers (LCP). In some cases, the extraction devices may be configured to cut, tear or ablate through at least some of the tissue ingrowth around and/or over the chronically implanted device such that a retrieval feature on the chronically implanted device may be grasped for removal of the chronically implanted device. Implantable medical devices such as LCPs may include features that facilitate their removal.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 5, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan Charles Shuros, Arjun D. Sharma, Brian Soltis
  • Patent number: 10639472
    Abstract: The invention relates to a process for manufacturing at least one implant for focal electrical stimulation of a nervous structure, said implant being of the type including in a supporting structure a network of cavities at the bottom of which are placed microelectrodes, the cavities being bounded by walls erected and located around the microelectrodes, the supporting structure being produced beforehand by implementing the following steps: deposition and etching, in a planar manner, on an insulating substrate, of electrical contacts, of electrical tracks and of microelectrodes, first tracks electrically connecting the microelectrodes and the electrical contacts, second electrical tracks being electrically connected to a ground.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: May 5, 2020
    Assignees: Chambre de Commerce et D'Industrie de Region Paris Ile de France (ESIEE Paris), Universite Pierre Et Marie Curie (Paris 6), Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM)
    Inventors: Lionel Rousseau, Gaëlle Lissorgues, Myline Cottance, Serge Picaud, Julie Degardin
  • Patent number: 10632310
    Abstract: An electronic stimulation device is adapted for electrically stimulating a target zone of an organism. The electronic stimulation device comprises at least one electronic stimulation unit. The electronic stimulation unit includes at least one first electrode and at least one second electrode. The electronic stimulation unit receives an electrical stimulation signal to impel the first electrode and the second electrode to generate an electric field. The range of the electric field covers the target zone, and the electric field strength ranges from 100 V/m to 1000 V/m. The target zone is selected from the group consisting of a dorsal root and a dorsal root entry zone of a spinal cord, and the electronic stimulation unit is configured to be disposed in an anatomical space of the organism, and said anatomical space is selected from the group consisting of a spinal canal, a lateral recess and an epidural space.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: April 28, 2020
    Assignee: GIMER MEDICAL CO., LTD.
    Inventor: Chi-Heng Chang
  • Patent number: 10625072
    Abstract: A method of monitoring electrical stimulation includes electrically stimulating tissue of a patient using at least one electrode of an implanted electrical stimulation lead. A distal portion of the electrical stimulation lead is disposed adjacent to the tissue of the patient to be stimulated. The electrical stimulation lead includes the at least one electrode and at least one light receiver disposed along the distal portion of the electrical stimulation lead. The method also includes receiving light from the tissue at the at least one light receiver of the lead. Other methods include emitting light from the lead to induce the emission of light or electrical signals from the tissue which are then received by the lead.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: April 21, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Raul Enrique Serrano Carmona
  • Patent number: 10617354
    Abstract: An electrode system for sensing biometric signals from a body region of a user and a method of manufacture thereof, the electrode system comprising: a substrate comprising a reference region and a signal communication region, the signal communication region including a set of conductive leads; a set of biosensing contacts coupled to the set of conductive leads; a non-conductive region ensheathing each of the set of biosensing contacts, the non-conductive region including: a set of openings that expose at least a portion of each of the set of biosensing contacts for interfacing with the body region of the user, upon coupling of the electrode system to the user; a first bonding layer that couples the substrate to a fabric base; and a second bonding layer coupled to the first bonding, wherein the substrate is hermetically sealed between the first bonding layer and the second bonding layer.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: April 14, 2020
    Assignee: MAD Apparel, Inc.
    Inventors: James Artel Berg, Chris Glaister, Dhananja Pradhan Jayalath, Hamid Hameed Butt, Gaston MacMillan, Christopher John Wiebe
  • Patent number: 10596375
    Abstract: A cochlear implant device comprises a receiver, a processing device, a first electrode and a second electrode. The receiver is configured to receive outside voice signal. The processing device is coupled to the receiver, configured to receive and transfer the voice signal to an electrical stimulation signal. The first electrode connects to the processing device, disposed on stapes footplate ligament or oval window. The second electrode connects to the processing device, disposed on round window. Wherein the electrical stimulation signal is applied to stapes footplate ligament, oval window or round window to stimulate acoustic nerve through the first electrode or the second electrode.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: March 24, 2020
    Assignee: National Chiao Tung University
    Inventors: Chia-Fone Lee, Yuan-Fang Chou, Chung-Yu Wu, Ming-Dou Ker, Chung-Chih Hung, Xin-Hong Qian
  • Patent number: 10576292
    Abstract: An Implantable Pulse Generator (IPG) operable as a Deep Brain Stimulator (DBS) is disclosed which is mountable to the skull of a DBS patient, and which therefore is much closer to the site of intended therapy. The IPG includes an electronics section, a charging coil section, a connector block section configured to connect to the proximal end of implanted leads, and an electrode wire section connecting the connector block section to the electronics section. The electronic section includes a housing that is positionable into a hole formed in the patient's skull. Once so positioned, the housing may be affixed to the skull via bone screws. The charging coil section may be separate from and non-overlapping with the electronics section, or the charging coil section may encircle the electronics section.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: March 3, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: William G. Orinski
  • Patent number: 10576291
    Abstract: A subcutaneously implantable device includes a housing, a clip attached to a top side of the housing, and an electrode. The clip is configured to anchor the device to a muscle, a bone, and/or a first tissue. The electrode is configured to contact an organ, a nerve, the first tissue, and/or a second tissue. Circuitry in the housing is in electrical communication with the electrode and is configured to sense an electrical signal from the organ, the nerve, the first tissue, and/or the second tissue through the electrode; deliver electrical stimulation to the organ, the nerve, the first tissue, and/or the second tissue through the electrode; and/or deliver a signal to a drug pump to provide a targeted or systemic therapeutic drug to the organ, the nerve, the first tissue, and/or the second tissue.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: March 3, 2020
    Assignee: Manicka Institute LLC
    Inventor: Yatheendhar D. Manicka
  • Patent number: 10555722
    Abstract: A CMUT transducer array comprising a first column (58) of spaced CMUT cells on at least one silicon island, a second column (58) of spaced CMUT cells on at least one further silicon island, the second column being staggered in alignment with the first column such that cells of the second column are partially located in spaces between successive cells of the first column, the first column and the second column being spaced apart by a gap, and a flexible foil retaining the respective silicon islands, the flexible foil comprising conductive interconnects.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: February 11, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Vincent Adrianus Henneken, Marcus Cornelis Louwerse, Ronald Dekker
  • Patent number: 10543366
    Abstract: Systems and methods are described and illustrated for percutaneously implanting a stimulation lead for treating sleep-related disordered breathing.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: January 28, 2020
    Assignee: Inspire Medical Systems, Inc.
    Inventors: Mark A. Christopherson, Quan Ni, John Rondoni
  • Patent number: RE48235
    Abstract: A method for manufacturing a lead includes forming an elongated multi-lumen conductor guide defining a central stylet lumen and a plurality of conductor lumens arranged around the stylet lumen. The multi-lumen conductor guide is twisted to form at least one helical section where the plurality of conductor lumens each forms a helical pathway around the stylet lumen. Each of the helical pathways of the at least one helical section has a pitch that is no less than 0.04 turns per centimeter.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: October 6, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Andrew DiGiore, Thomas Lopez